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Abstract.  The nonlinear finite element method with eight noded isoparametric quadrilateral element for 
concrete and two noded element for reinforcement is used for the prediction of the behavior of 
reinforcement concrete structures. The disturbed state concept (DSC) including the hierarchical single 
surface (HISS) plasticity model with associated flow rule with modifications is used to characterize the 
constitutive behavior of concrete both in compression and in tension which is named DSC/HISS-CT. The 
HISS model is applied to shows the plastic behavior of concrete, and DSC for microcracking, fracture and 
softening simulations of concrete. It should be noted that the DSC expresses the behavior of a material 
element as a mixture of two interacting components and can include both softening and stiffening, while the 
classical damage approach assumes that cracks (damage) induced in a material treated acts as a void, with no 
strength. The DSC/HISS-CT is a unified model with different mechanism, which expresses the observed 
behavior in terms of interacting behavior of components; thus the mechanism in the DSC is much different 
than that of the damage model, which is based on physical cracks which has no strength and interaction with 
the undamaged part. This is the first time the DSC/HISS-CT model, with the capacity to account for both 
compression and tension yields, is applied for concrete materials. The DSC model allows also for the 
characterization of non-associative behavior through the use of disturbance. Elastic perfectly plastic behavior 
is assumed for modeling of steel reinforcement. The DSC model is validated at two levels: (1) specimen and 
(2) practical boundary value problem. For the specimen level, the predictions are obtained by the integration 
of the incremental constitutive relations. The FE procedure with DSC/HISS-CT model is used to obtain 
predictions for practical boundary value problems. Based on the comparisons between DSC/HISS-CT 
predictions, test data and ANSYS software predictions, it is found that the model provides highly 
satisfactory predictions. The model allows computation of microcracking during deformation leading to the 
fracture and failure; in the model, the critical disturbance, Dc, identifies fracture and failure. 
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The finite element method is commonly used for the analysis of reinforced concrete structures. 
Different constitutive models have been used to characterize behavior of concrete.  Willam and 
Warnke (1974) developed a plasticity model for the triaxial failure surface for unconfined behavior 
of plain concrete, and reported that the predictions compared well with the observed results of 
concrete failure. Bazant and Shieh (1978) used endochronic model for nonlinear triaxial behavior 
of concrete and predicted softening behavior of concrete under compression loading. Cervera et al. 
(1987) adopted a yield function depending only on first and second stress invariants, but they did 
not consider softening behavior of concrete in compression.  An exponential function was used to 
simulate softening behavior of concrete in tension, and a softening parameter was used depending 
on the needed fracture energy to separate two crack surfaces. Predictions from their model 
compared well with observed results for reinforced concrete slab and beams. Carol et al. (1992) 
implemented a microplane model for concrete at element level for calculating compressive stresses.  

The book by Willam and Tanabe (2001) contains a review of a collection of papers concerning 
finite element analysis of reinforced concrete structures; and various factors such as seismic 
behavior of structures, cyclic loading of reinforced concrete columns, and shear failure of 
reinforced concrete beams. Bazant and Luzio (2004) presented a nonlocal microplane model with 
strain-softening yield limits to analyze concrete structures using the finite element method; they 
considered strain localization in a concrete beam without bars.  

A method for the integration of a class of plastic-damage material model was considered by 
Saritas and Filippou (2009); the Barcelona model was selected as the yield function. They 
analyzed beam A1 and A3 by Vecchio and Shim (2004). The predicted results by Saritas and 
Filippou (2009) are at good correlation with experimental data for beam A3 but not for the beam 
A1. Therefore, here the beam A1 is considered as one of examples.  

In this paper, the disturbed state concept/hierarchical single surface (DSC/HISS) model is 
modified to analyze reinforced concrete structures in which different HISS single surfaces are used 
for compressive and tensile behavior of concrete. The proposed model can be called DSC/HISS-
CT, CT denoting compression and tension. However, it is noticeable that in the DSC model, the 
average or observed behavior is expressed in terms of behaviors of the material as a mixture of 
Relative Intact (RI) or continuum part, and Fully Adjusted (FA) part that allows for softening or 
degradation; the DSC can account also for healing or stiffening. Both RI and FA parts are coupled 
and with the disturbance function, contribute to the observed behavior, which can include 
degradation or healing. The DSC is a unified approach with a different base than the damage 
model that does not include interaction between damaged and undamaged parts. However, the 
classical damage approach assumes that cracks (damage) induced in a material treated act as a void, 
with no strength (Kachanov 1986). For simplicity, the DSC/HISS-CT model is referred to as DSC 
model in this paper. Details of DSC/HISS models are given by (Desai et al. 1986, Desai and 
Salami 1987, Desai and Toth 1996, Desai 2001, Salami and Desai 1990); a brief description is 
given below.  

