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Abstract.    Large fluctuations in surface strain at the level of steel are expected in reinforced concrete 
flexural members at a given stage of loading due to the emergent structure (emergence of new crack 
patterns). This has been identified in developing deterministic constitutive models for finite element 
applications in Ibrahimbegovic et al. (2010). The aim of this paper is to identify a suitable probability 
distribution for describing the large deviations at far from equilibrium points due to emergent structures, 
based on phenomenological, thermodynamic and statistical considerations. Motivated by the investigations 
reported by Prigogine (1978) and Rubi (2008), distributions with heavy tails (namely, alpha-stable 
distributions) are proposed for modeling the variations in strain in reinforced concrete flexural members to 
account for the large fluctuations. The applicability of alpha-stable distributions at or in the neighborhood of 
far from equilibrium points is examined based on the results obtained from carefully planned experimental 
investigations, on seven reinforced concrete flexural members. It is found that alpha-stable distribution 
performs better than normal distribution for modeling the observed surface strains in reinforced concrete 
flexural members at these points. 
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1. Introduction 
 

Strain in steel in reinforced concrete (RC) flexural members is used in the computation of 
crackwidth. The value of strain is affected by density of cracking. It is also noted that in the 
context of condition assessment of existing reinforced concrete structures, measured/computed 
surface strains play an important role. The focus in this paper is on identification of probabilistic 
models for describing the surface strain (i.e., the strain in the exterior side face of the beam) 
variations in reinforced concrete flexural members. 

Based on an experimental investigation on RC flexural members, it has been reported that the 
measured strains at a given depth from extreme compression fibre, along the length of beam in 
pure flexure zone, exhibit large scatter (Desayi and Rao 1987). Also, it has been reported that the 
variation of average strain across the depth is linear. Assuming linear strain variation across the 
depth of beam and considering various basic quantities as random variables, a probabilistic 
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Fig. 1 Plots of load versus experimental surface strain, at the level of steel, for beams KB1 and KB2 at 
different stages of loading (from Desayi and Rao 1987) 

 

Fig. 2 Typical histograms of strains at the level of reinforcement for beam KB2: (a) at 1st stage of loading 
(applied load = 4.48 kN), (b) at 3rd stage of loading (applied load = 14.24 kN), (c) at 5th stage of 
loading (applied load = 22.25 kN) and (d) at 9th stage of loading (applied load = 65.73 kN) (from 
Desayi and Rao 1987) 

 
 
analysis of average strain, at various stages of loading, was carried out using Monte Carlo 
simulation. From the results of simulation (Fig. 1), it has been found that the average strain at the 
level of reinforcement exhibits large scatter. The probabilistic mean overestimates the 
experimentally observed mean strains at lower stages of loading and underestimates the same at  
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Fig. 3 The RVEs in the constant moment zone of an RC beam 

 
 
higher stages of loading. Also, it has been found that the (mean±1.64x standard deviation) limits 
does not enclose the observed range of strain at a given loading stage. Histogram of average strain 
distribution at the level of reinforcement (shown typically for the beam KB2 in Fig. 2) suggests 
that the distribution of average strain can be bi-modal and large scatter is expected in the 
prediction of average strain. These observations suggest that prediction of average strain itself is 
beset with large uncertainty. To predict/assess the condition of a reinforced concrete member 
prediction of extreme (largest) value of strain is important. Hence, it is important to model the 
strain as a random quantity taking into account the actual mechanism of cracking and by giving 
due consideration to the heterogeneity of concrete. As pointed out by Bazant and Oh (1983) “… 
This is clear even without experimental evidence, since structural analysis implies the hypothesis 
of smoothing of a heterogeneous material by an equivalent homogeneous continuum in which, if 
one uses the language of the statistical theory of random heterogeneous materials, the stresses and 
strains must be understood as the averages of the actual stresses and strains in the microstructure 
over the so-called representative volume whose size must be taken to be at least several times the 
size of the heterogeneities. …” The authors also give an idea about the size of the representative 
volume element (RVE) as 10 to 20 times the aggregate size. They have presented, by considering 
the energy criterion of fracture mechanics and strength criterion, equations for crack spacing and 
crackwidths in RC members. They attribute the possible variations in cracking to the random 
variations in fracture energy. From this study it is clear that when strain variation in the flexure 
zone is studied, the size of the RVE should be about 10 times the size of aggregate. 

In the present investigation, the surface strains measured over a gauge length of 200 mm are 
considered for further analysis satisfying the requirement of RVE. Since the RVE is statistically 
homogeneous and all the RVEs (Fig. 3) in the flexure zone are subjected to same moment, these 
elements can be considered to be identical. 

As suggested by Bazant and Oh (1983) and Balaji Rao and Appa Rao (1999), the RC beam 
undergoing flexural cracking can be considered as a parallel system wherein redistribution of 
stresses/strains are taking place. For such a system, Bazant (2005), using the fracture mechanics 
based size effect theory, has recently shown that the load (or stress) – displacement (or strain) 
curve would exhibit jumps. However, as pointed out by Bazant (2005), the size effect may not be 
significant in the presence of tension reinforcement. As discussed in this paper, even the 
load-displacement behaviour of RC beam would exhibit multiple jumps. The points where the 
jumps occur are the points of bifurcation (de Borst 1987, Bazant 2005, Bazant and Cedolin 2010, 
Ibrahimbigovic et al. 2010).  It is known that at these points, the system which is undergoing 
flexural cracking would exhibit large fluctuations (Prigogine 1978). From the foregoing 
discussions it is felt that a heavy tailed distribution may be more appropriate to capture the large 
fluctuations in the concrete surface strains in reinforced concrete flexural members (at any given 
stage of loading, especially at the points at which an emergent crack structure forms). 
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Some observations:  

• The RVEs located in the flexure zone of the RC member (Fig. 3) are subject to statistically 
similar stress/strain states. This implies that the random surface strains in the RVEs are identically 
distributed. While the stress/strain state in RVEs can be considered to be identical, they need not 
be considered to be statistically independent. 

• From both the experimental and probabilistic analyses results, it is found that a random 
variable which exhibits large fluctuations would be preferred over those generally used (i.e., those 
with exponential decaying tails). Thus, it is desirable to use probability distributions that have 
power law decaying tails (since they have to capture large fluctuations expected to be attendant 
with bifurcation phenomenon). 

An experimental program is taken up recently to check the validity of this inference. Four 
singly reinforced RC beams are tested under four point bending to obtain the concrete surface 
strain values in the flexure zone at CSIR-SERC. Salient details of experimental investigations are 
presented in this paper. An attempt is made to fit an alpha-stable distribution (which is known to 
have heavy tails) to the observed strains. To study further the efficacy of alpha-stable distribution 
for modelling the variations in strain in concrete at the level of reinforcement in RC flexural 
members, experimental investigations on three singly reinforced concrete beams presented by 
Desayi and Rao (1987, 1989) are also considered. Based on the results of statistical analyses it is 
inferred that the alpha-stable distribution is a good choice for modelling the surface strains in 
concrete, at the level of reinforcement, in RC flexural members. 
 
