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Abstract. In this paper, the mechanical strength of different lightweight mortars made with 0, 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 percentage of scoria instead of sand
and 0.55 water-cement ratio and 350 kg/m3 cement content is investigated. The experimental result showed
7.9%, 16.7% and 49% decrease in compressive strength, tensile strength and mortar density, respectively,
by using 100% scoria instead of sand in the mortar. The normalized compressive and tensile strength data
are applied for artificial neural network (ANN) generation using generalized regression neural network
(GRNN). Totally, 90 experimental data were selected randomly and applied to find the best network with
minimum mean square error (MSE) and maximum correlation of determination. The created GRNN with
2 input layers, 2 output layers and a network spread of 0.1 had minimum MSE close to 0 and maximum
correlation of determination close to 1.
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1. Introduction

Lightweight concrete and mortar with adequate mechanical strength reduces the weight of the

construction (Wei et al. 2008), facilitates the transportation and provides thermal insulation (Lanzona and

Garcia-Ruiz 2008). Many studies have been done to make lightweight concrete and mortar using

new aggregates and chemical admixtures. The following methods are available to produce lightweight

concrete and mortar: 

1. Increase the volume of the mixture due to hydrogen gas production by adding lime and

aluminium powder in the mixture of silica, cement and water (Short and Kinniburgh 1978).

2. Using lightweight aggregates, such as Perlite (Sanahi 1998), Vermiculite (Short and Kinniburgh 1978),

Diatoms (Short and Kinniburgh 1978), Pumice (Shorabi and Rigi 2005) and Scoria (Famili 1997).

3. Use of artificial aggregates, such as expanded clay (Lica) (Merikallio and Mannonen 1996),

lightweight residue of blast furnace (Shideler 1975).

The main objective of making lightweight concrete and mortar is a decrease in density and

increase in workability (Lanzona and Garcia-Ruiz 2008). For example, an experimental study on

using rigid polyurethane foam instead of sand to make lightweight mortar shows a decrease in
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density and the mechanical properties and an increase in the workability (Gadea et al. 2010). Sari

and Pasamehmetoglu (2004) investigated the effect of plasticizers and air-entrained agents to

improve the workability of lightweight concrete. The results of experimental work on cubic samples

showed the minimum compressive strength and density of 6.56 N/mm2 and 1300 kg/m3 respectively. 

Topcu and Odler (1996) used volcanic slag as coarse aggregate to study the properties of semi-

lightweight concretes. They reported that volcanic slag could decrease the specific gravity of

concrete by as much as 20 per cent of normal concrete. However, decreased workability and low

strength were some of the disadvantages of using volcanic slag as aggregate in concrete. 

Unal et al. (2007) produced block elements with diatomite with different aggregate granulometries

and cement contents. According to the results of the mechanical and physical properties in this

study, using diatomite in lightweight concretes can be used in construction to reduce the service

load and obtain high insulation in buildings.

Mannan et al. (2006) made lightweight concrete by using oil palm shell as coarse aggregate. The reason

for this research was to determine slump, remoulded density and compressive strength.

Topcu and Uygunoglu (1996) studied the physical and mechanical properties of autoclaved lightweight

aggregate concrete using diatomite and pumice. They used diatomite and pumice as lightweight aggregates

after autoclave curing at different temperatures and curing times to make lightweight concrete.

Rajamane et al. (2007) performed research on lightweight concrete made with fly ash as a partial

replacement of both Portland cement and sand. They determined an empirical equation for the 28-

day compressive strength prediction of concrete. The results confirmed that the formula can assess

the 28-day compressive strength of concrete.

Usually, the empirical equations used for material behaviour are derived from the results of

experimental observation. The existing empirical models require solving of several numerical

equations in situations where more than one parameter is required for prediction. Artificial Neural

Networks (ANNs) are a quick and reliable alternative to such analytical models as they can predict

the various parameters in one round network modelling. In ANN modelling, although the numerical

relationship is captured between its nodes, no formal mathematical rules or formulae are to be

observed within the model. Previous research of ANNs in Civil Engineering mainly focused on Feed-

forward Back-propagation Neural Networks (FBNNs) using sufficient data for network generation.