The DSC/HISS with single yield surface is a unified and hierarchical model that can be used to 
characterize elastic, plastic and creep deformations, microcracking leading fracture and failure, 
degradation or softening, and healing or strengthening. It has been used for a wide range of 
materials such as clays, sands, ceramic, metals, alloys and silicon, and interfaces and joints (Desai 
2001). It has been implemented in nonlinear finite element procedures which are used to solve a 
wide range of engineering problems including two- and three-dimensional (Desai 2001, 2002, 
2007), and cyclic loading (Desai 2001, Pradhan and Desai 2006, Shao and Desai 2000). Thus, the 
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(a) (b) 
Fig.  1 (a) RI and FA states in DSC and  (b) disturbance as coupling between RI and FA states 

 
 
DSC model possesses a number of advantages compared to other available models that often 
account for only specific behavioral aspect(s).  

The DSC/HISS models with single yield surface have also been used for modeling behavior of 
concrete and rocks (Desai and Salami 1987, Desai 2001, Salami and Desai 1990).  In this paper, 
the DSC model is used for concrete in reinforced concrete structures with the new feature being 
the use of the HISS yield function for both yield in compression and tension. 
 
 
2. Disturbed state concept with HISS model 

 
The description of the DSC model herein is adopted from various publications, e.g. (Desai 

2001). In this model, a deforming material element is assumed to be composed of two (or more) 
reference states, the relatively intact (RI), and the fully adjusted (FA), Fig. 1. The material is 
assumed to transform continuously from the relative intact (RI) state to the fully adjusted (FA) 
state, Fig. 1(a), at randomly distributed locations under external excitation such as mechanical and 
thermal loading. The transformation involves micro structural changes that cause particle 
reorientation and relative motions. The observed behavior is expressed in terms of that of RI and 
FA states using the disturbance function, D, which acts as a coupling or interaction mechanism 
between RI and FA states, Fig. 1(b); the disturbance grows as the material deforms and the plastic 
strain (or work) accumulates. Thus DSC includes the coupling intrinsically in which the micro 
cracked (damaged) or fully adjusted part also contributes to the response of the material. The RI 
and FA states can be defined by using various models. The continuum elasticity or plasticity can 
be used for modeling the response of RI state, while the FA state can be assumed to carry only 
hydrostatic stress or it can be modeled by using the critical state model (Desai 2001). Brief 
descriptions of the models for RI and FA states, and disturbance used in the DSC model, are given 
below.  
 

2.1 Relative Intact (RI) state 
 

The hierarchical single-surface (HISS) plasticity model (Desai et al. 1986) provides a general 
formulation for the elastoplastic characterization of the material behavior; it involves a single 
continuous yield surface compared to some previous models that involved multiple 
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(discontinuous) yield surfaces resulting in computational difficulties. This model, which can allow 
for isotropic and anisotropic hardening, and associated and non- associated plasticity 
characterizations, can be used to represent material response based on the continuum plasticity 
theory (Desai et al. 1986, Desai 2001). Usually, in the HISS model, the RI state is defined by using 
the associated plasticity; accordingly, the yield function, F, Fig. 2, is given by 
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where, DJ 3 and DJ 2  third and second invariant of deviatoric stress tensor, respectively,  J1 first 

invariant of total stress tensor, ap  is the atmospheric pressure which is defined as 0.1013 MPa, R 

the reference stress used mainly to include the intercept ( c ), which is proportional to cohesive 
strength Fig. 2, parameters   and   are  related to ultimate condition,  and the hardening or 
growth function for the  plastic yield  can be expressed as  

1

1



a

                                                                       (2) 

where 1a  and 1 are hardening parameters, and   is trajectory or accumulated plastic strains. 
Using F, Eq. (1a), the incremental stress-strain equations for RI (plasticity) model are derived as 
(Desai 2001) 
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  = the stress vector, eC  = elastic constitutive matrix, d denotes increment and Q  is the 

plastic potential function. When the associated flow rule is adopted, QF  .  
For geologic materials and concrete, the compressive stress is assumed to be positive. The yield 

surface, F, Fig. 2, is valid for compressive behavior in the positive DJJ 21    space. Since the 

behaviors of material like concrete are different for compression and tension, the yield surface, Fig. 
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Fig. 2 HISS yield surface in  DJJ 21  space 

 
 

(a) Yield surfaces in J 1 - DJ 2  stress space (b) Yield surfaces in 1  - 2 2  space 

Fig. 3 Schematic of compressive and tensile HISS yield surfaces (Desai 2007) 
 
 
2, is not appropriate in the negative 1J -axis. Often, an ad hoc model such as stress transfer 
approach (Zienkiewicz et al. 1968) is used in which the computed tensile stress above the tensile 
strength is redistributed in the zone of the problem. The HISS model is used to simulate the 
material in the relative intact (continuum) state. The HISS model can be used for both compression 
and tension if material parameters are determined from appropriate laboratory tests under 
compression and tension. Such a model called DSC/HISS-CT, that can account for both 
compression and tension yield, has been introduced in (Desai 2007). However, DSC/HISS-CT is 
used for the first time in the study presented in this paper.  Fig. 3 show yield surfaces for 
compression and tension. 
 