 
2. Mechanism of cracking - A discussion on emergent structure 
 

The strain in concrete in the tension zone of a RC flexural member depends on the level of 
cracking in the member. To understand the strain behaviour in the tension zone, it is important to 
know the mechanism of cracking in RC flexural member. The mechanism of cracking is described 
in several references (see for instance Bresler 1974, Park and Paulay 1975, Nilson and Winter 
1986). Only a brief description of the same will be presented here. 

When an under-reinforced concrete beam is subjected to monotonically increasing four-point 
bending (Fig. 4), the following points can be noted: 
 
 

 
Fig. 4 Schematic representation of the test program for beams tested at CSIR-SERC (dimensions in mm) 
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Fig. 5 Schematic load-deflection diagram of an under-reinforced concrete beam 
 

Fig. 6 Flexural cracking in reinforced concrete beam: (a) variation of tensile force in reinforcing bar, (b) 
variation of tensile stress in concrete, (c) variation of bond stress (based on Pillai and Menon 2009, 
MacGregor 1997) 

 
 
(1) As long as the applied load is less than the first crack load of the beam, the tension forces are 
shared both by concrete and steel. The load-deflection curve will be essentially linear (portion A of 
Fig. 5). There will be internal micro-cracking of concrete present in the tension zone (Bresler 
1974). 
(2) When the applied load is equal to the first crack load of the beam, visible crack(s) appears on 
the surface of the beam and the flexure zone of the beam will be divided into number of sections as 
shown in Fig. 6. The formation of first set of cracks will be characterised by a sudden drop in load 

415



 
 
 
 
 
 

K. Balaji Rao, M.B. Anoop, K. Kesavan, S.R. Balasubramanian, K. Ravisankar and Nagesh R. Iyer 

(point B in Fig. 5). This occurs due to sudden loss of stiffness of the beam due to cracking.  
Typical variations of tensile force in steel, tensile stress in concrete and the bond stress in the 
flexure zone of the beam are shown in Fig. 6 (Pillai and Menon 2009, MacGregor 1997). 
(3) With the increase of load, beyond the first crack load, redistribution of stresses take place 
between the cracked sections. New cracks may form in between the existing cracks and also the 
existing cracks may widen/lengthen. The formation of new cracks results in reduction in crack 
spacing. The process of formation of new cracks will continue until the bottom fibre stress in 
concrete cannot reach a value equal to the modulus of rupture. When this condition is reached, no 
more new cracks form and the existing cracks will widen/lengthen with the increase of load. Thus, 
the spacing of cracks remains the same and the corresponding crack spacing is called stabilised 
crack spacing. 

From the above discussion, it is clear that the behaviour of RC flexural members under the 
external loading is quite complex. Also, it is clear that one of the outstanding features of the 
behaviour is the emergent structure at different stages of loading (in this paper, emergent 
(dissipative) structure refers to formation of new cracks and/or widening and lengthening of the 
existing cracks on the surface of the flexural member, in the constant bending moment zone), as 
the loading is increased monotonically. At a given stage of loading, the emergent structure is 
characterized by the crack length, crack spacing, crack width. Efforts have already been made to 
approximately account for these observations in the estimation of crack spacing and crack widths 
(ACI 2002, BS8110 1997, CEB 1990, Desayi and Ganesan 1985). From the equations proposed in 
these codes (not presented here), it can be noted that cracking in RC flexural members depend on 
cross-section dimensions of the beam, the material strengths and the reinforcement details. 

Recently, efforts are being made to develop numerical models within the framework of finite 
element simulation for prediction of load-deformation behaviour of RC members. The formulation, 
as can be expected, should consider the fact that the RC beams would have both distributed and 
localized damage in coupled form and, also the bond-slip relation. Two types of models namely, 
one which is based on characteristic length and the other based on damage evolution have been 
proposed (Bazant and Oh 1983, Sluys and de Borst 1996, Dominguez et al. 2005, Ibrahimbegovic 
et al. 2010). The latter type of models recognises that there can be strong discontinuities in the 
displacement field at the points of bifurcation. From a brief review of these models, it is noted that 
when fracture energy based models are used in FEM of RC members, the gradient crack model 
proposed by Sluys and de Borst (1996) with a refined bond-slip model can be used. However, it is 
felt that the constitutive relations proposed by Dominguez et al. (2005) are best suited since they 
are based on strong displacement field discontinuity hypothesis. This type of model is 
recommended in probabilistic simulation. In this paper, attempt is made to first suggest a 
probabilistic model for surface strains based on phenomenological considerations and then 
examine its applicability based on experimental observations only. And, no FE modeling and 
simulations are attempted. These studies are being continued at CSIR-SERC. 
 
 
3. Probabilistic model for surface strains in RC members 
 

It is known that when the principles of thermodynamics are applied to describe the cracking 
phenomenon of RC beams, the stage at which emergent structure forms corresponds to a transient 
non-equilibrium condition and subsequent formation of a meta-stable state(s) (de Borst 1987, 
Balaji Rao 2009). See Appendix I for a brief description on the evolution of a non-equilibrium  
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(a) (b) 

Fig. 7 Schematic of response evolution with loading showing formation of emergent (dissipative) 
structures (a) gravity-load testing and (b) displacement controlled testing 

 
 
thermodynamic system (see de Groot and Mazur 1984). The loading drops at the incipience of an 
emergent structure marking the non-equilibrium thermodynamic state. This is transient 
non-equilibrium thermodynamic state because, further increase in load (from the load level to 
which it has reduced) can be achieved only with the increase in deflection of the beam. Once a 
particular stabilised crack pattern has formed, the beam will take further loading, which defines 
local equilibrium state with respect to cracking. This crack pattern will correspond to a meta-stable 
equilibrium state. The response evolution at and around the point of instability (such as the point 
‘B’ which is in non-equilibrium state) is governed more by the fluctuations than the mean. Hence, 
mean field theory cannot be used to predict the behaviour around this point. However, beyond the 
unstable point, the response evolution can be predicted using mean field theory till another 
non-equilibrium point is reached (if at all possible). This behaviour is depicted in Fig. 7 for both 
gravity-load testing and displacement controlled testing. However, in this paper, only the former is 
considered. 

It has been pointed out in the literature (Prigogine 1968, de Borst 1987, Balaji Rao 2009) that 
the application of thermodynamic principles to irreversible processes (which is typically the case 
of cracking in reinforced concrete beams) would result in large fluctuation and formation of a new 
(emergent) structure at the points of instability. This is due to the presence of wild randomness, 
which can simply be elucidated as follows: an environment in which a single observation or a 
particular number can impact the total in a disproportionate way (Mandelbrot and Taleb 2006). 
The traditional Gaussian way of looking at the world begins by focusing on the ordinary, and then 
deals with exceptions or so-called outliers as ancillaries. A second way, which takes the so-called 
exceptional as a starting point and deals with the ordinary in a subordinate manner - simply 
because that “ordinary” is less consequential. These two models correspond to two mutually 
exclusive types of randomness: mild or Gaussian on the one hand, and wild, fractal or “scalable 
power laws” on the other. To characterise and quantify the fluctuations at the points of instability, a 
distribution with heavy tails is to be used. 
 