When the number of data is not enough for FBNN generation, the Generalized Regression Neural

Network (GRNN) is most useful when only a small number of training data are available (Specht

1990). This is because GRNN has the capability to connect to the primary function of the data. This

makes GRNN an extremely useful tool to achieve predictions and comparisons of system performance in

practice. GRNNs have been proven to be a capable method for the prediction of many scientific and

engineering problems, such as sigma processing (Kendrick et al. 1994), chemical processing (Mukesh

1996), assessment of high power systems (Wehenkel 1996). However, the technique has not been

widely applied to the field of Civil Engineering. 

Williams and Gucunski (1995) have studied the development of GRNN and FBNN to predict the

elastic modulus and layer thicknesses for pavement and soil systems. They developed the ANN by

using ninety-eight cases of synthetic dispersion-curve data for network training and testing. The

results of the generated neural networks were close to the practical outputs. 

Mahmut and Gungor (2007) applied GRNN, FBNN and Adaptive Nero Fuzzy Inference System

(ANFIS) for daily river flow prediction in the Seyhan catchment, which is located in the south of

Turkey. They used 5114 daily river flow data for training and testing and 731 data for verification. 

Mahesh and Surinder (2008) generated GRNN for pile capacity modelling. Totally, 105 data sets



Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar

were collected from prestressed spun pipe piles made with precast high strength concrete and

applied for network training and testing. A correlation of determination value of 0.977 was reached

for the pile capacity prediction by GRNN. 

In this research, the compressive and tensile strength of lightweight mortar made with different

percentages of scoria instead of sand is studied. The scoria used in this experimental study, had a

white to light grey colour, rough surface, angular particles and irregular open and closed pores. The

specific gravity of the aggregate was less than 1 gr/cm3. The main objective of this research is

prediction of the compressive strength and tensile strength of lightweight mortar using GRNN. 

2. Methedology

The GRNN architecture for predicting the compressive and tensile strength of lightweight mortar

involves four following layers, as shown in Fig. 1: 

(1) Input layer: Contains two neurons for the scoria instead of sand and curing time

(2) Pattern neurons: Includes two neurons for each training case

(3) Summation neurons: Includes one neuron equal to neuron in output layer 

(4) Output layer: Contains two neurons for the compressive strength and tensile strength

The input layer of processing units is responsible for the reception of the information from the

experimental work. For each input variable, a unique input neuron is defined in the model. No

processing of data for scoria and curing is conducted at the input neurons. Then, the input neurons

present the data to the pattern neurons. The data from the input layer are combined in the pattern

layer and then the outputs are computed using the transfer function. The amount of the smoothing

parameter plays an important role in the computed output from the pattern layer. The smoothing

parameter determines how closely the function implemented by the GRNN fits the training data. A

trial and error method was performed to find the optimum smoothing parameter.

After that, the output from the pattern layer was forwarded to the summation layer. The summation layer

includes the numerator and denominator neurons, which compute the weighted and simple arithmetic sum,

respectively. The denominator, Sd, and numerator, Sj, are defined by the following equations

The calculated summation neurons are subsequently sent to the output neuron. Finally, the output

Sd Σiθi=

Sj Σiwiθi=

Fig. 1 The GRNN architecture for the lightweight mortar made with different percentage of scoria instead of
sand
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neuron carries out the following division to calculate the compressive strength and tensile strength

of lightweight mortar. 

