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Abstract. Several extensions to the Thelandersson phenomenological model for concrete under transient
high temperatures are explored. These include novel expressions for the temperature degradation of the
elastic modulus and the temperature dependency of the coefficient of the free thermal strain. Furthermore,
a coefficient of thermo mechanical strain is proposed as a bi-linear function of temperature. Good
qualitative agreement with various test results taken from the literature is demonstrated. Further extensions
include the effects of plastic straining and temperature dependent Poisson’s ratio. The models performance
is illustrated on several simple benchmark problems under uniaxial and biaxial stress states.
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1. Introduction

1.1. Background

The behaviour of concrete is significantly altered when exposed to high temperatures. Mechanical
properties such as strength and stiffness are generally found to be decreasing with temperature and
high temperatures are found to significantly enhance the time dependent creep characteristics.
Experimental evidence also suggests that strength, stiffness and creep depend on the combined load
and temperature history, which needs to be included when concrete is to be modeled and analyzed
under simultaneous loading and heating.

The temperature dependent behavior of concrete was summarized in the finishing document of the
RILEM Technical Committee 44-PHT (Schneider 1986 and Schneider 1988), including most of the
test data published on concrete subject to high temperatures until the mid eighties. Furthermore,
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Khoury, et al. (1985a) published a comprehensive review on the experimental evidence of transient
creep of concrete and recently Bazant and Kaplan (1996) gave a thorough description of various
aspects of concrete at high temperatures. At present, the RILEM Technical Committee 129-MHT
continues the task of standardizing the procedures for high temperature tests on concrete and the
notation and terminology of the present paper is largely in accordance with that applied by the
recommendations published by TC 129-MHT (see e.g., RILEM 1998).

It is a well-documented fact that unsealed creep tests yield larger strains than the sum of the shrinkage
and the basic creep strains (Fig. 1a) and the observed difference normally referred to as drying creep
(Neville, et al. 1983) or ‘stress induced shrinkage’ (Bazant and Chern 1987). Heating of concrete
specimens beyond 100oC under sealed conditions is very difficult to conduct (if not impossible) and
thus, shrinkage of the cement paste is normally included in the test results. For an unloaded
transient high temperature test the specimen undergoes thermal expansion. Performing the same test
under sustained loading the total strains, excluding the elastic response, differ significantly from the
unloaded situation (Fig. 1b). This difference is normally termed ‘transient creep’ or ‘load induced
thermal strain’ and it is recognized to be much larger than the basic creep recorded under isothermal
conditions (Fig. 1b). Furthermore, this strain component is found only for the first heating and it is
considered as a quasi-instantaneous response closely connected with the change in temperature and
moisture transport (Schneider 1986, Khoury, et al. 1985a, Thelandersson 1987).

Several investigations have dealt with the modeling of transient strains during combined heating
and loading. Thelandersson (1982) and Schneider (1988) suggested uniaxial expressions for the
transient creep, with the former applying the theory of plasticity and generalising the model to 3D.
Khennane and Baker (1992, 1993) also adopted the theory of plasticity and based their numerical
implementation on the work of de Borst and Peeters (1989). Thelandersson (1987) proposed a model,
dividing the transient creep into viscous creep and thermo mechanical strain.

Bazant and Chern (1987) extended their original creep model to include the effect of temperature
alterations, suggesting that both heating and cooling result in transient creep. Furthermore, the model
by Bazant and Chern includes coupling of temperature and moisture fields, making it rather complex for
practical design applications. Thienel and Rostasy (1996) proposed a general constitutive model for

Fig. 1 Creep tests on concrete. (a) Creep strains vs. time under constant thermal and hygric environment, (b)
Instantaneous transient strains vs. temperature during first time heating for unsealed conditions
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transient strains, based on their own experimental biaxial results.
More recently, it has been recognised that the modelling of concrete at high temperatures calls for

a consideration of the multiphase nature of the complex underlying processes which occur at different
scales. On the macroscopic level, the coupling of thermo-mechanical formulations with mass transport
has been undertaken by Bazant and Kaplan (1996), Gawin, et al. (1999), Tenchev, et al. (2001) and
Khoury, et al. (2002) amongst others. The formulations consider moisture either as a single phase or
treat the liquid and gas phases separately. Such formulations capture the build up of gas pressures
due to rapid heating or as a result of sealed conditions and therefore enable a more realistic
prediction of the effective stress. The effect of mechanical processes, such as cracking, on the heat
and mass transport allows phenomena such as spalling to be modelled. A fully coupled hygral-
thermal-mechanical approach obviously comes at a price, as the number of variables increases and
the coupling becomes more involved.

Modelling of high temperature effects on the behaviour of concrete continues to be an active research
area which increasingly considers the underlying physical and chemical mechanisms associated with
temperature and humidity changes. Notable contributions include the microprestress-solidification
theory (Bazant, et al. 2001) and the chemoplastic softening formulation (Ulm, et al. 1999) related to
thermal hydration.