 
4. Justification for use of alpha-stable distributions 
 

One of the significant factors affecting the surface strains in concrete is the cracking in concrete. 
Recent developments in NDE techniques (viz. AE, GPR and other sensors) have made it possible 
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to study the cracking process in concrete at micro-scale levels.  Colombo et al. (2003), with a 
view to identify the damage due to cracking using acoustic emission (AE) technique, conducted 
experimental investigations on a RC beam subjected to cyclic loading. The beam was simply 
supported and was subjected to two-point bending. For each loading cycle, the peak load was 
increased from that in the previous cycle. After the end of last (tenth) loading cycle, the RC beam 
was found to be severely damaged. The AE data recorded at each loading cycle was analysed to 
determine the b-value (the b-value is the negative gradient of the log-linear AE 
frequency/amplitude plot). Colombo et al. (2003) stated that the changes in b-value can be related 
to the different stages of crack growth in the RC beam. At initial stages of loading, microcracks are 
dominant and the macrocracks would start to appear. The b-value corresponding to this phase is 
found to be greater than 1.7. In the next phase, the macrocracks would be uniformly distributed 
along the beam and no new macrocraks would form. The b-value corresponding to this phase is 
found to be between 1.2 and 1.7. In the final phase, the macrocracks were found to be opening up, 
as the beam is failing, and the b-value corresponding to this phase was found to be between 1.0 
and 1.2. These studies thus help in locating- and assessment (qualitative) of- the damage. 
Carpinteri et al. (2009), based on both in-situ field test on RC member and laboratory tests on 
concrete specimens, have shown that the b-value can be linked to the value of exponent of the 
power law form for the tail portion of the probability distribution of crack size, and that the value 
of exponent of the power law can be interpreted as the fractal dimension of the damage domain. 
Therefore, the random variables associated with crack size in RC flexural beams should have a 
form consistent with the power law distribution (thus, may not have finite moments). By viewing 
the surface strains as a result of the indicated microscopic phenomena (such as bond-slip between 
steel and concrete, micro-cracking in concrete), the limiting distribution (attractor) is to be an 
alpha-stable distribution, knowing that the microscopic components may have power law 
distributions. 

 
4.1 Thermodynamics considerations 
 
The information presented in this section is based on the concepts presented by Prigogine 

(1978). An attempt has been made to interpret these concepts to the phenomenon of cracking in 
reinforced concrete flexural members. 

According to Prigogine (1978), the concept of time in the case irreversible thermodynamic 
systems can be replaced by associating or suitably defining a variable associated with the 
phenomenon of formation of dissipative structures. Through suitable thermodynamic formulations, 
he has addressed the problem associated with these systems both at macroscopic and microscopic 
levels simultaneously. However, the use of Helmoltz free energy in the thermodynamic 
formulations is questioned since non-equilibrium can be source of order. Therefore, in order to 
formulate the problem of cracking which forms dissipative structures, the concept of open system 
needs to be adopted. The two components, namely, internal and external, are body of the material 
containing micro-cracks and the fictitious system containing localized macro-cracks which 
dissipate energy through mainly surface energy. These two systems are coupled and there exists a 
boundary between them. In this way, the thermodynamic formulations with strong discontinuity 
seem to show promise (Dominguez et al. 2005). 

The second law of thermodynamics suggests that the change in entropy is equal to or greater 
than zero. For a closed system, the entropy production is through the irreversible damage and sets 
one-sidedness of time. The positive sidedness of time is associated with increase of entropy. If 
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entropy remains constant, time will not increase! This may be a problem with thermodynamics of 
closed systems. Hence, more often thermodynamics principles are applied to describe the systems 
near the equilibrium. To extend the thermodynamics to the non-equilibrium processes, an explicit 
expression for entropy production is required. Progress has been achieved along this line by 
supposing that even outside equilibrium, entropy depends only on the same variables as at 
equilibrium. This assumption leads to “local” equilibrium, and enables one to use the formulations 
similar to equilibrium thermodynamics. Local equilibrium requires that 

:

0id S
J X

dt  


                                 (1) 

The left hand side of Eq. (1) gives the rate of production of internal entropy by the system due 
to various irreversible processes (ρ) at a macroscopic level. Jρ and Xρ are rate of entropy 
production by individual irreversible process ρ, and the driving force of the process ρ.  This is the 
basic formula of macroscopic thermodynamics of irreversible process. At thermodynamic 
equilibrium, we have simultaneously for all irreversible processes 

0; 0J X                                   (2) 

It is therefore natural to assume that at least near the equilibrium linear homogeneous relations 
between flows and forces. The assumption of thermodynamic local equilibrium for 
non-equilibrium systems and application of above approach, at a macro scale, allows the use of 
empirical laws such as Fourier’s law, and Fick’s second law of diffusion to various phenomenon 
under consideration. It may be noted that we have not yet included the complex interaction that 
may takes place between the irreversible damage processes that are producing the entropy.  The 
answer lies in the linearization of the system at least near the “local” equilibrium. This assumption 
enables the principle of superposition which is central to the local equilibrium thermodynamics 
and enables us to determine the rates of flow (flux) of a given irreversible process, taking into 
account the interactions among various irreversible processes contributing to the macroscopic 
equilibrium, using phenomenological coefficients ( ppL  ) from the following relation 

J L X  


 


                                 (3) 

Linear thermodynamics of irreversible processes is dominated by two important results, namely, 
Onsager reciprocity relations and the principle of minimum entropy production at or very near the 
local equilibrium point. The Onsager reciprocity relation is given by 

L L                                      (4) 

When the flow Jρ,, the flow corresponding to irreversible process ρ, is influenced by the force 
X   of irreversible process ρ’, then the flow J  is also influenced by the force X  through the 

same phenomenological coefficient.  It may be seen that the Onsager’s reciprocity relation is 
similar to the Betti’s theorem in structural engineering. 

The two central concepts for establishing the “local” equilibrium dynamics of the irreversible 
thermodynamic open systems have been explained above. The theorem dealing with minimum  
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Fig. 8 Force-deformation relation of an RC member subjected to axial tension (Ibrahimbegovic et al. 

2010) 
 
 
internal entropy production is very significant since it gives some kind of ‘inertial’ property to the 
nonequilibrium system near the local equilibrium point. When given boundary conditions prevent 
the system from reaching thermodynamic equilibrium (that is zero entropy production) the system 
settles down to the state of ‘least dissipation’. It is to be noted that for far-from equilibrium points 
the thermodynamic behavior could be quite different. It has been proved now that the behavior of 
the system can be opposite of minimum entropy production. In fact, the state of non-equilibrium 
(wherein there can be production of internal entropy) may be source of order at a macro-scale. 

It is interesting to note that Boltzmann’s order principle as expressed by canonical distribution 
assign almost zero probability to the occurrence of Benard convection. Whenever new coherent 
states occur far from equilibrium, the very concept of probability, as implied in the counting of 
number of complexions, breaks down. In the case of Benard’s convection, above a critical 
temperature small convection currents, appearing as fluctuations, get amplified and give rise to 
macroscopic current. A new supermolecular order appears which corresponds basically to a giant 
fluctuation stabilized by exchanges of energy with the outside world. This is the order 
characterized by the dissipative structures. 

