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Abstract.  Self-healing (SH) technology of cracking is becoming a promising solution to improve the 
durability of cement based composites. However, little formula are available in the literature on determining 
the size and dosage of the self-healing capsules. Supposed that SH capsules will be broken and activated 
when they met cracks, a theoretical solution is developed to calculate the appropriate length of SH capsules 
based on Buffon’s needle model. Afterwards, a method to calculate the dosage of capsules was proposed in 
terms of stereological theory. The reliability of the above mentioned theoretical methods was verified by 
computer simulation. An experiment of self-healing in mortar was performed as well, by which the 
theoretical models were verified. 
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1. Introduction 
 

It is well-known that cracks and local damage may inevitably happen in any kind of material, 
resulting from the attack of aggressive media in service environment and the existence of intrinsic 
defects in the material. The initiation and propagation of cracks in materials during service may 
accelerate deterioration of materials and shorten its service life. To make matter worse, the 
propagation of cracks may result in catastrophic collapse of the structure if the materials are used 
as structural element, such as a bridge. Resulting from the analysis based on the performance and 
cost of materials against service time, materials that have the built-in ability to sense and repair the 
cracks spontaneously are worth developing (van Breugel 2007). Such technology called 
self-healing, has been proposed (Dry 1996, Motuku et al. 1999) and tested in various fields 
relevant to materials, such as civil engineering materials (Li and Yang 2007, He and Shi 2009), 
advanced alloys (Buhua et al. 2007), biomaterials (Fratzl and Weinkamer 2007) and polymeric 
materials (White et al. 2001, Pang and Bond 2005). 

Concerning self-healing of cracks in cementitious composites, several approaches are found in 
literatures, such as “Microbiological self-healing technology” (Jonkers and Schlangen 2009, 
Ramarishnan and Panchalan 2006, van Tittelboom et al. 2010, Wang et al. 2012), the “Rehydration 
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self-healing technology” (Schlangen and Joseph 2008, Huang and Ye 2012, Lv and Chen 2012) 
and “Adhesive-filled self-healing technology” (Dry and Warner 1997, van Tittelboom et al. 2011). 
In the “Adhesive-filled self-healing” method, the cementitious matrix contains encapsulated repair 
agent. The adhesive-filled capsules distributed in the matrix will break easily when cracks cross 
over it, subsequently the adhesive is released and cures in the cracks. Compared with the 
“Microbiological self-healing technology”, this approach has a higher self-healing speed, and is 
easier to practice. Thus, this paper will concentrate on the solution of some problems regarding 
“Adhesive-filled self-healing technology”. 

Although many researchers have tried out various approaches to improve the healing efficiency 
of cracks (Dry 1994, 2000, Brown et al. 2002), and some researchers analyzed the probability 
characteristics of spherical capsules in concrete (Zemskov et al. 2010), little information is 
available in literature about how to determine a suitable geometry size and dosage of cylindrically 
self-healing capsules which is more commonly used in cementitious materials and easily to be 
prepared (Lv and Chen 2011a, 2011b). For the specific crack pattern in the matrix subjected to 
compressive loading, in this contribution, a theoretical approach is first developed to determine the 
length of capsules. Then, a method to calculate the dosage of capsule is further derived in this 
paper. Finally, computer modeling as well as experiments are used to test the reliability of these 
two models. 
 
 
2. Theoretical model 
 

2.1 Determination of capsule length 
 
For concrete subjected to compressive loading, the crack pattern can be simplified as a series of 

parallel linear cracks (Lusche 1974), which is more easily to be modeled than randomly cracks. 
Additionally, it is much harder to induce cracks in the concrete subjected to tensile loading while 
the samples remain uncrushed. In order to start with simplified modeling, this paper will only 
consider cracks due to compressive loading. 

 Obviously, the intersection probability between cracks and capsules is related to the crack 
spacing and the length of the capsules (Kendall and Moran 1963). The famous “Buffon’s needle 
model” can be employed to determine the intersection probability. 

Buffon's needle problem was posed by Buffon in 1773. The solution was further reproduced by 
Buffon in 1777 (Buffon 1777). In Buffon’s needle problem (see Fig. 1(a)), a floor is supposed to 
be covered with a group of parallel lines with equidistance d. A short needle with the length l (l<d) 
is randomly dropped onto the floor. The probability PS of a single needle intersecting with a line 
can be expressed according to Eq. (1) (Solomon 1978). 