2.1 Data

In order to study the mechanical strength of lightweight mortar made with scoria instead of sand,

210 mortar samples in the shapes of 15×15×15 (cm) cubes and 15×30 (cm) cylinders were made to

determine the compressive strength and tensile strength, respectively. The water-cement ratio was

0.55 and the cement content was 350 kg/m3. The materials mentioned above, were made according

to the results of 288 lightweight concrete samples, which were made with scoria instead of sand

with 0.55, 0.60 and a 0.65 water-cement ratio; and 300, 350 and 400 kg/m3 cement content. The

relationship between the compressive strength and the cement content for 35~50, 55~70 and 100%

of scoria instead of sand for lightweight concrete are shown in Figs. 2, 3 and 4. 

Y
1

Sj Sd⁄=

Fig. 2 Relationship between cement content and compressive strength with 35~50% Scoria

 Fig. 3 Relationship between cement content and compressive strength with 55~70% Scoria
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As we can see, the maximum compressive strength was with the 0.55 water cement ratio and 350

kg/m3 cement concrete. By increasing the water cement ratio and cement content, the concrete

compressive strength was decreased. The schedule of the experimental work is shown in Table 1.

We consider different percentages of scoria instead of sand, which were studied to find the

compressive and tensile strength after 3, 7, 14, 28 and 90 curing days. 

All samples were made with normal water and the mean compressive and tensile strength was

obtained from three similar samples.

The absolute volume method was applied as the mix design in this study. Knowing the water and

cement amounts and by using the absolute volume method (shown as Eq. (1)) the amount of

aggregates can be extracted. It is assumed that the volume of the compacted mortar is equal to the

total absolute volume of its constituents.

(1)

In this formula C is the amount of cement, W is the amount of water and A is the amount of

aggregate (sand + scoria) in kg/m3 of mortar. The calculated amounts of sand and scoria in each

mixture are shown in Table 2. The specific gravity of the sand, scoria, cement and water was 2,200,

760, 3,300 and 1,000 Kg/m3, respectively.

C

γC

-----
W

γW

-----
A

γA

----+ + 1=

 Fig. 4 Relationship between cement content and compressive strength with 100% Scoria

Table 1 Production schedule of lightweight mortar

Parameters Mortar samples

Scoria instead sand in lightweight mortar - %
0, 5, 10, 15, 20, 25, 30, 35, 40

45, 50, 55, 60, 65, 70, 75
80, 85, 90, 95 and 100

Water-cement ratio 0.55

Cement content in compressive sample – kg/m3 350

Cement content in tensile sample – kg/m3 350

Curing time - days 3, 7, 14, 28 and 90
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3. Results

3.1 Experimental results

First, the calculated amounts of sand, scoria and cement were weighed and mixed for about 60

sec. Then, after one quarter of the mixing time, water was added and the mixing process continued

for 180 sec. Subsequently, the cubic samples 15×15×15 cm and cylinder samples 15×30 cm were

cast in 3 layers to measure the compressive strength and tensile strength, respectively. Each layer

was vibrated by a shaking table for 10 sec to compact samples properly. After keeping in the lab for

24 hours, the samples were opened and cured in water for 3, 7, 14, 28 and 90 days. After removal

from the water tank and being kept in the laboratory for a few hours for drying and before testing,

all samples were weighed. The specific gravity of all the samples is indicated in Fig. 5. The mortars

made with ≥ 60% scoria instead of sand with a specific gravity ≤ 1300 Kg/m3 (BS EN 992:1996)

are lightweight mortars. 

Table 2 The calculated amounts of sand and scoria

Scoria % 0 5 10 15 20 25 30 35 40 45

Sand (Kg/m3) 1543.2 1339.1 1167.6 1021.4 895.3 785.4 688.7 603.1 526.7 458.1

Scoria (Kg/m3) 0.0 70.5 129.7 180.2 223.8 261.8 295.2 324.7 351.1 374.8

50 55 60 65 70 75 80 85 90 95 100

396.2 340.1 288.9 242.0 199.0 159.3 122.7 88.7 57.0 27.6 0

396.2 415.6 433.3 449.5 464.3 478.0 490.7 502.5 513.4 523.6 533.1

Fig. 5 The limitations of lightweight mortar
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Increasing the percentage of scoria instead of sand from 0 to 100% caused a 49% decrease in the

specific gravity from 2051 to 1043 Kg/m3. The relationship between the mechanical strength and

the percentage of scoria instead of sand is shown in Figs. 6 and 7. It is observed that by increasing

the percentage of scoria instead of sand in mortar from 0 to 100 the compressive strength and

tensile strength of mortar decrease. The reasons for this are the low mechanical strength of scoria

compared to that of sand (Aydin et al. 2010) and the increase in the degree of porosity of the

aggregate (Lo and Cui 2004).