The experimentally obtained force–displacement response and crackwidths for an RC member 
undergoing displacement-controlled traction test are shown in Fig. 8. The load-deformation 
process in RC member under monotonically increasing loads involves irreversible damage process. 
But, as mentioned earlier, the cracking process needs to be considered as both closed and open 
thermodynamic system forming dissipative structures at critical points (such as points 6, 1, 1.2, 4 
in Fig. 8). But for points at which loading drops, which are points of non-equilibrium and far from 
equilibrium, local equilibrium can be obtained and we can define the local stationary states of the 
system (this enables us to use Onsager’s reciprocity relation and the minimum dissipation 
theorem). At the points where it has been marked as red balloons, new emergent dissipative 
structures form (i.e., new macro-cracks form on the surface of the beam) indicating that these 
irreversible states correspond to the points far from equilibrium condition (something similar to 
Benard’s convection presented by Prigogine (1978)). And, it is at these points the surface strains 
show large variability and the applicability of probability distribution with exponential tails is 
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questionable. The need for the use of alpha-stable distribution at points far from equlibrium due to 
formation of dissipative structures (thus bringing the order) is clearly brought out in 
thermodynamic framework by Rubi (2008). 

Prigogine has shown that near critical points as well as near the co-existence curve (shown in 
red balloons in Fig. 8) the law of large numbers as expressed the expression 

 



 Vfor  finite~

V

2X
                          (5) 

(where X is a random variable representing an extensive quantity of thermodynamics), breaks 

down, as  2X  becomes proportional to a higher power of volume. Prigogine (1978) has 

shown that near the critical points, probability distributions with long range memory would be 
needed. It is in this context, alpha-stable distributions are proposed to describe the fluctuations in 
surface strains near the critical points in the flexural members. 

As mentioned earlier, one of the outstanding features of the behaviour of RC flexural beams 
under the external loading is the emergent structure at different stages of loading. The loading 
drops at the incipience of an emergent structure marking the non-equilibrium thermodynamic state. 
This is transient non-equilibrium thermodynamic state because, further increase in load (from the 
load level to which it has reduced) can be achieved only with the increase in deflection of the 
beam. Once a particular stabilised crack pattern has formed, the beam will take further loading, 
which defines local equilibrium state with respect to cracking. This crack pattern will correspond 
to a meta-stable equilibrium state. The response evolution at and around the point of instability is 
governed more by the fluctuations than the mean. Hence, to characterise and quantify the 
fluctuations at these points, a distribution with heavy tails is to be used. 

 
4.2 Statistical arguments 
 
For normal distribution 99.74% of total probability content is contained within three times 

standard deviation about the mean, thus giving low values of probability to the tail regions. The 
symmetric nature of normal distribution also restricts its applicability to phenomena exhibiting 
small skewness. Hence, there is a need to use distributions with heavy tails to model the strains 
showing large fluctuations and to estimate the extreme values. While there are different 
heavy-tailed alternatives to normal distribution, like alpha-stable distribution, Student’s 
t-distribution, hyperbolic distribution, the use of alpha-stable distribution is supported by the 
generalized central limit theorem (see Appendix II). The use of alpha-stable distribution over 
normal distribution has found applications in different areas (see Nolan 2009, Yang 2009). The use 
of alpha-stable distribution for modeling the strain in RC flexural beams at a given loading stage is 
explored in the present study to account for the large fluctuations. 

From the above, it is clear that to predict the extreme value of strains developed in RC flexural 
beams, at any stage of loading, a probability distribution with power-law tails should be used. 

 
 

5. Alpha-stable distribution 
 

The alpha-stable distribution is described by its characteristic function (an explicit expression 
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for probability density function generally does not exist) given by 

    
 

 






















 































1for   ln

2
sgn1exp

1for   
2

tansgn1exp

exp










;tittitc

;tititc

itXEtL ,         (6) 

where X is the random variable, i is the imaginary unit, t is the argument of the characteristic 

function ( t ),   itXE exp  denotes the expected value of  itXexp ,  is an index of stability 

or characteristic exponent (  20, ),  is the skewness parameter (  11, ), c is a scale 

parameter ( 0c ),  is a location parameter (  ), ln denotes the natural logarithm and sgn(t) is 
a logical function which takes values -1, 0, 1 for t < 0, t = 0 and t >0, respectively.  It may be 
noted that the skewness parameter  is not the same as the classical skewness parameter (Nolan 
2009), since for non-Gaussian stable distributions, the moments do not exist. In the case of the 
alpha-stable distribution, the values of  indicate whether the distribution is right-skewed ( > 0), 
left-skewed ( < 0) or symmetric ( = 0). As  approaches 2,  loses its effect and the distribution 
approaches the normal distribution regardless of  (Borak et al. 2005). A stable probability density 
function (PDF) is symmetrical when  =0. The distribution is called standard stable when c =1 and 
 =0. The general PDF of the stable distribution can be standardized such that (Belov 2005) 
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 

 01
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,,,,
c

x
p

c
,c,,,xp                       (7) 

5.1 Estimation of parameters of alpha-stable distribution 
 

Different methods have been proposed in literature for the estimations of the parameters , , c 
and  of the alpha-stable distribution. Fama and Roll (1971) suggested a quantile-based method for 
estimation of characteristic exponent and scale parameter of symmetric alpha-stable distributions 
with  = 0. However, this method is applicable only for distributions with >1. This method has 
been modified by McCulloch (1986) to include even non-symmetric distributions with  in the 
range [0.6, 2.0]. Koutrouvelis (1980) proposed a characteristic function-based method involving 
an iterative regression procedure for estimation of the parameters of the alpha-stable distribution. 
Kogon and Williams (1995) improved this method by eliminating the iterative procedure and 
simplifying the regression. Ma and Nikias (1995) and Tsihrintzis and Nikias (1996) proposed the 
use of fractional lower order moments (FLOMs) for estimating the parameters of symmetric 
alpha-stable distributions. Bates and McLaughlin (2000) studied the performances of the methods 
proposed by McCulloch (1986), Kogon and Williams (1995), Ma and Nikias (1995) and 
Tsihrintzis and Nikias (1996) using two real data sets. They found that there are marked 
differences between the results obtained using the different methods. Nolan (2001) presented a 
maximum likelihood estimator (MLE) for estimating the parameters of alpha-stable distribution. 
However, to the authors’ knowledge, the strong consistency of the MLE for alpha-stable 
distributions is yet to be proved. In the present study, the parameters , , c and  of the 
alpha-stable distribution are estimated using an optimization procedure by minimizing the sum of  
squares of the difference between the observed cumulative distribution function (empirical 
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6. Applicability of alpha-stable distribution 
 

In this section, an attempt is made to examine the applicability of alpha-stable distribution to 
model the surface strains in RC flexural members based on experimental observations. The data on 
variation of strain with loading for RC beams used in this study is based on the experimental 
investigations carried out at CSIR-SERC, Chennai, India and the experimental investigations 
reported by Desayi and Rao (1987, 1989). This data is used in the present study, since strain 
measurements over the entire constant bending moment region along the span at different positions 
for different loading stages (upto almost close to ultimate) for RC flexural beams have been taken 
and reported, which will be useful for studying the usefulness of alpha-stable distribution for 
modeling the variations in measured strain. Availability of such extensive data is scanty in 
literature. Salient information regarding the experimental investigations is given below. 
 
