
Computers and Concrete, Vol. 10, No. 3 (2012) 241-257 241

 Technical Note

Flexural behavior model for post-tensioned concrete 
members with unbonded tendons

Kang Su Kim and Deuck Hang Lee*

Department of Architectural Engineering, University of Seoul, Seoul, Korea

(Received April 11, 2011, Revised January 19, 2012, Accepted March 19, 2012)

Abstract. The need for long-span members increases gradually in recent years, which makes issues not
only on ultimate strength but also on excessive deflection of horizontal members important. In building
structures, the post-tension methods with unbonded tendons are often used for long-span members to
solve deflection problems. Previous studies on prestressed flexural members with unbonded tendons,
however, were mostly focused on the ultimate strength. For this reason, their approaches are either
impossible or very difficult to be implemented for serviceability check such as deflection, tendons stress,
etc. Therefore, this study proposed a flexural behavior model for post-tensioned members with unbonded
tendons that can predict the initial behavior, before and after cracking, service load behavior and ultimate
strength. The applicability and accuracy of the proposed model were also verified by comparing with
various types of test results including internally and externally post-tensioned members, a wide range of
reinforcement ratios and different loading patterns. The comparison showed that the proposed model very
accurately estimated both the flexural behavior and strength for these members. Particularly, the proposed
model well reflected the effect of various loading patterns, and also provided good estimation on the
flexural behavior of excessively reinforced members that could often occur during reinforcing work.
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1. Introduction

Unlike the prestressed concrete members with bonded tendons, the strain compatibility condition

between concrete and tendons at a section cannot be utilized in the analysis of the prestressed

concrete members with unbonded tendons due to the unbonded behavior between concrete and

tendon. This makes it difficult to predict the flexural strength of unbonded post-tensioned concrete

members (hereinafter, “UPT”), which has thus been an important research subject for many researchers.

Our understanding on this issue, however, is still very limited, and the code equations (AASHTO-

LRFD 2004, 2007, ACI Committee 318 2005, 2008, BSI 8110-85 1985, CAN-A23.3-M94 1994,

DIN 4227 1980, KCI-M-07 2007, NEN 3880 1984) and many existing approaches (Lee and Kim 2011,

Lee et al. 2010, Zhou and Zheng 2010, Au et al. 2009, Du et al. 2008, Ozkul et al. 2008, Tan and

Tjandra 2007, Bui and Niwa 2006, Harajli 2006, Sivaleepunth et al. 2006, Ozkul et al. 2005,

Roberts-Wollmann et al. 2005, Au and Du 2004, Ng 2003, Moon et al. 2002, Allouche et al.

1999(a), 1999(b), Harali et al. 1999, Lee et al. 1999, Lim et al. 1999, Harajli and Kanj 1991, 1997,

Chakrabarti 1995, Campbell and Chouinard 1991, Naaman and Alkhairi 1991(a), 1991(b), Tan and

Ng 1991, Harajli 1990, MacGregor et al. 1989, Du and Tao 1985, Mojtahedi and Gamble 1978,
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Tam and Pannell 1976, Bondy 1970, Janney et al. 1956, Warwaruk et al. 1962), proposed for the

design of the ultimate strength of UPT members, yield very different results and often inaccurate

predictions. Therefore, authors, in their former research (Lee and Kim 2011), revised the existing

approaches (MacGregor et al. 1989, Harajli 1990, 2006, Au and Du 2004, Roberts-Wollmann et al.

2005, Bui and Niwa 2006, Ozkul et al. 2008) on the flexural strength of UPT members, and

proposed an ultimate strength prediction method that considers key factors such as loading patterns

and reinforcement ratios. They also verified the rationality and accuracy of the proposed approach

comparing to the 177 test results collected from previous studies (Janney et al. 1956, Warwaruk et

al. 1962, Du and Tao 1985, Harajli and Kanj 1991, Campbell and Chouinard 1995, Chakrabarti

1995, Moon et al. 2002, Ozkul et al. 2008).