The authors believe that a multifield and multiscale setting for a constitutive model is ultimately
necessary to rationally interpret and characterise the observed phenomena of concrete behaviour at
high temperature. However, as the scientific debate is far from settled, authors also recognise a need
for an improvement of the phenomenological constitutive models currently used in practice and the
present paper represents a contribution in that context.

1.2. Scope of work

The phenomenological constitutive models considered here are based on experimental data and
the two models build on the work of Thelandersson and de Borst and Peeters and they do not
explicitly consider the multiphysics nature of the underlying phenomena.

The investigation is meant to describe the main parameters recognized to affect transient strains of
concrete in a simple and yet realistic manner and to illustrate their relative importance. The mechanical
response of the concrete is kept linear and thus, the model is not meant to describe conditions close
to failure. The implications of this assumption are discussed at the end of the article. Furthermore, it
is noted that performance of the model is only validated experimentally against compressive test
results since no tensile creep results exist to the authors knowledge.

2. Strain decomposition

In the following sections a constitutive model for concrete subject to transient temperature and
load scenarios is outlined. The model is a modification of the formulation given by Thelandersson
(1987), applying experimental data of the load induced thermal strain (or transient creep) reported
by Schneider (1986, 1988) and Khoury, et al. (1985a,b).

Thelandersson (1987) suggested an isotropic rheological model, comprising an elastic spring and a
dashpot (Maxwell element) connected in series with a thermal expansion element and a thermo
mechanical element. First the uniaxial case is considered, followed by a generalization to multiaxial
conditions. The total uniaxial strain rate observed under first time heating is divided into the
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following components

(1)
where dot denotes a derivative with respect to time. Temperature and stress are both unique functions
of time (T=T(t) and σ = σ(t)). Note that throughout the article the parentheses denoting the variables
are only included when deemed necessary.

The four components in Eq. (1) are the mechanical strain rate , the free thermal strain rate 
(T), the creep strain rate  and the thermo mechanical strain rate . The last two terms comprise
the load induced thermal strain rate (abbreviated lits by Khoury, et al. 1985b). The latter is
recognized to appear only during first heating and not during subsequent cooling or heating cycles
(Khoury, et al. 1985a). Thus, the load induced thermal strain represents an irrecoverable strain
component that is crucial to the response of a concrete member subject to high temperatures since it
may lead to severe tensile stresses during cooling (Nielsen, et al. 2002).

It is evident that one could add a shrinkage strain component to Eq. (1). However, since all
experimental high temperature data are reported from unsealed test conditions the shrinkage
component can be viewed as being included in the thermal strain. Furthermore, shrinkage is assumed to
be independent of loading.

In the following sections each of the strain rate components of Eq. (1) is considered in turn and
general expressions for the strain rates are given. For the purely mechanical component a novel
expression for the temperature dependency of the elastic modulus is proposed. For the pure thermal
strain an expression for the coefficient of thermal expansion is proposed to fit available experimental
data. Finally, for the load induced thermal strain the existing models are assessed and the model by
Thelandersson (1987) is modified such that the thermo mechanical parameters are fitted to existing
experimental data. Furthermore, the assumption of neglecting the creep component εc, when
interpreting transient creep test data, is justified by a simple example.

2.1. Mechanical strain

The mechanical strain may be split into an elastic and a plastic part ε σ = ε σ
el + ε σ

pl (Schneider
1988, Khennane and Baker 1993). At present, only the elastic part is considered; however, issues
related to the effect of including plastic mechanical strains are discussed later in the article.

Assuming εσ to form a surface in the stress-temperature space, the mechanical strain rate is
obtained by applying the chain rule of differentiation:

(2)

where ∂εσ/∂σ = 1/E is the inverse slope of the stress-strain curve for a given temperature. 
In the linear elastic case, where εσ = εσ

el = σ/Eel, the mechanical strain rate reads

(3)

where the prime denotes derivative with respect to temperature.
Experimental evidence shows that the modulus of elasticity degrades with increasing temperature

(Schneider 1988, Bazant and Kaplan 1996). However, it is also recognized that the degradation is
reduced when heating and compressive loading are applied simultaneously due to the closure of
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micro cracks (Khoury, et al. 1985b, Schneider 1988). This sustained load effect introduces further
complexities, as Eel becomes a function of both the stress history as well as temperature.

In Fig. 2 test data on normal concrete (Schneider 1988) are depicted together with analytical
expressions for the temperature dependency of Eel. Schneider suggested the following expression for
the elastic modulus

(4)

,

where E0=elastic modulus at room temperature; fc
0 = compressive strength at room temperature; f =

degradation function for unstressed conditions and θ = dimensionless temperature defined by

(5)

with T0 = 20oC (room temperature).
Schneider did not suggest a specific expression for f (T) needed in Eq. (4), however, a parabolic

curve is found to be a plausible fit for the data in Fig. 2. Schneider’s model in Eq. (4) is applied
together for two different sustained stress levels (Fig. 2). It is seen that the experimental data does
not support the pronounced effect of sustained stresses as implied by Eq. (4).