 
7. Details of experimental investigations 
 

7.1 Experimental investigations carried out at CSIR-SERC 
 
Two sets of beams (with two beams in each set) of similar cross-sectional dimensions of 150 

mm x 300 mm and 3.6 m long were cast and tested in four-point bending over an effective span of 
 
 
Table 1 Details of beams tested at CSIR-SERC 

SET No. of Specimens 
Grade of 
Concrete 

Main 
reinforcement* Stirrups Hanger bars 

Clear cover 
(mm) 

B2 2 (B2-1, B2-2) M30 
2, 10mm dia. 
2, 12mm dia. 6mm dia @

140mm c/c
2, 6mm dia 25 

B3 2 (B3-1, B3-2) M30 5, 10mm dia. 
(Note: * - The main reinforcement is selected so as to have approximately the same cross-sectional area of 
reinforcement for all the beams) 
 
Table 2 Properties of beams tested at CSIR-SERC 

Beam 
 

d1
* 

(mm) 
d2

* 
(mm) 

Effective 
depth (d) 

(mm) 

Ast1
**

(mm2)
Ast2

** 
(mm2)

Ast 

(mm2)

150 mm 
concrete cube 
compressive 

strength 
(MPa)*** 

Split 
tensile 

strength 
(MPa)*** 

Cracking 
load 

(kN)** 

Ultimate 
load 

(kN)*** 

B2-1 227.6 263.5 249.1 139.94 208.85 348.79 45.39 1.91 21.10# 77.74 
B2-2 227.6 263.2 249.0 144.36 217.56 361.92 50.52 1.76 21.10# 82.89 
B3-1 229.3 264.3 250.5 144.0 219.66 363.66 50.30 1.85 21.10# 83.88 
B3-2 229.5 264.5 250.4 146.30 217.72 364.01 43.03 1.90 21.10# 82.80 

(Note: span (l) = 3000 mm, breadth (b) =150 mm and depth (D) = 300 mm for all the beams; * - d1 and d2 
are the depth from top of the beam to the centre of the main reinforcing bars in the top layer and bottom 
layer, respectively; ** - based on measured diameters of the reinforcing bars; *** - obtained from 
experimental investigations; # - cracking is initiated between applied loads of 14.72 kN and 27.47 kN and 
the average of these two loads is reported here as the cracking load) 
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3.0 m. Stirrups of 6 mm diameter were provided in the combined bending and shear zone to avoid 
shear failure, and no stirrups were provided in the constant bending moment zone. Details and 
properties of the beams are given in Tables 1 and 2. In the constant bending moment zone of the 
beams (i.e., 1m long), seven sections (denoted as D1, C1, B1, A, B, C and D on the north face and, 
D’, C’, B’, A’, B1

’, C1
’ and D1

’ on the south face) were identified, with each section having a gauge 
length 100 mm (see Fig. 4). 

In each section, demec points were fixed at five different positions across the depth on both the 
faces of the beam (north face and south face). As can be seen from Fig. 4, position 1 corresponds 
almost to the extreme compression fibre for all beams; and position 5 corresponds to position of 
bottom layer of main reinforcing bars. The beams were tested in four-point loading. To measure 
the surface strains at different positions, a Pfender gauge with least count 1/1000 mm and gage 
length of 100.1 mm was used. While the strains were also monitored using electrical strain gages 
embedded on the reinforcement, for health assessment and maintenance decision making, strain 
readings from surface mounted strain gages are more useful than point estimates of strain. Hence, 
the present study focuses on modelling the surface strains at different stages of loading. The loads 
applied on the beams at different loading stages are given in Table 4. 

At each loading stage, the strain readings are taken only after the applied load is stabilised, i.e., 
the loading has been increased to its original value after the drop in loading due to the incipience 
of emergent structure. The crack pattern observed for beams B2-1 and B3-1 at different stages of 
loading are shown in Fig. 10. The formation of emergent structure with loading is evident from 
these figures. 
 
 
Table 3 Details of beams presented in Desayi and Rao (1987, 1989) 

Beam 
 

Effective 
depth (d) 

(mm) 

Ast 

(mm2) 

150 mm concrete 
cube compressive 

strength (MPa) 

Modulus of 
rupture (MPa)* 

Cracking 
load (kN)* 

Ultimate 
load (kN)* 

KB1 311.0 402.123 33.078 4.036 23.549 95.389 
KB2 305.4 437.929 40.417 3.578 14.014 104.653 
KB3 303.5 529.327 22.508 2.950 8.899 84.291 

(Note: span (l) = 4200 mm, breadth (b) =200 mm and depth (D) = 350 mm for all three beams 
* - obtained from experimental investigations) 
 
Table 4 Loads applied on the beams at different stages of loading 

Loading 
Stage 

Load Applied (kN) 
B2-1 B2-2 B3-1 B3-2 KB1 KB2 KB3 

1 0.98 0.98 0.98 0.98 10.52 4.48 8.90 
2 2.45 2.45 2.45 2.45 16.61 8.90 17.80 
3 4.91 7.36 4.91 4.91 28.99 14.24 26.67 
4 7.36 14.72 7.36 7.36 38.28 17.80 39.78 
5 14.72 27.47 14.72 14.72 48.95 22.25 52.97 
6 27.47 40.22 27.47 27.47 57.37 26.67 70.90 
7 40.22 52.97 40.22 40.22 65.66 35.42 - 
8 52.97 58.86 52.97 52.97 - 44.16 - 
9 - 63.77 65.73 65.73 - 57.44 - 

10 - 68.67 - - - - - 
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Beam B2-1 Beam B3-1 
Fig. 10 Observed crack pattern for beams B2-1 and B3-1 (numbers denote the loading stage) 

 

 
Fig. 11 Schematic representation of test program (Desayi and Rao 1987, 1989) (dimensions in mm) 

 

Fig. 12 Strain variation across the depth for different stages of loading for beam B2-2 
 
 

7.2 Experimental investigations presented by Desayi and Rao (1987, 1989) 
 
Three beams of similar cross-sectional dimensions of 250 mm x 350 mm and 4.8 m long were 

cast and tested in two-point bending over an effective span of 4.2 m. Stirrups of 6 mm diameter 
were provided in the combined bending and shear zone to avoid shear failure, and no stirrups were 
provided in the constant bending moment zone. Details of the beams are given in Table 3. The 
constant bending moment zone of the beams (1.4 m) was divided into eight sections (denoted as D’, 
C’, B’, A’, A, B, C and D on the west face and, D1, C1, B1, A1, A1

’, B1
’, C1

’ and D1
’ on the east face), 
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with each section having a gauge length 200 mm (see Fig. 11). In each section, demec points were 
fixed at eight different positions on both faces of the beam (east face and west face). As can be 
seen from Fig. 11, position 1 corresponds almost to the extreme compression fibre for all beams; 
and position 7 in case of beam KB1 and positions 7 and 8 in case of beams KB2 and KB3 
correspond to position of steel bars. The beams were tested in two-point loading in a 25 ton 
(245.25 kN) capacity testing frame. To measure the surface strains at different positions, a demec 
gauge with least count 510x1   and gage length of 200.1 mm was used. The loads applied on the 
beams at different loading stages are given in Table 4. 
 