On the other hand, the flexural behavior under service load is also very important when unbonded

post-tension method is applied, because often the UPT members are used for deflection control

rather than strength enhancement. Previous studies (Janney et al. 1956, Warwaruk et al. 1962,

Bondy 1970, Tam and Pannell 1976, Mojtahedi and Gamble 1978, Du and Tao 1985, MacGregor et

al. 1989, Harajli 1990, 2006, Harajli and Kanj 1991, Naaman and Alkhairi 1991a, 1991b, Campbell

and Chouinard 1995, Chakrabarti 1995, Allouche et al. 1999a, 1999b, Lee et al. 1999, Au and Du

2004, Roberts-Wollmann et al. 2005, Bui and Niwa 2006), however, mainly focused on the ultimate

strength of UPT members, by which it is either impossible or very difficult to examine

serviceability of UPT members.

Therefore, this study, which comes after the proposal of an approach for the prediction of the

flexural strength of UPT members39, aims to propose a flexural behavior model that can predict the

behavior before and after cracking, under service load state and ultimate strength of UPT members

as well. It also aims to verify the applicability and accuracy of the proposed model by comparing

the predicted values to experimental test results reported in literatures (Janney et al. 1956,

Warwaruk et al. 1962, Du and Tao 1985, Harajli and Kanj 1991, Campbell and Chouinard 1995,

Chakrabarti 1995, Moon et al. 2002, Ozkul et al. 2008).

2. Research significance

While most previous studies concentrated on the ultimate strength of UPT members, this study

proposed a flexural behavior model that can predict the flexural behavior of UPT members under

service load as well as ultimate strength. The applicability and accuracy of the proposed model are

also verified with test data. Particularly, the proposed model well reflected the effect of various

loading patterns, and provided very good estimation of flexural behavior for over-reinforced

members that can often occur during onsite work for strength enhancement.

3. Previous research

3.1 Ultimate strength of unbonded tendons

To investigate the flexural strength of UPT members, Warwaruk et al. (1962) performed an

experimental study with the primary test variables of the amount of bonded reinforcing steel and the

moment distribution shape. Based on their results, they proposed an approximate equation for
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ultimate tendon stresses introducing the coefficients to account for the effect of bonded reinforcing

steel and loading patterns. Harajli (1990) proposed the concept of idealized equivalent plastic hinge

length, based on which Bui and Niwa (2006) and Lee et al. (1999) performed a regression analysis

of ultimate tendon stresses (fps). MacGregor et al. (1989) presented the rigid body model, wherein

all strains are concentrated on the plastic hinge, and later, Roberts-Wollmann et al. (2005) and

Harajli (2006) also complemented this model. Naaman et al. (1991a, 1991b) proposed a design

equation that considers not only the sectional properties but also the tendon profile and loading

patterns as well as the moment-curvature relationship in the longitudinal direction of a member.

They also empirically determined the bond coefficient that is a key concept in their approach. 

In many previous studies (MacGregor et al. 1989, Harajli 1990, Au and Du 2004, Roberts-

Wollmann et al. 2005, Bui and Niwa 2006, Harajli 2006, Ozkul et al. 2008), the length of plastic

hinge plays a key role in calculating the total amount of deformation of unbonded tendons (∆L). It

is very difficult, however, to accurately predict the length of plastic hinge, which is considered to be

a primary reason for errors in estimating the stress increase in unbonded tendons (∆fps). Therefore,

authors, in their previous research (Lee and Kim 2011), used the assumption that the deformation is

concentrated on the maximum moment zone at ultimate, based on the test results of Warwaruk et al.