Instead of employing a stress dependency of Eel through the function g(T, σ ), a simple linear
decreasing temperature dependency is suggested (Fig. 2). Thus, in case of unstressed heating Eel =
f1E0 and in case of sustained compressive stress Eel = f2E0 with f1 and f2 given by

(6)

Generalizing the uniaxial equation in (3) to the multiaxial case for an isotropic material the following
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Fig. 2 Experimental data of Eel / E0 vs. T for various compressive stress levels (Schneider 1988). The legend
figures give sustained compressive stress in percentage of fc

0. The predictions by Schneider’s model in Eq. (4)
apply Eel / E0=g(T, σ) f1(T) for σ equal to −0.1 fc

0 and −0.3 fc
0
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elastic strain rate is obtained

(7)

where the dots denote derivative with respect to time and the primes denote derivative with respect
to temperature. Poisson’s ratio is first assumed to be independent of the temperature. Later on in the
implications of this restriction are discussed and a temperature dependency of the Poisson’s ratio is
introduced.

2.2. Free thermal strain

The free thermal strain of concrete is mainly influenced by the type and amount of the aggregate
used. Its dependence on temperature is highly non-linear (Fig. 3), depending on the thermal stability
of the aggregate. As previously mentioned the thermal strain may be decomposed into pure thermal
strain, shrinkage strain and thermal damage strain. However, since testing at high temperatures is
always performed under unsealed conditions, such decomposition is practically impossible and it
can only be justified theoretically.

Here it is assumed that ε th is a function of temperature alone although several references suggest it
depends on the heating rate as well. Hence, in case of high heating rates the chemical reactions and
the moisture transport processes within the cement paste may not develop fully, affecting the
thermal strain recordings.

The isotropic thermal strain rate reads 

(8)

where α = coefficient of free thermal strain. 
Nielsen, et al. (2002) suggested the coefficient α for quartzite normal concrete is to be modeled

by the following function

(9)
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Fig. 3 Experimental ε th vs. T for various concretes. Solid line is analytical expression in Eq. (10)



Improved phenomenological modelling of transient thermal strains for concrete at high temperatures 195
meaning that the free thermal strain, ε th, obtained during unrestrained heating from θ = 0 follows a
logarithmic temperature dependency:

(10)

In Fig. 3 this expression is compared with test data taken from Schneider (1986). Note that
significant experimental variation in the thermal strain response exists, and therefore Eq. (10) is
modeling a correct trend rather than closely fitting specific experimental values. It is seen how the
experimental thermal strains level off when the temperature exceeds 600oC. Bazant and Kaplan
(1996) suggested that this behavior is especially associated with quartzite aggregate, showing a
significant increase in thermal strains between 500 and 600oC (due to the conversion of quartz
crystals) where after the strain temperature curve flattens out. In the analytical expression this effect
is obtained by a simple cut-off when θ > 6  in Eq. (10).

2.3. Load induced thermal strain

The load induced thermal strain, corresponding to the last two components in Eq. (1), is
determined experimentally by measuring total strains during first time heating on a concrete
specimen under sustained loading. The free thermal strain, recorded on an unstressed specimen, and
the initial elastic strain are subtracted from the total strain to give the load induced thermal strain
(or transient creep) as a function of temperature (Fig. 1b).

In the rheological model proposed by Thelandersson (1987) the load induced thermal strain rate in
the uniaxial setting is given by

(11)

where η = viscosity. The two terms on the right-hand-side correspond to a dashpot and a thermo
mechanical element, respectively. The two components of the load induced thermal strain are
termed temperature dependent creep and thermo mechanical strain, respectively. The viscosity is
determined as a function of temperature level, stress level and time through an isothermal creep
tests (steady-state load and temperature).

Thelandersson (1987) assumed a proportionality between the thermo mechanical strain ε σ
th and the

thermal strain εth, an assumption also adopted by others due to its simplicity (de Borst and Peeters
1989, Khennane and Baker 1993). Here this assumption is abandoned and a more general
formulation is given.

As it is recognized that εc and ε th
σ cannot be separated experimentally, the subdivision of the load

induced thermal strain in two components is mainly theoretical and has little practical implications
for short duration heating, as stated by Schneider (1988). However, one reason for the subdivision is
that the two components have different characteristics, for instance the creep component takes place
under both heating and cooling. Furthermore, such a subdivision shows creep recovery, whereas
thermo mechanical strain is only experienced during first heating and not during subsequent cooling
or heating.
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2.3.1. Creep strain vs. thermo mechanical strain
Thelandersson (1987) stipulated that the creep strain εc is minor compared with ε th

σ for practical
test conditions even though steady-state creep is found to be enhanced by high temperatures (Fig.
4a). However, if the temperature increase is sufficiently slow the two components may be of a
comparable magnitude. In the following a small analytical example is given to illustrate this point.
It is justified that the conventional creep can be neglected when interpreting load induced test data
by calculating the ratio εc /εth

σ for various heating rates (Fig. 4b).
The following analytical expression for the steady-state creep strain is proposed to fit test data for

normal quartzite concrete tested under different temperature levels (Schneider 1986).