 
8. Statistical analysis of strain 
 

Only the strains measured at the level of tension reinforcement is considered further in the 
analysis. 

 
8.1 Statistical modeling of strains for the beams tested at CSIR-SERC 
 
In the present study, the aim is to model the strain in concrete at the level of bottom layer of 

main reinforcement (position 5 in Fig. 4) for a given loading stage. Three loading stages are 
considered for the sets B2 and B3, namely those corresponding to applied loads of 27.47 kN, 40.22 
kN and 52.97 kN. It is known that evaluation of performance of reinforced concrete structural 
members under service loads is important in service life estimation. By defining the service load as 
approximately two-thirds of ultimate load, it is noted that the applied loads corresponding to the 
three loading stages considered in this study are less than the service loads, thereby helping in 
understanding the strain behavior of flexural members under normal working load conditions. The 
typical variation of average strain across the depth for different stages of loading for the beam 
B2-2 is shown in Fig. 12. It is noted that the strain variation across the depth is almost linear for 
the loading stages considered in the present study. Similar observation is made for the other three 
beams also; however, the results are not presented here. This is in line with the observation 
regarding strain variation across the depth made by Neild et al. (2002). 

At any given loading stage, fourteen strain readings (seven on the north face and seven on the 
south face) in the constant bending moment region are available for each beam in the sets B2 and 
B3. To enhance the sample size, the strain readings, corresponding to the same applied load, of 
both the beams in each set are combined together. This can be justified since the ultimate loads, 
cube compressive strengths and split tensile strengths for the two beams in each set are 
comparable with each other (see Table 2). It is also noted that the depth of neutral axis (determined 
using the strain gauge readings at different positions) at different loading stages for the two beams 
in each set are comparable, except for set B2 at an applied load of 27.47 kN. After combining the 
respective strain readings of beams belonging to sets B2 and B3, there are twenty-eight strain 
readings, at any given loading stage. These values are further processed for modeling the random 
variations in strain in concrete (at the level of reinforcement). 
 

8.2 Statistical modeling of strains for the beams presented by Desayi and Rao (1987, 
1989) 

 
At any given loading stage, sixteen strain readings (eight on the west face and eight on the east 
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face) in the constant bending moment region are available for the beams KB1, KB2 and KB3. 
These values are further processed for modeling the random variations in strain in concrete at the 
level of reinforcement (position 7 in case of beam KB1 and position 8 in case of beams KB2 and 
KB3). 
 
 
Table 5 Statistical properties of observed strains (based on tests conducted) and parameters of alpha-stable 
distribution of strain 

Beam 
Applied 

Load 
(kN) 

Statistical properties of 
experimentally observed strains Parameters of -stable distribution for strain 

Mean SD Skewness   c  

 
B2 

27.47 0.000264 0.000276 0.0738 1.9363 1.0 0.000215 0.000271 
40.22 0.000716 0.000626 -0.3208 1.2027 -1.0 0.000402 -0.00016 
52.97 0.001145 0.000847 -0.7273 0.97 -0.721 0.000408 0.00779 

 
B3 

27.47 0.000365 0.000280 0.3847 1.5828 1 0.000213 0.00044 
40.22 0.000911 0.000585 -0.2716 1.5395 -1 0.00044 0.00072 
52.97 0.001343 0.000959 -0.3025 1.5142 -1 0.000704 0.00102 

 
 
 

KB1 

10.52 0.000057 0.000017 0.7689 1.2440 0.5040 0.000010 0.000065 
16.61 0.000106 0.000034 0.4319 1.3954 0.9990 0.000024 0.000125 

28.99 0.000499 0.000205 0.0401 1.4181 0.0687 0.000146 0.000505 

38.28 0.000878 0.000355 -0.0373 1.6004 0.2121 0.000260 0.000900 

48.95 0.001252 0.000478 -0.0720 1.1038 0.1880 0.000282 0.001536 

57.37 0.001529 0.000555 -0.0637 1.0412 0.1133 0.000300 0.002030 

65.66 0.001871 0.000645 -0.064 0.9001 0.0446 0.000319 0.001775 

 
 
 

KB2 

4.48 0.000036 0.000018 1.8463 1.4839 0.999 0.000010 0.000039 

8.90 0.000075 0.000029 1.1304 1.4459 0.4437 0.000017 0.000078 

14.24 0.000131 0.000033 -0.1281 1.3705 -0.425 0.000020 0.000123 

17.80 0.000220 0.000079 0.4800 0.6429 -0.042 0.000025 0.000217 

22.25 0.000440 0.000108 0.1806 2.000 0.1107 0.000091 0.000438 

26.67 0.000724 0.000182 0.2818 1.0931 0.3391 0.000112 0.000942 

35.42 0.001150 0.000327 0.0842 1.3881 0.2244 0.000234 0.001195 

44.16 0.001521 0.000455 0.0199 1.1381 0.2552 0.000294 0.001799 

57.44 0.002693 0.000929 0.4189 0.9001 0.0446 0.000319 0.001775 

 
 

KB3 

8.90 0.000079 2.74E-05 -0.8468 1.1794 -0.221 0.000017 0.000071 

17.80 0.000296 0.000091 0.9445 1.4134 0.999 0.000056 0.000332 

26.67 0.000741 0.000249 0.3524 1.7428 0.999 0.000206 0.000776 

39.78 0.001379 0.000420 -0.2309 1.8903 -0.999 0.000370 0.001359 

52.97 0.002069 0.000644 -0.3139 1.828 -0.999 0.000555 0.002014 

70.90 0.006603 0.002394 -0.0091 1.9997 0.9988 0.002276 0.006595 
(Note: Values in bold face indicate the loading stages where no new cracks are formed (stabilized crack 
growth), Values in shaded cells represent departures from the expected trend, which may be due to 
anomalies in experimentation during that loading stage) 
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9. Results and discussion 
 
The statistical properties (namely, mean, standard deviation and skewness) of the strain in concrete 
at the level of reinforcement have been computed based on the observed strain values. An 
alpha-stable distribution, S(, , c, ) is fitted to the strains in concrete at the level of 
reinforcement at each loading stage for the beams considered. The parameters , , c and  of the 
alpha-stable distribution (Eq. (6)) are estimated using an optimization procedure by minimizing 
the sum of squares of the difference between the observed cumulative distribution function 
(empirical distribution function) and the cumulative distribution function (CDF) of the 
alpha-stable distribution. 
 

9.1 Beams Tested at CSIR-SERC 
 

The parameters of the alpha-stable distribution of strain for sets B2 and B3 for the applied loads 
considered are given in Table 5. The variation in characteristic exponent, , with applied load is 
shown in Fig. 13. It is noted that the values of   decreases with increase in applied load for both 
B2 and B3. It is known that for =2, the alpha-stable distribution becomes normal distribution, 
and as  reduces, the tails get heavier, i.e., the tail probabilities increase (Nolan 2009). This 
indicates that at higher stages of loading, the strain distribution deviates away from the normal 
distribution. This can be attributed to the formation of emergent structures and associated strain 
redistributions in concrete as explained in the section on mechanism of cracking. It is also noted 
from Fig. 13 that the reduction in  is much higher in set B2 when compared to set B3. This may 
be because in set B3, the cracks are more evenly distributed (lower values of crack spacing which 
can be attributed to the more number of smaller diameter reinforcing bars in the beams in set B3 
when compared to beams in set B2, with total area of steel in tension zone remaining 
approximately the same), and hence the variability in strain are less, leading to lower values of tail 
probabilities. 