(1962) and Campbell and Chouinard (1991), and proposed a flexural strength model for UPT

members. The ultimate stress (fps) and the ultimate strain (εps) of unbonded tendons in their

proposed strength model are

(1a)

(1b)

where fpe and εpe are effective prestress and prestrain in tendons, respectively, fpy and εpy are yield

stress and yield strain of tendon, respectively, and ∆fps refers to the additional stress in tendons at

ultimate, which corresponds to the additional strain of tendon (∆εps) at ultimate

(2)

where α, k, εcu, dp and cm refer to the coefficient of the moment distribution shape (See Table 1),

the ratio of the maximum moment zone length to the member length, the ultimate compressive

strain of concrete, the distance from the extreme top fiber to the centroid of tendons, and the neutral

axis depth at the maximum moment zone, respectively, which is

(3a)

and, A, B and C are

(3b)

(3c)

fps fpe fps fpy≤∆+=

εps εpe εps∆+=

εps∆ αk
εcu
cm

------ dp cm–( )=

cm

B– B
2

4AC–±
2A

-------------------------------------=

A 0.85fc′bβ1=

B fsAs fs′As′– kεcuEpAps– εpeEpAps+( )–=

Table 1 Coefficients of moment distribution shape (α) for different loading patterns

Loading pattern 1 point loading uniform loading 2 point loading

α 0.75 1.0 1.0
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(3d)

In Eq. (3), Aps, As and , refer to the area of unbonded tendons, reinforcing bars in tension and

compression, respectively, and Ep is the elastic modulus of the tendon. 

Fig. 1 compares the flexural strength obtained from the proposed method and the test results of

177 UPT members that were tested under different loading patterns and have various amount of

bonded reinforcing steel, including those not having bonded reinforcing bars. It demonstrates that

the predicted strength by the proposed method well matches the test results regardless of the

different characteristics of test specimens. Particularly, the proposed model predicts very well the

strength of over-reinforced members, which can happen during repairs or retrofit works, and of

high-strength members that are widely used. The detailed information on the derivation of the

proposed strength model and the analysis of various approaches can be found in the References

(Lee and Kim 2011).

3.2 Flexural behavior model

While many studies have been conducted to estimate the flexural strength of UPT members, there

are only a few studies on flexural behavior models for these members. Lee et al. (2010) proposed

the simple summation model, shown in Fig. 2(a), which analyzes the tendon forces considering the

C kεcuEpApsdp–=

As′

Fig. 1 Comparison of ultimate unbonded tendon stresses (fps) calculated by the proposed strength model and
test results

Fig. 2 Description of simple summation model (Lee et al. 2010)
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unbonded tendons as simple tension members with an assumption that the deflections of tendons

and concrete are identical at drape points. As Fig. 2(b) shows, the resisting forces of reinforced

concrete and tendons are simply summated to get the total member force. While this process seems

to be simple, the analysis error becomes larger after cracking, because there is a big difference in

inelastic behavior of concrete member between the concrete member alone and the concrete

member with tendons. It is also not applicable in case loading points and drape points are different,

or straight or curved tendons are used. Moon et al. (2002) also proposed a flexural behavior model.

This model is ultimately based, however, on the ultimate tendon stress prediction equation from the

regression analysis, and therefore, it is believed to be somewhat unreasonable to use this model to

predict flexural behavior of UPT members. Tan and Ng (1991) proposed an equation based on the

secondary moment effect, which occurs additionally due to change of the eccentricity of tendons in

the location of the anchorage device for externally post-tensioned members. On the other hand,

Ozkul et al. (2005) used the idealized trussed-beam model shown in Fig. 3, and applied the

principles of virtual work by dividing the loading system into two: a system subjected to two-point

loading without prestressing forces (Fig. 3(b)) and another one with prestressing axial force only

(Fig. 3(c)). This model can predict the unbonded tendon stress and the flexural behavior of UPT

members considering effect moment of inertia before and after cracking, but it tends to underestimate

the flexural stiffness of members (Ozkul et al. 2005).

Recently, Ozkul et al. (2008), along with Harajli, revised the idealized trussed-beam model and

proposed the general incremental analysis (GIA). GIA divides the loading stages into the linear

elastic state, the cracking state and the ultimate state, and calculates the load-displacement relationship,

which results in a relatively accurate analysis. This model, however, utilized the strength model with

the plastic hinge length at ultimate state to predict the flexural behavior under service load, which

seems to be unreasonable. In addition, this model does not consider the effect of the loading

patterns on the flexural behavior.