2.2 Fully adjusted (FA) state 
 

Various characterizations for the behavior of the FA state are given in (Desai 2001). In a simple 
form, the FA state for concrete can be considered by use of residual stress in the stress-strain 

127



 
 
 
 
 
 

A.H. Akhaveissy, C.S. Desai, D. Mostofinejad and A. Vafai 

response, Fig. 1(b); fully adjusted stress can be also based on approximately 20% of compressive 
resistance of concrete in uniaxial test.  

 
2.2.1 Disturbance 
Disturbance, D , can be defined in various ways in terms of measured stress, void ratio, pore 

water pressure and nondestructive properties such as P or S wave velocities (Desai 2001). In terms 
of stress, it is defined as  

ci
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                                                                  (4) 

where i , a and c are RI, observed and FA stress values, respectively. In order to introduce 

D in the DSC model (the later Eq. (6)) it needs to be expressed in a mathematical form in terms of 
a basic variable such as accumulated plastic strains or work. Hence, D in terms of the accumulated 
deviatoric plastic strains is expressed using the (Weibull 1951) type function 

)]exp(1[ Z
Du ADD                                                 (5) 

where uD  is the ultimate disturbance (often assumed to be unity), D  trajectory of (deviatoric) 

plastic strains and A and Z are disturbance parameters. The parameters in Eq. (5) are determined 
on the basis of the values of the measured a at various points in the stress-strain curve, Eq. (4), 

and the corresponding values of D  (Desai 2001).  
Variations of disturbance, D, for typical stress-strain behavior for peak stress = 32 MPa (see 

later Fig. 6) are shown in Fig. 4. In this figure, the value of critical disturbance, Dc, is assumed to 
occur at about 0.9, which represents the intersection of tangents to the upper part of the middle and 
ultimate zones, Fig. 4. The microcracking may start at about p3.0  where p  is the peak stress, 

Fig. 6 (later), when the disturbance is about D = 0.001 for compression and about 001.0D  for 
tension. Then microcracking grows and coalesce into cracks that lead to fracture or failure at the 
critical disturbance, Dc = 0.9 (Desai 2001). Thus D can be used as a measure for identifying the 
initiation and growth of microcracking (based on test data) leading to fracture and failure. For 
example, when the disturbance reaches Dc, = 0.9 or higher values, fracture occurs and grows. In the 
finite element analysis, elements that reach this critical or higher value are identified after each 
load increment; thus the initiation and growth of fracture are provided progressively by the 
computer procedure. In later applications, contours of D are plotted based on the computer results, 
and cracking and fracture are related to the values and extent of the disturbance.  

Both the RI and FA states contribute to the material response through disturbance (D) as the 
coupling function. Following DSC equations in the incremental form shows this coupling (Desai 
2001) 

(1 ) ( )a i c c i
ij ij ij ij ijd D d Dd dD d d        

                                     (6) 

where d denotes the increment or rate, and ij is the stress tensor. The DSC model in this study 

is based on small strains; however, it can be modified for large strains, which will require use of 
appropriate expressions for large strains that would contain second order terms beyond the first 
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(a) (b) 
Fig. 4 Variation of D versus trajectory of plastic strains for 28-days concrete with compressive strength = 

32 MPa for: (a) compression and (b) tension 
 
 
derivative of displacement (Bathe 1996)   
 
 
3. Numerical simulation of reinforced concrete structures behavior 

 
3.1 Laboratory tests (Fig. 5) 
 
Based on a number of tests for concrete, the following mathematical equations have been used 

by (Assan 2002, Coronado and Lopez 2006, Kwak and Kim 2002, Yalcin and Saatcioglu 2000) 
For compressive behavior 
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Eq. 7(a) is Hognestad’s model for concrete compressive behavior (Yalcin and Saatcioglu 2000). 
Eq. 7(b) is a linear function between peak stress and residual stress, Eq. 7(c) is residual stress that 
is assumed to be twenty percentage of the peak stress. 

For tensile behavior 
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Eq. 7(d) is obtained from elastic behavior of concrete in the tensile region until the peak stress 
in tension; after this point softening behavior occurs. This behavior is usually simulated by a linear 
function (Assan 2002, Coronado and Lopez 2006, Kwak and Kim 2002, Yalcin and Saatcioglu 
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(a) (b) 
Fig. 5(a) Compressive and (b) tensile behavior for concrete 

 
 
2000). 

Mostafaei et al. (2008) predicted the softening behavior by using an exponential function. In 
the other words, the softening behavior follows as an exponential function in terms of strain and 
the stress decrease by an exponential function. Here, a linear function (Eq. 7(e)) is assumed to 
determine the parameters of DSC for the softening behavior of concrete in tension. However, the 
DSC/HISS-CT model accounts nonlinear behavior of concrete in tensile region in terms of strain 

as the exponential function (Eq. (5) and Fig. 7).  In Eq. (7), '
cf  is 28-day compressive strength of 

concrete, 002.00  , 0038.0cu , tm  10 ,   is varies between 0.1 to 0.25, as it  normally 

occurs in experimental  behavior (Park and Paulay 1975), cE  is modulus of elasticity of concrete,  

and 1 , t  are shown in Fig. 5. Fig. 5(a) shows schematic plots of Eqs. 7(a) to 7(c) for 

compression, and Fig. 5(b) shows the plot for tension. 
Eqs. 7(a) to 7(c) are used to construct compressive behavior of concrete with 28-days 

compressive strength, '
cf  = 22.6, 24, 32 and 32.8 MPa, as shown in Fig. 6(a), in the positive 

quadrant; these values for '
cf  are chosen to be consistent with concrete in later applications.  Eqs. 