 
S

/ 2 2

/ 4

l l
P

d d 
                                  (1) 

We suppose that d is the spacing between two cracks and l is the length of the self-healing 
capsules. Consequently, for an expected probability of a single capsule crossed by a crack, Eq. (1) 
can be used to calculate the corresponding length of short capsules at given crack pattern. 

However, it should be noted that Eq. (1) requires l<d. Thus, the maximum value of PS is 0.637 
in the extreme case of l infinitely close to d. Thus no matter how much capsules are added in 
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matrix, 36.3% of capsules will not break when cracks happen. As longer capsule intersect more 
likely with cracks, the solution for long capsules (l≥d) also needs to be developed. 

If l≥d, single capsules have the possibility to cross over more than one crack. Let [x] represent 
the integer part of x (x=l/d). Then, the possible number of cracks intersecting with a single capsule 
could be from 0 to [x]+1 (Diaconis 1976, Chung 1981). Supposed that the capsule will break if any 
crack goes through it, the fraction of broken capsules to the total number of capsules is equal to the 
probability of a single capsule crossed over by at least one crack. 

Thus, for the long capsules as shown in Fig. 1(b), if the distance h between one of the endpoints 
of the capsule and the nearest crack (which is located at the same side of the other endpoint of the 
capsule), satisfy the inequality (2), at least one crack will cross over the capsule. 

 sinh l                                  (2) 

where, l is capsule length, θ is the orientation of capsule in the interval of [0, π], and the value 
range of h is [0, d]. 

Since h can be varied in the range of [0, d], while the range of θ is [0, π], the area (S2 in Fig. 2) 
of the region covered by the lines of h=0, h=d, =0 and =π can be considered as the set of all the 
orientations of capsules. Meanwhile, we can get the intersecting area (S1) between the region under 
the curve h=lsinθ and the region between h=0, h=d which indicate the set of orientations of 
 
 

Fig. 1 Buffon's problem in 2D: (a) Short needles (l<d) (Solomon 1978) and (b) Long needles (l≥d) 
 

Fig. 2 Curve of (θ, h) in Buffon`s problem with long needle 
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capsules when cracks intersect with capsules. Fig. 2 indicates the probability (PL) of the case 
(h<lsinθ) is equal to the ratio of the area of S1 between the area of S2. 

2
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Now, Eqs. (1) and (3) are derived from a 2 dimensional case. Similarly, the model of the 
relationship between the ratio of capsule length to the crack spacing and the probability of a single 
capsule crossed by at least one crack can be developed in a 3 dimensional case as follows. 

In 3 dimensional cases, the cracks are considered as an array of parallel planes with 
equidistance d. The orientation of the capsules is determined by the spatial angles φ and θ as 
shown in Fig. 3. The length of the projection l′ of the capsules with length l on the plane 
perpendicular to the cracks can be expressed as 

cosl l                                   (4) 

Obviously, if the projection of any capsule onto the x-y plane intersects with the corresponding 
projection of a crack, this capsule must be crossed over by the crack in space. Thus, substitution of 
Eq. (4) into Eqs. (1) and (3) respectively, the probability of a single capsule intersecting with one 
crack in space could be derived as follows 
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According to Eq. (4), when φ∈[arcos (d/l), π/2+arcos (d/l)],
 
then l′<d; when φ ∈[0, arcos (d/l)]

∪[π/2+arcos (d/l), π], then
 

l′≥d. Thus, for l≥d, the probability of l′<d and l′≥d is 
(2π-2arccos(d/l))/π and 2arccos (d/l)/π respectively. Eqs. 5(a) and (b) should be applied in the 
 
 

Fig. 3 Buffon`s problem in 3D 
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corresponding orientation cases. The probability P of a single capsule intersecting with crack in 
3D case should be the combination of both of the condition 
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For the case of l d ，Eq. (6a) can be simplified to Eq. (6b) because l′ is always less than d. 
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Combination of Eqs. 5(a) and (b) with Eqs. 6(a) and (b) may derive implicit formulae (i.e., Eqs. 
7(a) and (b)) on the capsule length (l) for a given crack spacing as well as the expected intersecting 
probability. 
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where x=d/l .Via numerical analysis method, Fig. 4 was derived, giving the curve between x 
and intersection probability P. 