(12)

where t = time since loading was applied, σ = constant compressive stress and θ = dimensionless
constant temperature according to Eq. (5). Eq. (12) is depicted in Fig. 4(a) for various temperatures.

By differentiating Eq. (12) with respect to t, the creep strain rate σ / η is found. Considering a test
situation with sustained compressive stress (σ = const.) during heating under a constant temperature
rate R, one finds that time and temperature are related through Rt = 100oC × θ. By integrating the
creep strain rate σ / η with respect to time, the creep strain εc during the transient heating process is
obtained. The thermo mechanical strain in Fig. 4(b) is calculated by means of εth

σ = kσεth / fc
0 with

k = 2.35 (Thelandersson 1987) and ε th given in Eq. (10).
Considering the slowest heating rate R = 0.05oC/min., (i.e., taking almost one week to reach 500oC),

the creep strain to thermo mechanical strain ratio amounts to 15-20% and as the heating rate
increases the ratio drops significantly. As practical experimental values of R are typically above
1oC/min. (Schneider (1986) reported 2oC/min.), it seems plausible to assume that the creep
component of the load induced thermal strain is neglected when interpreting the test results. Khoury,
et al. (1985b) applied 0.2 and 1oC/min. and it is noted that the recommendations by RILEM TC

εssc 0.7%o
σ

fc
0

-------  eθ 1.4⁄ 1 e t 3.3days⁄–
–( )×=

Fig. 4 Uniaxial member under sustained stress σ = − 0.2 fc0. (a) Examples of isothermal εssc vs. t of normal
quartzite concrete by means of Eq. (12). Sustained stress applied at t = 0 after the indicated temperature level
is reached and kept constant; (b) Examples of ratio εc / εth

σ vs. t for constant rate heating up to 500oC
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129-MHT (1998) suggest a value as low as 0.1oC/min. for testing service conditions.
In the constitutive model presented in the following sections, the dashpot is therefore neglected in

the expressions for the sake of simplicity. However, in case of long-term scenarios with loading and
heating, the temperature dependent creep strain should of course be included in the calculations.

2.3.2. Experimental findings of load induced thermal strains in uniaxial compression
In the following, the terms ‘load induced thermal strain’ and ‘thermo mechanical strain’ are

interchangeable (cf. previous section). Thus, it is assumed that the creep strain is negligible
compared with the thermo mechanical strain under normal test conditions.

Schneider (1986) reported several test series of the load induced thermal strain of concrete tested
under sustained uniaxial compressive load and a constant heating rate. The test series had been carried
out at various laboratories throughout the 1970’s, see Schneider (1986) for details and references.
Following the model by Schneider (1988) the uniaxial load induced thermal strain follows the
expression (Fig. 5):

(13)

where f and g are identical to those defined earlier in Eq. (4) and φ is a function of temperature with
the following parameters given by Schneider (1988) C1 = 2.6; c1 = 0.28; c2 = 0.75; θg = 6.8 and
C2 = 1.4 for quartzite aggregate. Schneider (1988) also suggests parameters for limestone concrete
(Fig. 6).

During the 1980s extensive experimental research took place at the Imperial College in London.
The tests included transient creep for various concretes up to 600oC (Khoury, et al. 1985a,b).
Khoury, et al. suggested the existence of a master curve of load induced thermal strain, assumed to
be largely independent of aggregate type, concrete strength, age and initial moisture content.

εth
σ σ

E0
-----

φ g 1–
g

------------+

f
----------------------   =

φ C1 c1θ C2+tanh c2 θ θg–( )tanh 1+( )=

Fig. 5 Experimental data of load induced thermal strain for quartzite concrete taken from Schneider (1986).
The legend figures give sustained compressive stress in percentage of fc0. The solid lines are the predictions
by Schneiders model, applying  f = f1 (see Eqs. (4) and (6))
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Furthermore, the test results of Khoury, et al. did not confirm the simple proportionality between
εσ

th and εth, as proposed by Thelandersson (1987), which is not entirely surprising since thermal
strain is strongly related to the aggregate while thermo mechanical strain is mainly associated with
the cement paste.

Recently Terro (1998) applied a fourth order polynomial to fit this master curve based on the
Imperial College data. The expressions by Terro and Schneider are compared in Fig. 6.

Generally it is found that the results of Khoury, et al. (1985b) (analytically modeled by Terro 1998)
yield numerically larger values of load induced thermal strains for a given temperature than those of
Schneider (1986). Beside the differences in test equipment, test procedures and concrete mix, this trend
is partly explained by the fact that the former tests were performed at a lower heating rate than the
latter. Hence, the time dependent effects (shrinkage, creep, etc.) become more significant. 