7(d) and 7(e) are used to construct the tension behavior, as shown in Fig. 6(b), which is also shown 
in positive quadrant.  

The DSC parameters are determined based on the constructed data in Fig. 6. Table 1 shows the 
parameters of the model for concrete in compression and tension. Ultimate disturbance, Du=1 and 
atmospheric pressure, kPapa 3.101  are adopted. Details of determination of parameters are 

given by (Desai 2001). 
It is noticeable that elastic modulus for the compressive strength equal to 22.6 MPa in Table 1 

is not consistent with the generally accepted relation of Ec with the square root of compressive 
strength of concrete. It is usual practice in mechanics to determine the elastic modulus as the slope 
of the unloading curve or the slope at the origin of the stress-strain curve, for use in computer 
(finite element) analysis. Accordingly, for example, the elastic modulus equal to 36500 MPa is 
determined based on the stress-strain curve by Hognestad’s (Yalcin and Saatcioglu 2000), Fig. 7. 
This elastic modulus was also observed by Vecchio and Shim (2004). 
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(a) 

 
(b) 

Fig. 6 (a) Compressive and (b) tensile behavior of concrete 
 
 
Table 1 Parameters for DSC model 

Compressive 
strength 

Tensile 
strength 

Kind of 
behavior 

DSC Parameters/HISS Plasticity Disturbance 

ƒ’c ƒt  Ec υ γ β n R 
a1*
1e9

η1 A Z 

24.00 (MPa) 
3.60 

(MPa) 

Compression 
23025.00 

(MPa) 
0.20 0.56 0.40 4.76 1.90 6.50 0.30 18269.00 1.93

Tension 
23025.00 

(MPa) 
0.20 0.09 0.40 4.76 1.95 6.50 0.30 32728.00 1.43

22.60 (MPa) 
2.00 

(MPa) 

Compression 
36500.00 

(MPa) 
0.20 0.56 0.40 4.76 1.90 6.50 0.30 18269.71 1.93

Tension 
36500.00 

(MPa) 
0.20 0.09 0.40 4.76 1.95 6.50 0.30 32728.45 1.20

32.00 (MPa) 
3.20 

(MPa) 

Compression 
27012.00 

(MPa) 
0.20 0.67 0.40 4.76 2.85 3.80 0.30 34891.00 2.06

Tension 
27012.00 

(MPa) 
0.20 0.06 0.40 4.76 2.85 2.00 0.30 27065.00 1.33

32.80 
(MPa) 

(4770 psi) 

5.20 
(MPa) 

Compression 
24398.00

(MPa) 
0.30 0.50 0.60 4.76 3.30 7.20 0.14 4339.00 1.77

Tension 
24398.00

(MPa) 
0.30 0.03 0.50 4.76 5.23 2.00 0.11 62068.00 1.58
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3.2 Specimen level validation 
 
A computer program in the FORTRAN language is developed for the integration of Eq. (6); 

then it is used to validate the model at the specimen level using the parameters in Table 1.  Fig. 7 
shows comparison between predictions from the model and data for concrete with different 28-day 

compressive strengths as shown in Fig. 6.  Note that such comparison for MPafc 8.32'   is not 

shown in Fig. 7 due to its closeness to MPafc 0.32'  , and to avoid ambiguity in the figure. 

It is clear from Fig. 7 that results from DSC model yields good agreement with the observed 
behavior based on the constructed data for compressive and tensile behavior with different peak 
stresses, different softening region slope and different residual stresses, Fig 7. 
 
 
4. Applications 
 

Numerical simulation of reinforced concrete structures and load-displacement responses are 
considered for concrete with different compressive strengths. Computer programs for two- and 
 
 

 
(a) 

 
(b) 

Fig. 7 Comparison between predictions and data for: (a) compressive and (b) tensile behavior 
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three- dimensional analysis (Desai 1998, 2000) with the DSC/HISS model have been developed 
and available; a computer code that allows the use of the HISS yield surface both for compression 
and tension in concrete has also been developed by Akhaveissy et al. (2009). Two nodded element 
with elastic perfectly plastic behavior is used for steel reinforcement. Results of the nonlinear 
computer analyses are compared with observed data in laboratory and load-displacement behavior 
obtained by using ANSYS software (Wolanski 2004); which is based on William and Warnke 
model (Willam and Warnke 1974) for concrete and elastic perfectly plastic model is assumed for 
the behavior of steel.  