Apparently, it is possible to determine the intersecting probability for a given ratio of capsule 
length to crack spacing from Fig. 4 and further to derive the capsule length (l =d/x) for given crack 
spacing. 
 
 

Fig. 4 Theoretical results of length model 
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Most of the capsules with a length determined by this model, are expected to work at the given 
crack pattern. Meanwhile, during the experiments indicated in section 4 we found that the capsules 
with such a length are not too long to be mixed into the matrix uniformly. 
 

2.2 Determination of capsule dosage 
 
Since the strength of the capsules is normally lower than that of the matrix, incorporation of 

capsules will decrease the strength of the matrix. However, the self-healing efficiency of a single 
crack is closely related to the amount of capsules crossed by this crack. It is necessary to consider 
the balance between strength loss of the matrix and self-healing efficiency. In other words, the 
minimal dosage of capsules with optimal self-healing efficiency should be determined. This 
contribution will employ the stereological principle to develop a method to calculate the 
appropriate dosage of self-healing capsules.  

According to the stereological knowledge (Underwood 1970), for a random sampling plane T 
going through a representative volume element (RVE) with side length b as shown in Fig. 5, the 
probability P of an arbitrary particle being crossed by plane T is 

H
P

b
                                   (8) 

where, H represents the projection length of a particle onto the x-y plane. 
Suppose that there are n particles randomly and uniformly distributed in the RVE, the amount 

of the particles (n′) intersected with an arbitrary sampling plane is 

H
n nP n

b
                                  (9) 

where, H is the average value of H. 

Dividing both sides of Eq. (9) by the test plane area b2 yields 
 
 

Fig. 5 Intersection between a crack and a capsule 
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2 3

n n
H

b b


                                (10) 

Suppose the sampling plane as the crack faces in the matrix, the particle as the capsules, and H 
as the projection length of capsule a onto the x-y plane, then Eq. (10) can be rewritten as 

A Vn n H                                (11) 

where, nA is the amount of capsules intercepted per unit area of crack face, and nV means the 
amount of capsules mixed into per unit volume of matrix. 

The capsule is normally a cylinder-shaped tube with radius r and length l. Suppose that the 
orientation angle between the capsule and the z-axis is φ (see Fig. 6), the projection length of a 
single capsule onto the x-y plane (H(φ)) can be expressed as 

( ) sin 2 cosH l r                             (12) 

The average projection length (also called caliper diameter) H  of the capsules along all 
directions can be derived as 

 
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Replace nA in Eq. (11) by its mathematical expectation E(nA) and substitute Eq. (13) into Eq. 
(11). Thus the required minimal amount of capsules to heal all the cracks in the matrix can be 
expressed as 

( )
1

( )
2

A
V

E n
N

l r



                               (14) 

As the capsule length l is determined by the expected intersecting probability P and the crack 

spacing d in Section 2.1, we write l= l(P, d). Substitute l(P, d) into Eq. (13) as well as H  into Eq. 
(14) at given E(nA). Thus the appropriate volume fraction VV of capsules can be expressed as 
 
 

Fig. 6 The caliper diameter (H(φ)) of a capsule 
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where, vc is the volume of a single capsule, and b is the side length of the RVE. 
 
 
3. Model verification 
 

Before applying the models above, it is necessary to verify their rationality. In this section, the 
computer modeling technology will be employed in order to validate the models. 

 
3.1 Verification of length model 
 
The algorithm is described as follows: 

(1) Generate a cubic container with side length of b as matrix, and a set of crack planes penetrating 
the container. The crack planes are parallel with the x-z plane with spacing d, and the coordinate 
value yi along the y-axis indicates the location of the crack ci (i=1, 2, …m=[b/d])). Then, let k be 
the amount of capsules crossed by cracks and the initial value of k is equal to zero; 
(2) Generate capsules with length l. A capsule αj (j=1, 2,…n, with n is set by the user) can be 
determined by the mid-point position (xj, yj, zj) and the orientation angles (θj，φj), which are 
randomly generated between the possible intervals. The rationality of the uniform distribution of 
these random variables were verified. Consequently, the endpoint coordinates of αj can be 
calculated. 
(3) Judging if capsule αj intersect with cracks: Compare the coordinate value of the endpoints of 
capsule αj with that of crack from c0 to cm. If the coordinate value yi of crack ci is located between 
the y coordinates of the endpoints of capsule αj, it means that capsule αj intersects with crack ci. If 
so, stop the current judging process and add 1 to k. If no intersection is found between the crack 
and capsule αj, the value of k is kept unchanged. 
(4) When the judging process of capsule αn is complete, the rate P of all capsules intersecting with 
cracks can be calculate as 

k
P

n
                                  (16) 