4. Proposed flexural behavior model of UPT members

Before flexural cracking, the curvature distribution in the longitudinal direction is identical to the

pattern of the flexural moment, where all sections of the concrete including tension side contribute

to the flexural strength. After the flexural crack occurs within the maximum moment region of the

member as the loading increases, the curvature increases locally in the cracked region, as Fig. 4(a)

shows, which is different from the pattern of the flexural moment. Since it is very difficult to get a

precise estimation of such a change in the curvature distribution, researchers have assumed that the

curvature would be concentrated within the equivalent plastic hinge length and have proposed

flexural behavior (or strength) models. (Harajli 1990, Lee et al. 1999, Ozkul et al. 2008) The rigid-

Fig. 3 Unit load trussed-beam model (Ozkul et al. 2005)
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body model (MacGregor et al. 1989, Roberts-Wollmann et al. 2005, Bui and Niwa 2006, Harajli

2006) proposed later also considered that the equivalent plastic hinge length at ultimate state is a

very important factor in predicting the flexural behavior of UPT members. All the existing models

that utilize the concept of equivalent plastic hinge length, however, are based on the ultimate state,

which is considered that these models are not suitable for flexural behavior models. Furthermore, it

is very difficult to predict the plastic hinge length itself, and consequently, there are huge

differences on the plastic hinge lengths among researchers.

Therefore, in this study as shown in Figs. 4(a) and (b), the maximum curvature distribution has

been idealized by simplifying the curvature within the maximum moment zone, based on the

observation on the test results of Warwaruk et al. (1962). As explained in the previous study (Lee

and Kim 2011), in the case of the member with the minimum bonded reinforcing steel specified in

codes of practice, the measurement of the strain of the extreme top compression fiber from the

service load stage to the ultimate stage shows that the deformation is concentrated approximately

within the maximum moment region. And even when there is no bonded reinforcing steel, a few

cracks under the two-point loading can be adequately developed within the maximum moment zone.

(Janney et al. 1956, Warwaruk et al. 1962, Campbell and Chouinard 1991) In this study, the

flexural strength model, proposed in the authors’ previous research (Lee and Kim 2011), has been

extended to develop a flexural behavior model for UPT members, based on the assumption of the

idealized curvature distribution at the maximum moment zone. In addition, the compatibility

condition of UPT members, in which the total amount of elongation in the tendon length between

anchorages shall be identical to the total amount of the deformation in the concrete at the level of

tendon, has been applied.

4.1 Description of the flexural behavior model for UPT members

As described above, the flexural behavior model proposed in this study, extended from the

strength model proposed in the authors’ previous research (Lee and Kim 2011), utilizes the

idealized curvature distribution at the maximum moment zone as shown in Fig. 4. Fig. 5(a) shows

the stress-strain relationships of materials that were applied to the flexural behavior model. In the

case of reinforcing steel, this study assumed a general elastic-plastic model to simplify the

calculation and used the Ramberg-Osgood formula (Mattock 1979, Chen 1982) for the tendons. In

Fig. 4 Bending moment and curvature distribution at different loading stages
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the case of concrete, this study implemented the constitutive model proposed by Collins and

Mitchell (1991), which can efficiently express nonlinear behavior, and wherein the stress (fc) to

strain (εc) relationships of concrete is expressed as

(4)

where fck and  refer to the compressive strength of concrete and the corresponding strain,

respectively. As Fig. 5(b) shows, the sum of the compressive force of concrete at a particular

loading state can be determined from the integration of the concrete stress (fc) that is distributed

from the extreme compressive fiber of the section to the neutral axis (c), which is

(5)

fc fck 2
εc
εc′
------⎝ ⎠

⎛ ⎞ εc
εc′
------⎝ ⎠

⎛ ⎞
2

–=

εc′

fcb yd
0

 c

∫ α1fckβ1cb=

Fig. 5 Description of the proposed model
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where b, c and y are the member width, the neutral axis depth from extreme fiber, and the vertical

distance from a particular depth of the section to the neutral axis, respectively, and α1 and β1 are the

width and depth factors of equivalent rectangular compressive stress block, respectively. From Eqs.