The iterative-incremental method with an initial stiffness scheme was used to analyze 
reinforced concrete structures. This method yielded accurate and convergent results for the 
problems considered. Both displacement and force convergences are evaluated. Convergence is 
obtained when the size of the residual force is less than the tolerance times a reference value. Here, 
the L2 norms in terms of residual force and the displacement are used for convergence. The L2 
norm is the square root of the sum of the squares (SRSS) of the terms and is also called the 
Euclidean norm. The reference value for force control is the L2 norm of the increment of the force 
vector, and the reference value for displacement control is the L2 norm of the sum of the iterative 
displacements at each increment (Akhaveissy and Desai 2011). Hence, the solution time is about 
the same as the solution time by using ANSYS software; it may be noted that to our knowledge, 
ANSYS does not include unified models such as the DSC. As indicated in the forgoing, the DSC 
can allow for the post peak behavior; in fact, one of the advantages of the DSC is that includes 
entire behavior including pre-peak, peak and post- peak. As seen in Fig. 7, the model predicts the 
entire behavior with very good correlation with the constructed behavior, which is based on the 
observed behavior. In the subsequent examples, the load-displacement behavior does not show 
peak and softening. However, the stress-strain behavior, Fig. 7, includes the post-peak behavior.  
In other words, in many cases the load-displacement relation does not exhibit softening, while the 
stress-strain or constitutive behavior does. 

The DSC/HISS model is capable of handling cyclic loading. It has been implemented in 
nonlinear finite element procedures which are used to solve a wide range of engineering problems 
including cyclic loading (Shao and Desai 2000, Park and Desai 2000, Park and Desai 2006); 
details are included in the text (Desai 2001). Future research would include the use of the model to 
analyze concrete structures subjected to cyclic loadings. 
 

4.1 Simply-supported one-span beam 
 
One-span beam tested by Buckhouse, and analyzed by Wolanski (2004) is considered. Fig. 8 

shows the beam with length equal to 4724 mm (186 inch) under two concentrated loads at third 
points along the beam. Cross section of beam is 457 × 254 mm (18 × 10 inch). Supports are 
located at 76 mm (3 inch) from each end of the beam allowing a simply supported span of 4572 
mm (15 ft). The mild steel flexural reinforcements are 3-#5 bars (area is equal to 600 mm2) and 
shear reinforcements include #3 (area is 144 mm2) U-stirrups. Cover for the rebar is set to 50 mm 
(2 inch) in all directions. The 28-days compressive strength of concrete is 32.8 MPa (4770 psi). 
Yield stress of bars is 413 MPa (60000 psi). Elastic modulus of steel reinforcements is 2 × 106 
MPa (29 × 106 psi).  

Half of beam is analyzed due to symmetry with 720 eight nodded isoparametric quadrilateral 
elements, 60 two nodded elements for longitudinal bars and 110 two nodded elements for U-
stirrups. Fig. 9 shows boundary conditions and the finite element mesh. 
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1 inch =2.54 cm; 1 ft= 30.50 cm 
Fig. 8 Details of buckhouse reinforced concrete beam (Wolanski 2004) 

 
 

 
Fig. 9 Boundary conditions and finite element mesh for half of one-span beam, Fig.8 
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Fig. 10 Comparisons between DSC, observed and ANSYS results for Buckhouse beam 
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Calibrated parameters for compressive strength of concrete equal to 32.8 MPa (4770 psi) and 
tensile strength of concrete equal to 5.2 MPa (760 psi) are given in Table 1. 

The beam is analyzed by using the DSC/HISS-CT model and results are compared with 
observed data and results obtained by using ANSYS.  The load-displacement curve from the DSC 
model at middle of the beam is compared with results of ANSYS and the observed curve 
(Wolanski 2004), Fig. 10. It can be seen from Fig. 10 that the predictions from the DSC model 
compare very well with the test data and ANSYS results.  

Microcracks and fracture 
 Wolanski (2004) presented that the vertical cracks first formed in the constant moment region, 

extended upward, and then out towards the constant shear region with eventual crushing of the 
concrete in constant moment region.  

In the DSC the occurrence of microcracking leading to fracture and failure can be expressed in 
terms of the growth of disturbance, identified on the basis of test data (Desai 2001). According to 
Eqs. (4) and (5),  D changes from 0.0 to 1.0. Disturbance equal to zero expresses that material is in 
fully relative intact (RI) state, and disturbance D= 1.0 expresses that material is in the fully 
adjusted (FA) state. In other words, the FA state indicates crushing or disintegration for 
compression or tension, respectively, after the peak stress. As stated before, microcracking for 
compression may initiate at stress = 0.3 p  at D ≈ 0.001 and it may occur at much lower D 

(=0.0001) for tension, Figs. 4 and 6.   Then as stress and disturbance increase, microcracks grow 
and coalesce, and fracture may initiate at about D c = 0.90, near the bottom, below the load, Fig. 

11(a), corresponding to point A, Fig. 10. Then microcracks in extension grow further with loading, 
and fracture or failure zones extend at bottom and to the left of the load ( when D c  0.90), Figs. 

11(b), (c), (d), (f) and (g) at points B, C, D, E and F, respectively in Fig. 10.  These trends are 
similar to Buckhouse’s observations (Wolanski 2004) that extension cracks moved toward the 
constant shear region.  