Obviously, P is the probability of each capsule being crossed by cracks at the given parameters. 
According to the probability theory, the value of P tends to be stable with increasing of number 

of samples. The theoretical results are represented in Fig. 7(a) by means of a dashed line. From Fig. 
7(a), it can be found that with various initial parameters, the simulated results are consistent with 
the theoretical results. Thus Eq. (7a) and Eq. (7b) may be used to obtain the capsule length at a 
given crack spacing for an arbitrary intersection probability P. 

 
3.2 Verification of the dosage model 
 
Similarly, the algorithm is: 
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Fig. 7 Simulated results vs. theoretical results: (a) Length model and (b) Dosage model 
 
 
 (1) Generate a cubic container with side length b containing n randomly capsules, as step (1) and 
step (2) in Section 3.1. The amount of capsules n is determined by the volume dosage of capsules 
and the volume of the cubic container and the capsules. 
(2) Counting the number of capsules which are crossed by a random crack: Randomly generate a 
crack ci (i=1, 2, …m, m is set by the user) which penetrates the cubic container. Then judge if any 
capsule (from α0 to αn) intersects with crack ci by the method introduced in Section 3.1. Let ki 
represent the amount of capsules crossed by crack ci, and the initial value of ki is equal to zero.  

(3) After generating crack cm and counting the amount of capsules which are crossed, let 
1

m

ii
k

  

represent the total number of capsules intersected by all the random cracks. Consequently, the 
mean number of capsules crossed by a single random crack penetrating the mortar matrix is

1
/

m

ii
k m

 . 

In dosage models with various initial parameters, it can be found that the simulated results are 
consistent with the theoretical results indicated by dash lines in Fig. 7(b). Thus Eq. (15) may be 
used to obtain the capsule volume dosage for a certain number of capsules crossed by each crack. 
 
 
4. Application 
 

The crack pattern and crack spacing in cementitous composites depends on many factors, such 
as the type of raw materials used, the mixture proportion, the curing temperature and relative 
humidity type of external loads, the environmental condition during service, etc. In the following 
experiment, cracks were caused by compressive load. For convenience, the average space between 
cracks in the mortar specimens is supposed to be 14mm according to the literature (Ostertag and Yi 
2007, Lepech and Li 2006, Sezer et al. 2008). Setting the expected value of intersecting 
probability P at 0.8, and the expected number of capsules crossed over by each crack at 1.5, the 
corresponding length and volume fraction of the capsules are 35 mm and 2.5% based on Eq. (6a) 
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Table 1 Evaluation of the efficiency of self-healing of cracks in mortar specimens 

Sample A B C D 

Length of capsules (mm) 25 35 35 / 
Capsule volume fraction (%) 2.5% 2.5% 3.5% / 
Initial ultimate compressive strength of the sample (MPa) 33.09±1.16 32.83±1.00 30.13±1.56 34.67±1.01
Final compressive strength of preloaded samples after 
Self-healing (MPa) 

35.65±0.81 37.41±1.22 34.37±1.54 34.07±0.96

Increase (%) 7.8 13.94 14.05 -1.73 
 
 
and Eq. (15), respectively. Consequently, mortar specimens containing capsules with various 
combinations of length and dosage will be cast to evaluate the efficiency of self-healing. 

 
4.1 Materials 
 
To heal the macro cracks, glass tubes filled with adhesive are widely chosen as self-healing 

capsule, because the linear expansion coefficient of glass is close to that of concrete (Ostertag and 
Yi 2007). Additionally, cylindrical glass tubes are easy to manufacture, thus cylindrical glass tubes 
filled with adhesive have been applied in this experiment. Apparently, the capsules with higher 
diameter and thinner wall will carry more adhesive agent. But this kind of capsules will decrease 
the strength of cementitous matrix since more solid portion is replaced while too thick capsules are 
too hardly to be broken. To meet the balance among the amount of self-healing agent, the amount 
of fractured capsules during loading and the loss of strength of the matrix, some preparatory tests 
were taken. Eventually, glass tubes with diameter 5.5 mm and a wall thickness of 0.5 mm and were 
adopted. 