(4) and (5), α1β1 becomes

(6)

where εt is the compressive strain of the extreme top fiber. Also, the distance from the neutral axis

to the resultant force of the compressive stresses ( ) is

(7)

Therefore, from Eqs. (5), (6) and (7), the depth ratio of equivalent rectangular compressive stress

block and neutral axis (β1) is

(8)

Then, the stress block factor (α1) can be calculated by substituting Eq. (8) into Eq. (6).

If the strain of the extreme top fiber (εt) at an arbitrary loading stage is assumed to be as shown

in Fig. 5(b), the strain at the location with a distance y from the neutral axis can be expressed by

the assumed εt. In other words, strain (εx) at a certain location (y) can be expressed as

(9)

where, h is the member height, and as Fig. 5(c) shows, εb is the strain at the extreme bottom fiber.

While the value of εb also should be assumed in the initial calculation, the only one value of εb
satisfies the equilibrium expressed in Eq. (14) with regard to the assumed εt; and therefore, the

correct solution can be obtained from the iterative calculations. Once the strain of the extreme top

and bottom fiber of the section (εt and εb) are determined, they can be used to calculate the neutral

axis depth (cx) and the strain of reinforcement. As shown in Fig. 5(b), before the cracking, i.e., until

the strain of the extreme bottom fiber (εb) exceeds the cracking strain (εcr), the tensile stress of

concrete below the neutral axis should be also included in the calculation of equilibrium. Here, the

cracking strain (εcr) is

 
(10)

where Ec, Ig and Mcr refer to the elastic modulus of concrete, the moment of inertia of the gross

section, and the moment strength at which the tensile stress at the extreme bottom fiber reaches the

cracking stress (modulus of rupture, fr), respectively. For the value of fr,  (ACI Committee

318 2005, 2008) has been used. If the strain of the extreme bottom tensile fiber of section exceeds

the cracking strain (εcr), the tension force at the concrete below the neutral axis would be negligible

and was ignored for simple calculation. The strains of tensile and compressive reinforcing steels (εs
and ) can be calculated by substituting the distance from the extreme top fiber of section to the

α1β1

εt
εc′
------⎝ ⎠

⎛ ⎞ 1

3
---

εt
εc′
------⎝ ⎠

⎛ ⎞
2

–=

y

y

fcb y yd
0

 c

∫

fcb yd
0

 c

∫
------------------------ c 0.5β1c–= =

β1

4 εt εcu⁄–

6 2εt εcu⁄–
-----------------------=

εx εt
εb εt–

h
------------y+=

εcr
Mcr

EcIg
---------= yb

0.63 fc′

εs′
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centroid of tensile and compressive reinforcing steels (d and d') into Eq. (9), as follows

(11)

The stress of the reinforcing steel is calculated by substituting εs and  into the stress-strain

relation curve of the reinforcing steel, as Fig. 5(a) shows. As expressed above, however, if the strain

of the reinforcing steel (εs) exceeds the yield strain of steel (εy), the stress of the reinforcing steel

(fs) should be limited to the yield strength of steel (fy). In other words

(12a)

(12b)

where Es refers to the elastic modulus of reinforcing steel. The strain of tendons can be calculated

by adding the additional strain [∆εps, refer to Eq. (5)] to the effective prestrain (εpe), that is

(13)

Then, the stress of the tendons corresponding to the strain was calculated from the Ramberg-

Osgood formula.