3. Model A - Thermo mechanical strain model

The general formulation of the thermo mechanical strain rate by Thelandersson (1987) reads

(14)

where two coefficients of thermo mechanical strain, γ1 and  γ2, to be determined experimentally, are
introduced. Comparing Eq. (14) and Eq. (11) it is seen that the sum  γ1 +  γ2 governs the uniaxial
behavior with  γ1 +  γ2 = kα / fc

0.
A clearer physical understanding is achieved by applying the following substitutions similar to

those suggested by de Borst and Peeters (1989):

ε·th ij,
σ γ1σkkδij γ2σij+( )T·=

Fig. 6 Comparison between uniaxial ε σ
th vs. T modeled by Schneider (1988) and Terro (1998) for σ = −0.3 fc

0.
Upper and lower bounds of the parabolic model from Eq. (17), proposed in the present article, is also
depicted



Improved phenomenological modelling of transient thermal strains for concrete at high temperatures 199
(15)
where νc = transient creep Poisson’s ratio and β = coefficient of uniaxial thermo mechanical strain.
Inserting in Eq. (14) yields

(16)

It is seen that νc is analogous to the elastic Poisson’s ratio. There is experimental body of evidence
that conventional creep has a lateral component similar to elastic strains (Gopalakrishnan, et al.
1969 and Neville et al. 1983). Hence, subjecting concrete to uniaxial sustained compression, the
axial creep (contraction) is accompanied by lateral expansion. It can be argued that the experimental
findings of the magnitude of the lateral creep are highly inconclusive with the creep Poisson’s ratio
ranging from zero to values equal to the elastic Poisson’s ratio. Neville, et al. (1983) suggested that
the differences were mainly due to different test conditions and especially the presence of drying
creep. However, the magnitude of a creep Poisson’s ratio is similar to the elastic ratio.

To the authors knowledge the bulk of experiments on load induced thermal strain did not include
lateral deformation measurements so that not much information is available on νc. However, the
experiments of Ehm (1986) showed that load induced thermal strains have a lateral component
similar with that observed in conventional creep tests.

In the uniaxial setting, the product βσ / fc0 represents the slope of the relation between ε th
σ vs. T (Figs. 5

and 6). Here the parabolic temperature dependency is suggested for the uniaxial thermo mechanical strain

(17)

where θ* = dimensionless transition temperature between the two expressions (470oC). The reason
for applying a combination of two parabolic expressions (with a common tangent at the transition
temperature) instead of following Terro (1998) who applied a fourth order polynomial expression is
to better capture the rather abrupt change in behavior experimentally detected around the transition
temperature (Fig. 5). Furthermore, the parabolic model keeps the formulation simple with A and B
governing the initial part and C the subsequent part of the εσ

th −θ relationship. No attempt is made
here to speculate on the underlying reasons for the observed abrupt change at the transition
temperature θ*.

The simplicity of the model is also maintained by applying a direct proportionality with the stress
level unlike Schneider’s model where εσ

th is a non-linear function of σ, cf. Eqs. (13) and (4). The
assumption of direct proportionality with the stress level is supported by experiments (Khoury, et al.
1985b, Thienel 1993).

It is seen that the parabolic model captures the experimental behavior in a satisfactory manner
(Fig. 6). The two sets of parameters (A, B, C) applied in Fig. 6 describe an upper and a lower
curve. The former agrees best with the experimental data presented by Schneider (1986) and the
latter is more in correspondence with the master curve by Khoury, et al. (1985b) and Terro (1998).
The difference between the two curves was discussed in terms of time dependent effects in a
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previous section. Thus, the two limiting parabolic curves in Fig. 6 define a range where the thermo
mechanical strain is likely to be found for normal concretes with various aggregate types.

Finally, by calculating the slope  from Eqs. (17), the temperature dependent
coefficient of uniaxial thermal strain β is found as a bi-linear function of temperature:

(18)

where prime denotes a derivative with respect to temperature, i.e., θ '=1/(100oC).

3.1. Model A - Benchmark problems

The full 3D generalisation of the constitutive model reads tot,ij = el,ij
σ + th,ij + th,ij

σ with the strain
rates defined in Eqs. (7), (8) and (16), respectively.

(19)

where the dots and the primes denote derivative with respect to t and T, respectively. In the following
sections the model performance is illustrated in a parameter study on several model problems.

3.1.1. Case I - Uniaxial restraining test
In order to evaluate how the model performs with realistic material behavior an example is given

of a uniaxial concrete member subject to constant rate heating when fully restrained against
expansion. All stresses are zero except σ11 = σ and the axial strain εtot,11 is kept constant. Applying
thedimensionless parameters for stress, s = σ / fc

0, and time, τ = Rt / T0, the first order differential
equation to be solved with respect to s is obtained 

(20)

where the dimensionless relation between time and temperature is (100oC)θ = τ T0, leading to the
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Table 1 Input parameters for Fig. 7. See Eq. (6) for f2

Curve no. s(0) A, B, C [‰] Eel/E0

1 0 0.6, 1.5, 10.0 f2
2 0 0.4, 1.0, 7.0 f2
3 0 0.4, 1.0, 7.0 1
4 -0.3 0.4, 1.0, 7.0 f2
5 0 0, 0, 0 f2
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following identity, T0(d/dT) = d/dτ. The parameters α, β, and Eel are variables depending on temperature,
described by Eqs. (9), (18) and (6), respectively.