The probability density functions (PDFs) and cumulative distribution functions (CDFs) of 
strain for the sets B2 and B3 at different applied loads considered are shown in Fig. 14. From these 
figures, it is noted that the distribution of strain changes from right-skewed (for applied load of 
27.47 kN) to left-skewed with increase in loading. It is noted that, as expected the peak of the 
distribution shifts to the right, along with an increase in the spread of the distribution, with 
increase in applied load. This suggests that a fat-tailed distribution need to be used at these stages 
 
 

Fig. 13 Variation in parameters  and  with applied load 
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Fig. 14 PDFs and CDFs of alpha-stable distributions of strain for different values of applied load for the 
beams considered 
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of loading. 
From Fig. 13, it is noted that the value of the stability parameter () is almost a constant for set 

B3, while it shows large variation for set B2. This indicates that the strain distribution is almost 
stabilized for set B3. Since the strains in concrete in the tension depends on the level of cracking, a 
stabilized strain distribution suggests that the cracking has stabilized, i.e., no new cracks are being 
formed with increase in loading, rather the existing cracks are widened and extended. This is also 
supported by the observed crack patterns for the beams in set B3 (see Fig. 10), from which it is 
noted that no new major cracks are formed after the loading stage 7 (corresponding to applied load 
of 40.22 kN). However, from the observed crack pattern for a beam in set B2 (see Fig. 10), it is 
noted that a major crack has formed at the loading stage 8 (corresponding to applied load of 52.97 
kN). This shows that the cracking and hence the strain distribution has not stabilized for set B2. 
This trend is also reflected in the values of the scale parameter (c) and the location parameter () 
given in Table 5. The values of c and  increase with applied load when the strain distribution is 
stabilized (as is the case for set B3), indicating that the strains are increasing at an almost uniform 
rate in all the sections. However, when new cracks form (as is the case for set B2), there is sudden 
increase of strain in the section containing the crack, and a decrease in strain in the adjacent 
sections, leading to abrupt variations in c and . 
 
 

Fig. 15 Standardized alpha-stable distributions of strain for sets B2 and B3 

Fig. 16 Comparison of CDFs of strain for set B2 (applied load = 52.97 kN) 
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The standardized alpha-stable distributions of strains, for sets B2 and B3, for the applied loads 
considered are determined using Eq. (7) and are shown in Fig. 15, respectively. For set B2, the 
standardized alpha-stable distributions for different applied loads are quite distinct, indicating that 
the cracking is not stabilized. However, for set B3, the standardized alpha-stable distributions for 
applied loads of 40.22 kN and 52.97 kN are almost identical, indicating that the cracking has 
stabilized at the applied load of 40.22 kN, which is also noted from the experimentally observed 
crack pattern. The stabilization of cracking for set B3 also reinforces the guidelines given in 
literature that it is better to use more number of smaller diameter bars for control of cracking in 
reinforced concrete flexural members. 

For the purpose of comparison, a normal distribution is also fitted to the observed strain data 
(by considering the mean and standard deviation of the normal distribution as the average and 
standard deviation of the observed strain data). The observed CDF, alpha-stable CDF and the 
normal CDF, typically for the set B2, for an applied load of 52.97 kN, are shown in Fig. 16. From 
this figure, it is noted that CDF corresponding to the alpha-stable distribution compares with the 
observed CDF better than the normal CDF (especially in the tail regions which is of interest in 
estimating extreme values of strains). 

 
9.2 Beams presented by Desayi and Rao (1987, 1989) 
 
The parameters of the alpha-stable distribution of strain for the beams KB1, KB2 and KB3 for 

the applied loads considered are given in Table 5. The variations in  and  with applied load are 
shown in Fig. 13. For the beam KB3, which has well distributed reinforcement, it is noted that  
values increase with loading and reaches a value of 2.0. For the beams KB1 and KB2, with 
increase in load, the values of  moves closer to 1.0. These observations suggest that the strain 
localization effects may not be significant if the density of cracking is higher (as is the case for the 
beam KB3). In such cases, it can be assumed that the surface strains follow normal distribution at 
higher stages of loading. It is noted from Table 5 that, in general, the trends of skewness of the 
fitted alpha-stable distribution are in agreement with the trends of skewness shown by the 
measured strain readings, which indicate the ability of the fitted alpha-stable distribution to 
represent the measured variations in strain. For the beams KB1 and KB2, the general tendency for 
  is to decrease with the increase in loading. In the case of beam KB3,  values are close to 2 
and hence  does not have any meaning. Therefore, when the density of cracking is less (i.e., when 
 
 

Fig. 17 Comparison of CDFs of strain for beam KB1 (applied load = 57.37 kN) 
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cracks are widely spaced apart), an alpha stable distribution with small value of asymmetry 
parameter is desirable to describe the fluctuations in surface strains. The probability density 
functions (PDFs) and cumulative distribution functions (CDFs) of alpha-stable distribution of 
strain are shown in Fig. 14. From Fig. 14, it is noted that the PDFs of strain are highly peaked for 
loading stages corresponding to uncracked/low levels of cracking. As the level of cracking 
increases, the PDFs of strain become more and more flat, justifying the use of alpha-stable 
distributions. The observed CDF, alpha-stable CDF and the normal CDF, typically for the beam 
KB1, for an applied load of 57.37 kN, are shown in Fig. 17. From Fig. 17, it is noted that CDF 
corresponding to the alpha-stable distribution compares with the observed CDF better than the 
normal CDF. This observation suggests that alpha-stable distribution is a better fit to the observed 
strain readings (especially in the tail regions which is of interest in estimating extreme values of 
strains). 
 

9.3 General observations 
 
Of the four parameters of the alpha-stable distribution, namely, , , c and , the characteristic 

exponent  is the most important parameter. From the variation in  with applied load (see Fig. 13) 
for the beams considered, it is noted that, in general, for beams with lesser specific surface area (or 
perimeter) for a given cross-sectional area of steel,  becomes close to 1.0 when the cracking has 
stabilized (i.e., no new cracks are formed). An assumption of a value of  = 2.0 for beams with 
well distributed bars for the same cross-sectional area of steel is more appropriate. The value of  
decides the probability content in the tail portions of the probability distribution, and as  reduces,  
the probability distribution become more and more heavy-tailed (and deviates more and more from 
the normal distribution). These observations indicate that when we are trying to model the 
probabilistic variations or choose a probability density function of surface strain for beams with 
lesser perimeter of reinforcement, use of alpha-stable distribution become important. 

As noted earlier, the skewness parameter  is not the same as the classical skewness parameter 
(Nolan 2009), since for non-Gaussian stable distributions, the moments do not exist. It is noted 
that the trends of skewness of the fitted alpha-stable distribution are in agreement with the trends 
of skewness shown by the observed strain readings. This observation also suggests the ability of 
the fitted alpha-stable distribution to represent the observed variations in strain. 
 