The growth and pattern of fracture or failure, Fig. 11, seem reasonable. For instance, Fig. 11(e) 
shows the crack patterns presented by Wolanski (2004) at point D, Fig. 10, using ANSYS. It can 
be seen that the cracks patterns computed using the DSC model at point D with the computed load 
= 65.27 kN, Fig. 11(d), are in general agreement with those predicted by ANSYS (Wolanski, 
2004), at point D (load = 66.66 kN), Fig. 10. At the point F (Fig. 11(g), the entire beam appears to 
reach disturbance of Dc = 0.90 and greater, which represents full failure. From the view point of 
design, the beam is considered to have failed somewhere between points C and E. 

Fig. 11(a) shows extension of cracks in tension region of beam for point A in Fig. 10. At this 
loading, steel reinforcement exhibits linear behavior and maximum tensile stress in the 
reinforcements is 356 MPa (51696 psi) while yield stress in the reinforcement is 413 MPa for 
point B in Fig. 10, which shows beginning of reinforcement yielding. Buckhouse also expressed 
point B as the beginning of reinforcement yielding (Wolanski 2004). 

The point F in Fig. 11(g) shows full failure or complete collapse. It should be noted that the 
spread of ‘Full Failure’ over almost the entire beam is not realistic. It may be noted, however, that 
the plots in Fig. 11, are for disturbance and not for the stress. Disturbance near the critical 
disturbance, Dc (=0.9), does not imply zero stress; in other words, there may be stresses in some 
zones in the beam at and after Dc. Hence, Fig. 12 shows distribution of shear stress and normal 
stress on beam for point F in Fig. 10. 
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(a) 

(b) 

(c) 

(d) 

(e) 
 

136



 
 
 
 
 
 

FE analysis of RC structures using DSC model with yield surfaces for tension and compression 

(f) 

(g) 
Fig. 11 Development of cracks with D at different loadings: (a) point A, (b) point B, (c) point C, (d) point 

D for load 65.27 kN, (e) point E for load 66.66 kN (Wolanski 2004),  (f) point E  and (g) point F at 
failure as in load-displacement curve in Fig. 10 

 
 

 
(a) Distribution of the shear stress 

 
(b) Distribution of the normal stress in horizontal direction 

Fig. 12 Distribution of stresses for point F in Fig. 10 (stresses in terms of psi) 
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4.2 Continuous beam 
 
Half of the continuous beam, Fig. 13(a) tested by El-Refaie et al. (2003) is selected for analysis 

by use of DSC model. It was analyzed using ANSYS (Mostofinejad and Farahbod 2007) and 
predicted load-displacement curve was compared with observed data from laboratory by El-Refaie 
et al. (2003). Cross section of beam is 250 × 150 mm and total length of beam is 8500 mm. 
Longitudinal reinforcements are used in two layers with diameters of 8 and 20 mm. Diameter of 
stirrups is 6 mm. The compressive resistance of concrete is 24 MPa, the yield stress of bars with 
diameter 8 and 20 mm is 505 MPa and 510 MPa, respectively, and yield stress of bars with 
diameter of 6 mm is 308 MPa. Elastic modulus of steel reinforcements is 200 GPa. 
 
 

 
(a) 

 
(b) 

Fig. 13 (a) Details of continuous reinforced concrete beam and (b) finite element mesh 
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Fig. 14 Comparisons between DSC, observed and ANSYS results 
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Calibrated parameters for concrete with compressive strength equal to 24 MPa and tensile 
strength equal to 3.6 MPa are given in Table 1. Half of the beam is analyzed due to symmetry, 
Fig.13; the mesh includes 425 eight noded isoparametric quadrilateral elements, 170 two noded 
element for longitudinal bars and 42 two noded element for stirrups. Predicted load-displacement 
curve from the DSC is compared with results of ANSYS (Mostofinejad and Farahbod 2007) and 
observed curve in Fig. 14.  

Both DSC and ANSYS yield essentially similar results and compare well with the observed 
data. However for loads lower than about 80 kN, DSC predicts higher loads than the observed, 
while ANSYS predicts lower load than the observed. The DSC model provides improved 
correlation with the test data in the ultimate region. The differences in the results are not high; 
however, they can be explained as follows. For the calibrated parameters at the specimen level 
with compressive strength equal to 24 MPa, the DSC model predicts stiffer behavior than 
constructed data in the initial region before compressive peak strength, Fig. 7(a). Therefore, the 
DSC model results show higher load at lower displacement. The difference between ANSYS and 
observed results may be due to the imprecision in the parameters obtained by using the trial and 
error procedure (Mostofinejad and Farahbod 2007).  

 
4.3 Column 
 
A column studied by Taylor et al. (1997) is selected for analyses using the DSC model. Fig. 15 

shows the column with height (L) equal to 1000 mm under vertical and lateral concentrated loads 
at the top of the column. Cross section of column is 350 × 350 mm. The fixed support is located at 
bottom of the column. The mild steel flexural reinforcements are 8-#25.4 mm bars (area is equal to 
4054 mm2) and shear reinforcements including #10 mm stirrups. The 28-days compressive 
strength of concrete is 32 MPa. The yield stress of bars is 438 MPa. The elastic modulus of steel 
reinforcements is 200 GPa.  