Based on the section sectional resultant forces shown in Fig. 5(c), the equilibrium equation can be

established as

(14)

and the moment strength can be calculated by multiplying the distance from the location of the

neutral axis that satisfies Eq. (14) to each sectional force, as follows

(15)

From Fig. 5(c), the curvature in maximum moment region (φm) is also expressed as

(16)

By calculating the curvature and moment while increasing the aforementioned calculation procedures

until εt reaches εcu, the moment-curvature relationship can be calculated at all loading stages. The

calculation procedures of the proposed analysis model are shown in Fig. 6 as a flowchart.

5. Verification of the proposed method

To verify the proposed flexural behavior model, as shown in Figs. 7 and 8, the test results

obtained from previous studies (Du and Tao 1985, Tan and Ng 1991, Lim et al. 1999, Moon et al.

2002) have been compared to analysis results. Table 2 shows the detailed properties of specimens,

εs or εs′( ) εt
εb εt–

h
------------d or d′( )+=

εs′

If  εs εy   then  fs,< Esεs=

If  εs εy   then  fs,≥ fy=

εps εpe εps∆+ εpe αk
εt
cx

---- dp cx–( )+= =

α1fc′bβ1cx fs′As′ fps– Aps fsAs–+ 0=

Mn Cc cx

β1cx

2
---------–⎝ ⎠

⎛ ⎞ Cs cx ds′–( ) T d cx–( )∑+ +=

      α1fc′bβ1cx cx

β1cx

2
---------–⎝ ⎠

⎛ ⎞ fs′As′ cx ds′–( ) fpsAps dp cx–( ) fsAs d cx–( )–+ +=

φm

εt
cx

----
εb

h cx–( )
----------------= =
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including material strengths, amount of reinforcement and loading patterns. 

5.1 Members under two-point loading

Figs. 7(a) to (e) show the specimens with rectangular section subjected to two-point loading. The

specimens had various amounts of tendons and bonded reinforcing steels. Specimen A-2 in Fig. 7(a)

had 0.45% of reinforcing steel ratio and 0.28% of the ratio of prestressing tendons, which

Fig. 6 Flow chart for calculation of the moment-curvature curve by the proposed model
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corresponds to 0.23 of reinforcement index (R), where R is defined as follows (ACI Committee 318

2005, Korea Concrete Institute 2007)

(17)

where ρp, ρs and  are the area ratio of tendon, tensile reinforcing steel and compressive reinforcing

steel, and fpu, fy and  are the tensile strength of tendon and the yield strengths of tensile and

compressive reinforcing steels, respectively. Fig. 7(a) shows that the proposed model perfectly

estimated the initial flexural stiffness of specimen A-2 before the cracking and also well predicted

the member behavior after cracking including ultimate strength and near yielding moment.

Figs. 7(b) and (c) show specimens A-5 and A-7, which both had 0.88% reinforcing steel, but their

prestressing steel ratios were 0.22% and 0.11%, respectively. The amount of bonded reinforcing

steel in these two specimens was twice as much as in specimen A-2 in Fig. 7(a), and the amount of

tendons in these specimens were about 2/3 and 1/3 of specimen A-2, respectively. The proposed

model very accurately predicted the flexural behavior of these specimens wherein the amount of

bonded reinforcing steel was greater than the amount of tendons. This shows that the proposed

model reflects well the effect of the bonded reinforcing steel with respect to the change in the

neutral axis, and also implies that the simplified curvature assumed in the proposed model applies

quite well without much difficulty. Fig. 7(d) shows specimen A-3, which had a 0.367 reinforcement

index and about twice as much bonded reinforcing steel and tendon as specimen A-2, and Fig. 7(e)

shows specimen A-9, which had a 0.55 reinforcement index and about twice as much tendon and

about five times as much bonded reinforcing steel as specimen A-2. Because both specimens were

over reinforced specimens, of which the reinforcement indices exceeded the limit value (0.36β1) that

specified in code (ACI Committee 318 2005), they had brittle failure modes-that is, they were

collapsed at relatively small curvatures. Nevertheless, the proposed model very accurately described