The compressive and tensile strength after 28 days curing were 202 and 24 Kg/cm2, respectively,

for 0% scoria instead of sand and 186.8 and 20 Kg/cm2 for 100% scoria, respectively. By replacing

the sand in the mortar with scoria, the results show a 7.52% and 16.67% decrease in the compressive and

tensile strength, respectively. 

3.2 Network results 

Totally, 90 randomly selected data were applied for network creation by considering the 80 data

Fig. 6 Relationship between compressive strength and scoria percent instead of sand

Fig. 7 Relationship between tensile strength and scoria percent instead of sand
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Fig. 8 Evaluation of predicted compressive strength of lightweight mortar in training phase

Fig. 9 The correlation of determination between target and predicted compressive strength of lightweight
mortar in testing phase

Fig. 10 GRNN response for compressive strength of lightweight mortar in comparison with target
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used for network generation and 10 data for testing. The percentages of scoria instead of sand and

curing time represented the input layers and compressive and tensile strength were the output layers.

The good agreement between experimental compressive strength and predicted by network in

training with a coefficient of determination of 0.902 is shown in Fig. 8. 

The mean squared error (MSE) in the training stage was 0.69%. In the testing stage, the

predicted compressive strength is in good agreement with the experimental results, as well as

shown in Figs. 9 and 10. The correlation of determination between the experimental results as

target and predicted compressive strength in the testing stage was 0.934. The MSE in the testing

stage was 0.57%.

The GRNN response for the tensile strength compared with the experimental results is presented

in Figs. 11, 12 and 13. In network training, the selected network represented 0.964 and 0.2% for

correlation of determination and MSE respectively. The amount of correlation of determination and

MSE in network testing was 0.905 and 1.06 % respectively.

Fig. 11 Evaluation of predicted tensile strength of lightweight mortar in training phase

Fig. 12 The correlation of determination between target and predicted tensile strength of lightweight mortar in
testing phase
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The predicted tensile strength from generated GRNN is in good agreement with the experimental

results. The relationship between the squared compressive strength and the tensile strength of the

network output by GRNN and FFBP are given in Fig. 14. The result of the predicted relationship

by GRNN is compared with the FFBP output produced by the current researchers in another study

(Razavi et al. 2011) The accurate squared correlation coefficient is close to 1 and in good

agreement with the FFBP output. The results present the effective relation between the squared

compressive strength and the tensile strength predicted by both networks GRNN and FFBP.

4. Conclusions

(1) Mixtures made with 60% or more of scoria instead of sand were categorized as lightweight

mortar according to the BS code.

Fig. 13 GRNN response for tensile strength of lightweight mortar in comparison with experimental results as
target

Fig. 14 Relationship between squared compressive strength and tensile strength in both GRNN and FFBP
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(2) By increasing the percentage of scoria instead of sand in the mortar from 0 to 100%, the

mortar 28-days density, compressive strength, and tensile strength decreased by 49, 7.5 and 16.7%,

respectively.

(3) The training performance function for the compressive and tensile strength was 0.69 and 0.

57%, respectively.

(4) The training coefficient for the determination of the compressive and tensile strength was

0.905 and 0.934, respectively.

(5) The ratio between the network outputs and the experimental results for the compressive and

tensile strength was between 0.9 to 1.12 and 0.88 to 1.22, respectively.

(6) The relationship between squared compressive strength and tensile strength predicted by

GRNN presented an effective coefficient of determination equal to 0.916.
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