 

Fig. 18 Comparison of c2 and  with the standard deviation- and mean- of measured strain values 
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The scale parameter c is a measure of width of the probability distribution (Borak et al. 2005). 
For  = 2, the value of standard deviation = c2. The values of standard deviation computed 
based on observed strain values are compared with the values of c2 in Fig. 18. It is noted that 
values of c2 are comparable with the computed values of standard deviation (even though the 
standard deviation does not exist for alpha-stable distribution when  < 2). This observation 
suggests that while fitting the alpha-stable distribution (using the methodology presented in Fig. 9), 
the initial guess value of c for the optimization can be estimated from the experimentally observed 
or numerically determined standard deviation of surface strain. 

The location parameter  is the mode (peak) of the alpha-stable distribution (Borak et al. 2005).  
From Fig. 13, it is noted that for the beams, at almost all stages of loading, the  values are greater 
than 1.0, which indicates that the mean exists. The values of average surface strain computed 
based on observed strain values are compared with the values of  in Fig. 18. It is noted that values 
of  are in good agreement with the computed values of average strain (except for beam B2). This 
observation suggests that the location parameter  can be estimated from the experimentally 
observed or numerically determined mean values of surface strain. 

The investigations reported in this paper will help in describing the appropriate probability 
distribution for surface strain at the level of steel while carrying out probabilistic response analysis 
of reinforced concrete flexural beams using numerical methods. Further investigations are required 
to be carried out for determining the appropriate type of probability distributions for other failure 
mechanisms. For plain concrete elements in tension, it has been reported that the probability 
distribution can be described using KLE techniques (Ibrahimbegovic 2011, Benkemoun 2010). 
However, the use of KLE is basically for Gaussian random fields. For alpha-stable random fields, 
which arise in the case of reinforced concrete, the applicability of polynomial chaos expansion can 
be explored (Xiu and Karniadakis 2002). However, for beams with well distributed reinforcement 
in the tension zone (for instance, KB3), the  values become closer to 2 (with increase in applied 
load), suggesting a normal distribution for surface strain. In such cases, the use of KLE for 
describing the probability distribution can be explored. However, this is not in the scope of the 
present investigation, and any theoretical/numerical modeling is not attempted. 

 
 

10. Conclusions 
 

Based on phenomenological, thermodynamic and statistical considerations, alpha-stable 
distributions) are proposed for modeling the variations in strain in reinforced concrete flexural 
members to account for the large fluctuations. Applicability of alpha-stable distributions is 
examined using experimentally obtained strain values from reinforced concrete flexural members 
tested under four-point bending. From the results obtained, it is noted that alpha-stable distribution 
is a better fit to the observed strain readings at a given stage of loading, than the normal 
distribution, especially in the tail regions which is of interest in estimating extreme values of 
strains. While estimation of parameters of alpha-stable distributions is still an active area of 
research, the initial studies presented in this paper shows promise regarding the usefulness these 
distributions. Since the data from the experimental instigations are limited, there is a need to 
conduct further independent finite element simulation studies using the appropriate models based 
on thermodynamics considerations (such as the strong discontinuity model proposed by 
Dominguez et al. (2005) and furthered in Ibrahimbegovic et al. (2010)) for cracking of concrete. 
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Appendix I 
 
The application of non-equilibrium thermodynamics helps in accounting for: (1) irreversibility 

in evolution, (2) the complexity generation (viz., cracking) and (3) self-organising behavior at the 
points of instability (characterized by probability density functions with power law decaying tails). 
A diagrammatic representation of evolution of such a system is shown in Fig. A-1. As the internal 
order within the system becomes complex, the system is no longer able to remain organized and 
becomes unstable. This instability within the system stimulates a bifurcation event that leads to 
new states of order because both descendent branches have less entropy than the ancestral branch. 
At the point of bifurcation, maximum uncertainty exists as to which path to take. Once a path is 
chosen, it will evolve such that internal entropy production is minimized. In this description, the 
system can be considered as the reinforced concrete beam, and the source of energy is the external 
loading system. 
 
 

Appendix II 
 
A probability density  xL  can be a limiting distribution of the sum 



1i
iX of independent and 

randomly distributed variables only if it is stable. A random variable X is stable or stable in the 
broad sense if for X1 and X2 independent copies of X and any positive constants a and b 

 dXcXbXa
d

 21                    (A.1) 

holds for some positive c and some d  (Nolan, 2009). The symbol 
d

  means equality in 
distribution, i.e., both the expressions have the same probability law. The term stable is used 
because the shape is stable or unchanged under sums of the type given by Eq. (A.1). 
 
 

 
Fig. A-1 Diagrammatic representation of evolution of a non-equilibrium thermodynamic system 
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The Gaussian- and Cauchy- distributions are potential limiting distributions, depending on the 
physical phenomenon that is being handled. However, there are many more distributions to which 

the summation series 


1i
iX  is attracted to depending on the actual behaviour. The complete set 

of stable distributions have been specified by Levy and Khinchine. A probability distribution is 
stable if its characteristic function is of the form as given in Eq. (6). 

While Eq. (6) defines the general expression for all possible stable distributions, it does not 
specify the conditions which the probability density function (pdf)  lp  has to satisfy so that the 

distribution of the normalized sum  



n

i
in lpS

1

ˆ  converges to a particular  xL  ,  in the limit 

n . If this is the case, one can say ‘  lp  belongs to the domain of attraction of  xL  , ’. This 

problem has been solved completely and the answer can be summarized by the following theorem. 
Theorem: The probability density  lp  belongs to the domain of attraction of a stable density 

 xL  ,  with characteristic exponent  (  20   ) iff 

   





1

~
l

ca
lp  for l      (A.2) 

where 0c , 0c  and a are constants. These constants are directly related to the scale 

parameter c and the skewness parameter  by 

 

 
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1for
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1for
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c                (A.3) 
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           (A.4) 

Furthermore, if  lp  belongs to the domain of attraction of a stable distribution, its absolute 

moments of order  exists for   . 
 

    
 







 






2for

20for
lpldll         (A.5) 

The above discussion clearly brings out that the sum of independent random variables, as 
n , may converge to an alpha-stable distribution, 2  being a specific case, with 

  3
1~ llp , as a Gaussian distribution. For all other values of characteristic exponent,  , 
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20  , the sum would be attracted to  xL  ,  and all these classes of stable distributions show 

the same asymptotic behaviour for large x. Thus, the central limit theorem can be generalized as 
follows: 

The generalised central limit theorem states that the sum of a number of random variables with 

power-law tail distributions decreasing as 1
1


x where 0 < α < 2 (and therefore having infinite 

variance) will tend to a stable distribution as the number of variables grows. 
The characteristic exponent   and the skewness (symmetry) parameter   have to be 

interpreted based on physical significance. As already mentioned,   defines the shape of the 
distribution and decides the order of moments available for a random variable. Longer power-law 
tails will lead to divergence of even lower order moments. This should not be treated as a 
limitation, since, in some of the physical systems, the pdf of response quantities can have 
power-law tails. This may also be true of nonlinear response of engineering systems, especially at 
bifurcation points, where the system can exhibit longer tail behaviour. Though this can be brushed 
aside as a transient behaviour, for seeking performance of a system, this needs to be effectively 
handled. Hence, it is important to understand the pdfs and associated properties, so that the 
systems can be modeled realistically. 
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