The differential Eq. (20) with a prescribed initial condition is solved numerically for various input
parameters (Table 1, Fig. 7). Curves 1 and 2 depict the influence of the two limiting parabolic
curves suggested in Fig. 6. It is obvious that the adopted β model has a great influence on the
result. Curves 2 and 3 depict the influence of taking the stiffness degradation into account. It is seen
that neglecting the degradation and keeping Eel = E0 throughout the heating, a less significant effect
is obtained compared with the effect of the specific choice of β model mentioned earlier. Curve 4
has material parameters identical with curve 2 but with an initial prestress applied. Finally, curve 5
shows how the restraining stress would increase rapidly and crush the sample if no thermo
mechanical strain effect is taken into account, i.e., for β = 0 in Eq. (20).

The vertical dotted lines in Fig. 7(a) indicate distinct changes occurring in the material properties:
the first change at θ = θ* = 4.5 corresponds to the transition temperature of the bi-linear expression

Fig. 7 Uniaxial restraining test. (a) Parameter study of (20) with parameters given in Table 1. Test results
taken from Schneider (1986) and Ehm (1986) for normal quartzite concrete (air cured). (b) Strains divided by
fc

0 / E0 for curve 2
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for β in Eq. (18), while the second change at θ = 6 corresponds to the abrupt change of the
coefficient of free thermal strain (Fig. 3).

Experimentally observed restraint stresses, recorded for the case of 2oC per minute heating of
uniaxially restrained concrete specimens, are taken from Ehm (1986) for the zero initial stress case
and Schneider (1986) for the 30% initial prestress case (Fig. 7a).

It should be noted that the adopted model parameters are based on an indication of a general trend
and are not fitted to match any particular set of test results. Both relationships for α and β follow
general expressions, not necessarily tuned to fit with the characteristics of the specific concrete mix
used in the tests. Nevertheless, it is clear that the proposed model qualitatively captures the
experimental behavior, although the experimental stress peaks are more pronounced and shifted
along the temperature axis compared with the model predictions. This is especially true in the
beginning, where the model does not predict the build-up of stresses quickly enough, indicating that
the value of α may be too small relative to β for temperatures below 100oC. This may be connected
with the fact that hygral effects, which are known to be strong in the temperature range up to 200oC, are
not included in the present model. De Borst and Peeters (1989) and Khennane and Baker (1993)
also reported and discussed this discrepancy.

The axial strain components for curve 2 (divided by the elastic strain fc
0/E0) are depicted in Fig.

7(b). The thermo mechanical strain, which is irreversible, is equal to the negative sum of the free
thermal strain and the elastic strain. The latter is illustrated as the difference between the two curves
in Fig. 7(b). It is seen how the irreversible strain is significant in magnitude compared with the
elastic strain during heating.

3.1.2. Case II - Biaxial restraining test
During a symmetric biaxial restraining test with σ11 = σ22 = σ and all other stresses set to zero the

dimensionless first order differential equation, derived analogous to Eq. (20), reads

Fig. 8 Symmetric biaxial restraining test. Example of numerical solution of Eq. (21) with model parameters
identical to curve 4 (Table 1), constant elastic Poisson’s ratio ν = 0.2 and two constant values of νc. Biaxial
and uniaxial test results from Ehm (1986) for normal quartzite concrete (air cured)
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(21)

Examples of the numerical solution to Eq. (21) for constant values of the Poisson’s ratio are
presented in Fig. 8 and compared with test data taken from Ehm (1986) and the uniaxial restraint
curve 4 from Fig. 7(a). Ehm (1986) reported that the elastic Poisson’s ratio increases slightly with
temperature, which appears to be in contradiction with earlier experimental findings (Schneider
1986 and Bazant and Kaplan 1996). Due to these inconclusive findings and the fact that the elastic
strains are of minor significance compared with the thermal strain components, a constant Poisson’s
ratio is adopted. Fig. 8 shows how the model captures the important response characteristics even
with Poisson’s ratio kept constant throughout the temperature range.

4. Model B - Thermo mechanical strain model including the effects of plastic
strains and temperature dependent Poisson’s ratio

In the previous sections restraining stresses have been calculated with realistic temperature
dependent material properties. However, in order to maintain simplicity the non-linear stress strain
curve of concrete, variation in the Poisson’s ratio was neglected. In the present section these issues
are discussed and the model is extended to include these features. However, the need for further
experiments in order to validate the effect of especially Poisson’s ratio is evident.