R ωp
d

dp

----- ωs ωs′+( )+=

ωp ρp

fpu

fc′
-----  ωs, ρs

fy

fc′
-----  ωs′, ρs′

fy′
fc′
-----= = =

ρs′
fy′

Table 2 Sectional properties of specimens

Specimen
b(bw) h fy fpy fpu As Aps

(mm) (MPa) (mm)

2 point loading

A-2 160 280 30.6 430 1465 1790 157.0 98.0

A-5 160 280 30.6 400 1465 1790 308.0 78.3

A-7 160 280 30.6 400 1465 1790 308.0 39.2

A-3 160 280 30.6 430 1465 1790 236.0 156.8

A-9 160 280 33.1 395 1465 1790 804.0 156.8

F-1 200 300 23.5 420 1620 1860 135.5 118.9

1 or 4 point loading

F-2 200 300 23.5 420 1620 1860 135.5 118.9

J-1 200 350 23.5 420 1620 1860 253.0 39.6

B-2 160 280 30.6 430 1465 1790 157.0 98.0

T-1
300

(110)
300 30.0 530 1710 1860 397.0 109.6

fc′
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the flexural behavior of these specimens until their failure, which also implies that the effects of

reinforcing steel and tendons on the flexural behavior, even for over-reinforced members, can be

well captured by the neutral axis utilized to consider these influences in the proposed model.

Therefore, it can be noted that the proposed flexural behavior model very accurately predicts the

flexural behavior and strength both under service load state and in the ultimate state even for the

over reinforced members that may possibly occur when retrofitting existing members.

Fig. 7(f) shows a two-point loaded member with a 0.24% reinforcing steel ratio and a 0.26% ratio

of prestressing tendons, which was somewhat lightly reinforced, compared to the other specimens.

The proposed model slightly underestimated the stiffness of specimen after initial cracking, but it

provided relatively good estimation of the overall member behavior, especially giving almost

identical flexural strength to the test result.

Fig. 7 Comparison of analysis results and test results for specimens under 2-point loading
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5.2 Members under other loading patterns

Specimen F-2, shown in Fig. 8(a), had the same sectional details as specimen F-1 including the

amount of reinforcing steel and prestressing tendons, whereas it was tested under a concentrated

loading. The proposed model consistently well predicted not only the initial stiffness but also the

flexural behavior after the yield, which means that the consideration on the concentrated loading

pattern using the moment area in the proposed model is very reasonable. Fig. 8(b) shows specimen

J-1, which was also subjected to a concentrated loading. The reinforcing steel ratio was 0.39% and

only one tendon was placed, giving the prestressing tendon ratio only 0.08%, which means that, as

indicated by the reinforcement index value of 0.143, this specimen was very lightly reinforced. The

Fig. 8 Comparison of analysis results and test results for specimens under 1-point and 4-point loading

Fig. 9 Comparison of analysis results and test results for specimens with a T-shaped section



254 Kang Su Kim and Deuck Hang Lee

proposed model slightly underestimated the initial and post-yield stiffness for this under-reinforced

member; however, the ultimate strength and the corresponding curvature were not much different

from the test results.

Fig. 8(c) shows specimen B-2, which were subjected to four-point loading that is very close to

uniform distributed loading condition. It is an over-reinforced specimen with the reinforcement

index exceeding the specified limit value (ACI Committee 318 2005, Korea Concrete Institute

2007). As aforementioned, the proposed model very accurately predicted the flexural behavior and

the ultimate strength of the over-reinforced members, and the same observation can be made in the

specimen B-2. More importantly, as the loading condition of specimen B-2 was as close as

uniformly distributed loading, the accurate estimation of the flexural behavior of specimen B-2 by

the proposed model confirms that considering the loading patterns based on the moment area, as

used in the proposed model, is also well applicable to the uniform distributed loading case as well.

5.3 Externally post-tensioned members

Specimen T-1, shown in Fig. 9, is an externally post-tensioned member and has a T-shaped

section. Based on the width of its upper flange, its reinforcing steel ratio is 0.48% (1.3% based on

the web width), and the prestressing tendon ratio is 0.49%. The analysis result shows that the

proposed model reasonably well captured the overall flexural behavior of this externally post-

tensioned member. Thus, it is considered that the proposed flexural behavior model can be applied

without much difficulty to both internally and externally post-tensioned members with various

sectional types.