Load-displacement curve from the laboratory was obtained in terms of lateral load versus 
lateral displacement (Taylor et al. 1997). The column was analyzed also by Yalcin and Saatcioglu 
(2000). Fig. 16 shows finite element mesh for the DSC model; it contains 140 eight noded 
isoparametric quadrilateral elements with plane stress behavior, 60 two noded elements for 

 
 

 

Fig. 15 Details of reinforced concrete column 
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Fig. 16 Finite element mesh for analysis of column 
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Fig. 17 Comparisons between DSC and observed results for reinforcement concrete column 

 
 
longitudinal bars and 100 two noded elements for stirrups.  

The parameters for DSC model for 28-days compressive strength of concrete equal to 32 MPa 
and tensile strength of concrete equal to 3.2 MPa are given in Table 1. Lateral load-displacement 
curve at the top of the column based on finite element analysis using the DSC/HISS-CT model is 
compared with the test data in Fig. 17. It shows good correlation between the DSC predictions and 
observed data; the correlation in the ultimate region is particularly very good.  

As mentioned in section 2.2.1 Disturbance, microcracking may initiate at D =0.001 and 0.0001 
for compression and tension, respectively. Then, fracture may initiate around Dc= 0.90. Fig. 18 
shows development of D which indicates the initiation and growth of cracks.  Figs 18 (a), (b), (c) 
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Fig. 18 Growth of cracks with D for reinforced concrete beam-column: (a) point A, (b) point B, (c) point 
C, (d) point D and (e) point E in Fig. 17 

 
 
and (d) show crack patterns for points A, B, C and D in Fig. 17, respectively.  In the extension 
zone of the column, cracks may initiate and grow, Fig. 18(a) when D= 0.0001 has been exceeded, 
and fracture would occur when Dc = 0.90 or greater has been reached, Fig. 18(d). Similarly cracks 
in the compression zone can initiate and grow to fractures when Dc = 0.9 or greater occurs, Fig. 
18(d). The displacement for the increment of load from point D to E is about 75 mm; which is 
considered to be very high. The column can be considered to have failed between points D and E. 
Hence, the computations were terminated at the load of 340 kN, i.e., point E. Cross section A in 
Fig. 18(e) shows also full failure. In the other words, the cross section indicates the plastic hinge. 
Hence, the column can be considered to have failed under load corresponding to the state of failure 
in Fig. 18(e).  
 

4.4 Simply-supported one-span beam with three layer bars 
 
RC beam specimens A1 and A3 tested by Vecchio and Shim (2004) were selected for analysis 

by Saritas and Filippou (2009). The predicted load-displacement curve by Saritas and Filippou 
(2009) for beam A3 correlate with test data but the predicted result for beam A1 is different with 
test data. Therefore, beam A1 is considered in here. The geometric properties and reinforcement 
details are shown in Fig. 19. The compressive strength of concrete, Young modulus of concrete 
and the tensile strength of concrete were reported 22.6 MPa, 36500 MPa and 2.37 MPa, 
respectively by Vecchio and Shim (2004). Table 2 shows material properties of the beam.  

The parameters for DSC/HISS-CT model for 28-days the compressive strength of concrete 
equal to 22.6 MPa and tensile strength of concrete equal to 2 MPa are given in Table 1. The load- 
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Fig. 19 Details of reinforcement concrete beam 
 
 

 
Fig. 20 The comparison between predicted load-deflection curve and test data 

 

 

Table 2 Material properties of beam 

Concrete 
'

cf  (MPa) tf  (MPa) E (MPa) 

22.6 2.37 36500  
Reinforcement 

Bar size Diameter (mm) Area (mm2) Fy (MPa) Fu (MPa) E (MPa) 
M10 11.3 100 315 460 200000 
M25 25.2 500 440 615 210000 
M30 29.9 700 436 700 200000 
D5 6.4 33.2 600 649 200000 

 
 
displacement curve at center of the beam based on finite element analysis using the DSC model is 
compared with the test data in Fig. 20. 

Fig. 20 shows very high correlation between the DSC predictions and observed data; the 
correlation in the ultimate region is particularly very good, but the predicted result by Saritas and 
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Fig. 21 Growth of cracks with D for different load levels: (a) 40 percentage of ultimate load, (b) 72 

percentage of ultimate load and (c) ultimate load point A in Fig. 20 
 
 
Filippou (2009) is not in accordance with the test data and DSC/HISS-CT. The analysis by 
DSC/HISS-CT model did not converge after ultimate load (point A from Fig. 20). In the other 
words, the beam failed at point A from Fig. 20. The process of failure for the beam by use of the 
model is expressed in Fig. 21. 