Schneider (1988) introduced a relatively simple power law to model the nonlinear, temperature
dependent uniaxial compressive stress - strain relationship (Fig. 9a) for normal strength concrete:

, (22)

where K = plastic to elastic strain ratio; fc
T = temperature dependent compressive strength and Eel =

temperature dependent elastic modulus. If Schneider’s proposal is interpreted as an elastoplastic
model, it is seen that the model implies that the plastic strain at peak stress is equal to 50% of the
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Fig. 9 Non-linear uniaxial stress - strain curves. (a) σ / fcT vs. Eelεσ / fcT and corresponding volumetric strain.
(b) σ/fc

0 vs. E0εσ/fc0 and corresponding lateral strains. The crosses are experimental axial stress strain data for
Thelanderssons quartzite concrete (taken from Schneider 1986)
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corresponding elastic strain, and furthermore, the stress - strain curves does not exhibit a horizontal
tangent at peak stress. Despite these limitatitions the model is deemed appropriate for the present
purpose (Fig. 9b). It is noted that Khennane and Baker (1993) applied a more complex model where
the evolution of plastic strains is assumed to follow a different expression. The temperature
dependent compressive strength is assumed to follow a parabolic expression

, (23)

By knowing how strength decreases with temperature allows for the evaluation of the so-called
critical temperature for a given sustained stress. Schneider (1986) defined the critical temperature as
the temperature at which the specimen fails during heating (i.e., the temperature fulfilling the equation
σ = −fc

T with constant σ). Schneider reported that for normal concrete the critical temperature decreases
very rapidly from about 500 to 100oC when compressive stress levels exceed 70 to 80% of fc0. Thus, for
stress levels of this magnitude the interpretation of thermo mechanical test data is complicated by the
fact that the specimen may start to fail as a result of reaching the critical temperature.

Furthermore, it is a well-known experimental fact that when the stress approaches the concrete
strength a significant lateral strain develops, making the volume strains shift from contraction to
dilation (Fig. 9a). This shift appears to happen at stress levels around 75 to 85% of the ultimate
strength. This effect is modeled by assuming the elastic Poisson’s ratio to be constant and equal to 0.2
below the stress proportionality limit, i.e., for 0 ≥ σ ≥ −0.5 fcT. Beyond the proportionality limit
Poisson’s ratio, ν is both temperature and stress dependent, expressed through the third order
polynomial.

(24)
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Fig. 10 Experimental total strains from transient tests (Thelandersson 1987). The legend figures are sustained
compressive stress in percentage of fc0. Solid line is the free thermal strain by means of Eq. (10)
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where the valid stress range is −0.5 fc
T ≥ σ ≥ − fc

T. Note that the elastic Poisson’s ratio is defined as
the negative ratio between the lateral and the axial mechanical strain rate. Eq. (24) is arranged so
that the value of ν = 0.5 is reached for σ = −0.75 fc

T, corresponding to the point where the
volumetric strain in Fig. 9(a) shifts to dilation.

In Fig. 9(b) it is seen how Eqs. (22)-(24) govern the uniaxial compressive behavior, applying Eel =
f1E0. Furthermore, the agreement with experimental uniaxial stress - strain curves, obtained under
isothermal conditions, is noted.

The uniaxial mechanical strain rate is now obtained by inserting Eq. (22) in Eq. (2)

(25)

where dot and prime again denote derivatives with respect to t and T, respectively, and the following
derivatives have been applied

(26)

The lateral strain rate is obtained by multiplying Eq. (25) with −ν. The thermal strain rate and the
thermo mechanical strain rate are both identical to the formulations in the previous sections.

4.1. Comparison of model A and B with uniaxial test results

In the following the transient tests data reported by Thelandersson (1987) are reproduced by
means of the proposed model B predictions, including the plastic mechanical strains and the stress
and temperature dependent Poisson’s ratio. The tests consisted of concrete cylinders subject to sustained
stress and constant rate heating, see total strain recordings in Fig. 10. It is noted that the model
predictions for the free thermal strain (10) fit Thelandersson’s experimental data remarkably well.

Fig. 11 shows the total strain data from Fig. 10 together with the model B predictions including
the effect of mechanical plastic strains and temperature dependent Poisson’s ratio. Furthermore, the
total strains from model A are also depicted (i.e., omitting the plastic mechanical strains and
keeping the Poisson’s ratios constant).

In order to maintain simplicity the transient creep Poisson’s ratio is kept identical to the elastic
Poisson’s ratio (ν = νc) for all the calculations. Note also that Fig. 11 depicts both axial and lateral
strain predictions, while only the former is reported experimentally.

It is seen how the total strains are captured in a satisfactory manner (Fig. 11). Only for the lowest
load level (Fig. 11a) the difference between the experiments and the model prediction is substantial,
which is mainly due to the critical temperature being predicted at about 710oC by Eq. (23) whereas
the critical temperature is experimentally found to be around 800oC. The effect of including the
plastic mechanical strains following Eq. (22) is found to be insignificant compared with the thermal
and the thermo mechanical strains.