As has been verified above, the proposed flexural behavior model can very accurately predict the

flexural behavior and the ultimate strength of UPT members that were either internally or externally

post-tensioned, having various ranges of reinforcement index, and subjected to various loading

patterns. Therefore, the proposed model is considered to be applicable for the estimation of the

flexural behavior and the ultimate strength of post-tensioned members with unbonded tendons.

6. Conclusions

This study aimed to propose a flexural behavior model for post-tensioned members with unbonded

tendons and to verify the accuracy and applicability of the proposed model, comparing to the experimental

test results available in literature. The following conclusions were obtained from this study.

1. The proposed flexural behavior model very accurately predicted the overall member behavior of

post-tensioned members with unbonded tendons, including the initial stiffness, the behavior after

cracking and ultimate states.

2. The proposed model very accurately predicts the flexural behavior not only of two-point loading

members but also of members with other various loading patterns, such as a concentrated loading

and uniformly distributed loading, which supports that the consideration of loading patterns using

the moment area is reasonable.

3. The proposed model showed excellent applicability to both internally and externally post-

tensioned members.

4. The proposed model can also be used for over-reinforced members, which may possibly occur

during retrofit of existing members; and this shows that the neutral axis utilized in the proposed
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model well captured the effect of reinforcement ratio on the flexural behavior of UPT members.

5. It was verified that the proposed model is suitable for the estimation of the flexural behavior and

the ultimate strength of UPT members.
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Notations

α = coefficient of moment distribution shape

α1 = stress block factor

β1 = factor of equivalent rectangular compressive stress block depth to neutral axis depth

k = ratio of maximum moment region to beam length

fc = stress of concrete

fs = stress of reinforcing bar

= specified compressive strength of concrete

fr = modulus of ruptre

fps = stress of prestressed tendon

fpe = effective prestress in prestressing steel

fpu = ultimate strength of prestressing steel

fpy = yield stress of prestressing steel

fy = yield stress of reinforcing steel

Ec = modulus of elasticity of concrete

Es = modulus of elasticity of reinforcement and structural steel

εc = strain of concrete

εs = strain of tensile reinforcement

= strain of compression reinforcement

εy = yield strain of reinforcement 
εcr = cracking strain

εx = strain at arbitrary location from extreme top fiber

εt = strain at extrem top fiber

εb = strain at extrem bottom fiber

εpe = effective prestrain in prestressing steel = fpe/Eps

= additional strain of concrete at tendon height

εps = strain in prestressing steel at ultimate state

φ = beam curvature

φm = beam curvature at maximum moment

cx = depth of neutral axis 

cm = depth of neutral axis at ultimate

cy = neutral axis depth assuming  fps = fpy
yb = distance from centroid of section to extrem bottom fiber

y = distance from extrem compression fiber to arbitrary location along the depth

= distance from neutral axis to centroid of equivlent stress block

bw = flange width

d = distance from extrem compression fiber to centroid of tension reinforcement 

d' = distance from extrem compression fiber to centroid of compression reinforcement

dp = distance from extrem compression fiber to centroid of prestressing steel

h = height of section

Ig = moment of inertia

h = height of section

Lm = constant moment region

Lp = equivalent plastic hinge length

fc′

ε ′s

εc ps,
∆

y



258 Kang Su Kim and Deuck Hang Lee

Aps = area of unbonded prestressing steel

As = area of ordinary tension steel

= area of compression steel

ρp = ratio of prestressed steel = Aps/bp

ρs = ratio of ordinary bonded steel = As/bd

ωs = tension reinforcing index

= compression reinforcing index

ωp = prestressing steel index

R = reinforcing index

Pu = ultimate external load

Mcr = cracking moment

Mn = ultimate moment capacity of UPT beam

As′

ωs′