Single-component moisture-curable polyurethane, as a favorable self-healing agent, used in this 
experiment. It will harden when intersecting with water vapor in the air, and achieve a great 
strength after being fully cured (Petrie 2007). As a common building adhesive, it was applied in 
many experiments (Sondari et al. 2011, Wang et al. 2012) as well. 

 
4.2 Methods and results 
 
Portland cement mortar cubes containing capsules filled with healing agent, with various 

combinations of length as well as volume fraction of capsule were prepared. The different test 
series are shown in Table 1, specimens with code “D” were control samples without capsules. In 
order to distribute the adhesive-filled capsules in the matrix randomly and uniformly, the paste 
without capsules were mixed up by standard method firstly. Then the capsules were mixed into the 
fresh paste by hands in order to avoid the capsules being broken by blender. The mix proportion of 
the mortar matrix was the following: cement: sand: water: polypropylene fiber = 1:3:0.5:0.01 (by 
mass). The dimension of the specimens was 100 mm × 100 mm × 100 mm. The specimens were 
steam cured at 75℃ for 6 days to make the strength fully developed. For each test set, two groups 
of samples were cast and in each group 6 samples were prepared. Group 1 was used to obtain the 
initial ultimate compressive strength of the sample. The results are given in Table 1. Group 2 was 
used to evaluate the efficiency of self-healing of the capsule. For Group 2, each specimen was 
loaded up to 70% of its corresponding initial ultimate compressive strength to cause irreversible 
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Fig. 8 Broken capsules and harden adhesive agent in the specimens after self-healing 
 
 
continuous cracks in the matrix (Metha and Monteiro 2006). Then, the load was removed and 
specimens were allowed to rest for one day so that the healing-agent may harden. Finally, the 
compressive strength of these preloaded specimens was tested again and the results are given in 
Table 1. 
 

4.3 Discussion 
 
After self-healing, the specimens containing the capsules were broken along the visible cracks. 

The broken capsules and harden adhesive agent were observed as shown in Fig. 8. A comparison 
of the initial ultimate compressive strength of the samples with the strength of preloaded samples 
after seal-healing (Table 1) revealed several important facts: (1) Since the cracks were sealed by 
the adhesive, the ultimate compressive strength of preloaded specimens which contained capsules 
increased after the healing agent released, while it was not the case for the control samples; (2) 
The self-healing efficiency of test series “B” cotaining longer capsules were higher than that of test 
series “A” containing shorter capsules, which may be attributed to the higher intersecting 
probability of longer capsules with cracks; (3) The self-healing efficiency of test series “C” was 
close to that of test series “B”, but the initial strength of the sample significantly decreased due to 
the negative influence of a large amount of capsules. It may be deduced that when the volume 
fraction of capsules in mortar reaches 2.5%, almost all of the cracks can be repaired. 
 
 
5. Conclusions 
 

“Adhesive-filled self-healing technology” is a method which can give materials the ability to 
heal cracks automatically, but there was a lack of theoretical foundation of the determination of 
length and dosage of self-healing capsules. To solve the problems, two theoretical models were 
proposed，and the reliability of these two models were validated by computer simulation as well as 
experiments. 

Based on “Buffon`s needle model”, this paper derived a statistical model which may be 
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employed to determine the length of capsule for a given crack pattern. And further, another model 
was proposed in terms of a stereological principal to calculate the proper dosage of capsules. The 
reliability of these two models was verified via computer simulation technology. Moreover, glass 
tubes filled with a single-component moisture-curable polyurethane were employed as self-healing 
capsules. Mortar specimens containing self-healing capsules, whose length and dosage were 
determined by the theoretical models, were prepared and the self-healing effect was validated by 
experiment based on the compressive strength recovery.  

For now, the proper diameter of capsules, which should be determined by the required amount 
of self-healing agent, was not analyzed. This parameter cannot be calculated only if more factors, 
such as the width of cracks, the strength and flow properties of adhesive agent, are considered. In 
this article, the cementitious composites are simplified as a homogeneous material, with randomly 
distributed capsules and parallel crack patterns. In more complex models, such as concrete, the 
distribution of capsules will be affected by the aggregate and the cracks pattern will be more 
complex. Thus, further comprehensive investigation of these cases should be carried out. In 
addition, the intersection situation between capsules and cracks in matrix should be verified 
directly by experiment during further studies. 
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