However, the effect of including the temperature dependency of the Poisson’s ratio is significant
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for the lateral strains and the effect increases with the magnitude of the compressive stress level.
This is further illustrated in Fig. 12 where the model predictions of the volumetric thermo
mechanical strains are depicted. First the concrete specimen undergoes contraction followed by a
significant dilation when the critical temperature is approached. If instead Poisson’s ratio is
maintained constant (model A) the volumetric contraction will continue to increase as indicated by
the dotted line in Fig. 12(a). By comparing with normal concrete results reported by Ehm (1986) in
Fig. 12(b) it is clear that this shift in volume strains from contraction to dilation is evident both in
uniaxial and biaxial tests (this was also reported by Thienel 1993).

Fig. 12 Volumetric thermo mechanical strains for sustained uniaxial stress during heating. The legend figures
are sustained compressive stress in percentage of fc

0.  (a) Model predictions from the calculations in Fig. 11,
including plastic mechanical strains and temperature dependent Poisson’s ratio. (b) Test data from Ehm
(1986). Filled symbols: uniaxial tests; open symbols: symmetric biaxial tests

Fig. 11 Experimental total strains vs. temperature. The broken lines with crosses represent calculations without
plastic mechanical strains, applying constant ν = νc = 0.2. The solid lines include plastic mechanical strains
and Poisson’s ratio νc = ν(T, σ). Parameters are ( A, B, C) = (0.6, 1.5, 10.0) ‰, E0 / fc0 = 600 and Eel = f2E0
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5. Conclusions

Strains in concrete under transient high temperatures are recognised to be irreversible during first
heating. The proposed constitutive model is based on a modified rheological model suggested by
Thelandersson (1987). The total strain under transient conditions is decomposed into pure mechanical
strain, free thermal strain and load induced thermal strain. The latter, often being termed transient creep,
is decomposed into conventional creep (temperature dependent) and a combined thermo mechanical
strain. It is demonstrated how the latter is much larger than the former under most conditions.

The thermo mechanical strain is considered irreversible and it occurs only during first heating due
to the combination of stress and temperature increase. During heating these strains help relax the
stresses arising from thermal gradients and incompatibilities between the aggregate and the cement
paste. However, the irreversibility of the thermo mechanical strain leads to the build up of tensile
restraint stresses during cooling (Nielsen, et al. 2002).

Instead of assuming direct proportionality between the free thermal strain and the thermo
mechanical strain (as suggested by Thelandersson 1987) a separate thermo mechanical coefficient β
is proposed. Moreover, the model introduces a parabolic expression to describe the uniaxial thermo
mechanical response where β becomes a bi-linear function of temperature. Finally, a transient creep
Poissons ratio is introduced to describe the corresponding lateral thermo mechanical response.

Model A performance is illustrated by two simple examples where uniaxial and biaxial restraint
conditions are modeled. Qualitative agreement with experimental data is demonstrated. Model B
incorporates the effect of plastic mechanical strains and temperature dependent Poisson’s ratio. The
effect is found to be of importance when the stress is close to the ultimate strength of the material,
i.e, the temperature level is close to the critical temperature. It is believed that for most applications
the inclusion of elastic mechanical strains only (model A) will be adequate.

Finally, it is realized that more experimental data is needed both under uniaxial conditions
(including recordings of axial as well as lateral strains) and especially under multiaxial conditions.
Also the thermo mechanical response in tension is still to be investigated experimentally.
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Notation

The following symbols are used in this paper:
A, B, C : constants in bi-linear expression of thermo mechanical coefficient
C1, C2 : constants in Schneider’s model
c1, c2 : constants in Schneider’s model
E : modulus of elasticity, depending on temperature and stress
Eel : temperature dependent elastic modulus
E0 : modulus of elasticity at room temperature
fc

0, fc
T : uniaxial compressive strength at room temperature and at temperature T

f, g : functions in Schneider’s model
f1, f2 : functions describing the degradation of Eel with temperature
i, j : indices (=1,2,3)
K : plastic to elastic mechanical strain ratio

c′ c′
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R : temperature rate
s : dimensionless stress [=σ / fc

0]
T : temperature
T0 : room temperature
t : time

 : derivative with respect to time
x' : derivative with respect to temperature
α : coefficient of free thermal strain
β : coefficient of thermo mechanical strain
δ ij : Kronecker’s delta
εσ : mechanical strain
εc : creep strain
εssc : steady-state creep strain (isothermal conditions)
εel

σ  : elastic mechanical strain
εpl

σ  : plastic mechanical strain
εth : free thermal strain (including shrinkage of cement paste)
εth

σ
 : thermo mechanical strain

εtot : total strain
φ : load induced thermal strain function
γ1, γ2 : thermo-mechanical coefficients in Thelandersson’s formulation
η : coefficient of viscosity
ν, νc : elastic Poisson’s ratio and transient creep Poisson’s ratio
θ : dimensionless temperature [= (T - T0)/100oC]
θ* : dimensionless transition temperature in parabolic model
σ : stress positive as tension
τ : dimensionless time [=Rt / T0]
NB

x·
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