Fig. 21 shows disturbance parameter to express the failure process of the beam for different 
load levels. Fig. 21(a) shows tensile crack at mid-span of beam due to maximum bending moment. 
The tensile crack grows with increase of the load and the crushing occurs due to compressive 
normal stress at top of the section, Fig. 21(b). Failure occurs due to the extension of the tensile 
cracks and crushing due to compressive stress at mid-span of the beam and also increasing of shear 
stress with yielding stirrups close to the support. Fig. 22 shows the shear stress versus the shear 
strain at closest gauss point to the mid-span of the beam with coordinate (x=2028 mm, y=494 mm), 
see point B from Fig. 21(a). The predicted tensile principal stress by DSC/HISS-CT for point B 
from Fig. 21 (a) in accordance with point C in Fig. 22 is 2.25 MPa while the tensile strength was 2  
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Fig. 22 The shear strain versus shear stress at the mid-span of the beam 
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Fig. 23  Disturbance at mid-span of the beam for the point B,  Fig. 21(a) 
 
 
MPa, Table 1. Therefore point B from Fig. 21(a) has been cracked as the tensile principal stress 
2.25 MPa is greater than the tensile strength 2 MPa. Then disturbance parameter, D, grow and it 
will be beginning of the softening behavior of the shear stress–shear strain curve. In the other 
words, cracks start when the tensile principal stress in principal stress space reaches to the tensile 
strength of the material. The disturbance parameter for this point, point B from Fig. 21(a), is 
shown in Fig. 23. It expresses amount of the disturbance parameter equal to 0.9 occurs at the strain 
0.0035 approximately and amount of the shear stress at this strain from Fig. 22 is about 0.021 MPa, 
about 5% of the ultimate shear stress. 
 
 
5. Comments 

 
ANSYS is considered to be a powerful program to analyze different structures, and uses model 

of William and Warnke (1974) for analysis of concrete behavior. Determination of model 
parameters in ANSYS is based on error reduction by iteration (trial and error) to fit the load-
displacement curve. Parameters of DSC/HISS-CT model are calibrated based directly on the actual 
(e.g. measured stress-strain) behavior of the material, e.g. by using Eqs. (1), (2), (4) and (5). 
Therefore, analysis by DSC/HISS-CT model is considered to be more reliable compared to the 
model used in ANSYS.  

Often models such as Willam and Warnke available in ANSYS are for specific behavior like 
failure. However, materials under loading may exhibit combined behavior such as elastic, plastic, 
continuous yield, failure and softening. Then the proposed DSC/HISS-CT model which is unified 
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and hierarchical can provide for such combined behavior including as elastic, plastic, continuous 
yield, microcracking leading to fracture, failure and softening within the same framework. 
 
 
6. Conclusions 

 
The nonlinear finite element method with eight noded isoparametric quadrilateral elements for 

concrete and two noded elements for steel used for prediction of the behavior of reinforced 
concrete structures. The disturbed state concept (DSC) with the modified hierarchical single 
surface (HISS-CT) plasticity model was used to characterize the yield behavior in compressive and 
tensile behavior of concrete. Such a model, DSC/HISS-CT that allows for both compressive and 
tensile yields is used for the first time in this paper. The model can account for microcracking in 
concrete leading to softening and fracture. The elastic perfectly plastic behavior was assumed to 
model the steel reinforcement.  The DSC approach possesses a number of advantages compared to 
other available models. Its hierarchical property allows the user to adopt model of increasing 
complexity such as elastic, plastic, viscoplastic, microcracking leading to fracture, degradation and 
softening, and healing, with the same mathematical framework. The HISS-CT plasticity model 
involves a two continuous yield surface thereby avoiding computational difficulties for 
discontinuous or multiple surfaces models  

The DSC/HISS-CT model for concrete has been validated at the specimen level. It is applied 
successfully for a number of reinforced concrete structures. The computer predictions correlate 
very well with test data as well as with predictions reported by using the commonly employed 
ANSYS code. As explained above, the DSC model is general and unified; hence, it possesses 
certain advantages compared to other available model that are developed for specific behavioral 
aspects. Hence, the DSC/HISS-CT model can be considered to provide improvement in modeling 
various behavioral features of concrete such as elastic, plastic deformations, microcracking leading 
to fracture and softening.  

The parameters for the DSC model can be determined approximately from triaxial tests. 
However, a number (about five) of test data under various stress paths, e.g. compression, extension 
and simple shear are desirable for more accurate determination of the parameters to include the 
three-dimensional effects in the DSC model. Hence, non availability of such tests can be 
considered to be a limitation of the DSC model. For general reinforced concrete problems and for 
future research, detailed triaxial and multiaxial tests for concrete under various practical stress 
paths, and shear tests for interfaces between concrete and reinforcement could be performed; the 
latter would account for possible relative motions between concrete and reinforcement. The same 
mathematical framework of the DSC model can be used for both concrete and interfaces.  
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Notations 
 

Ce = Elastic matrix; 
D = Disturbance parameter; 
Ec = Elastic modulus of concrete (MPa); 
F = Yield function; 
ft = Tensile strength of concrete (MPa); 

'
cf = 28-days compressive strength of concrete (MPa); 

ap = Atmospheric pressure (kPa); 

Q = Potential function; 
002.00  ; 

0038.0cu ; 

  = Trajectory of plastic strains; 
  = Poisson’s ratio; and 
φ = Diameter of steel bar (mm). 
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