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Abstract. The influence of the fracture process zone (FPZ) on the fracture properties is one of the
hottest topics in the field of fracture mechanics for cementitious materials. Within the FPZ in front of a
traction free crack, cohesive forces are distributed in accordance with the softening stress-separation
constitutive relation of the material. Therefore, further crack propagation necessitates energy dissipation,
which is the work done by the cohesive forces. In this pgpehe local fracture energy characterizing

the energy consumption due to the cohesive forces, is discussed. The computational exprggsion of

the FPZ can be obtained for any stage during the material fracture process regarding the variation of FPZ,
whether in terms of its length or widtls,, the average energy consumption along the crack extension
region, has also been computed and discussed in this paper. The experimental results obtained from the
wedge splitting tests on specimens with different initial notch ratios are employed to investigate the
property of the local fracture energy and the average valug, over the crack extension length. These
results can be used to indicate the influence of the FPZ. Additionally, changes in the length of the FPZ
during the fracture process are also studied.

Keywords: energy dissipation; fracture process zone; softening law; fracture energy.

1. Introduction

For quasibrittle materials such as concrete or toughened ceramics, it is commonly accepted that in
front of a traction-free crack there exists a fracture process zone (FPZ). In cohesive-stress-basec
fracture models (Hillerborg 1983, 1985), the cohesive forces along the FPZ are distributed in
accordance with the strain-softening constitutive relatien of the material, where the cohesive
force o decreases monotonically against the crack opening displacemknthe crack band model
(CBM) (BaZzant 1983), the FPZ is not treated as slit-like, but with a certain width. A large amount
of energy dissipation occurs in the FPZ during fracture process, which mainly involves debonding,
microcracking and frictional pull-out of grains. The work done by the cohesive forces in the FPZ
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during crack propagation necessitates a great deal of energy. Therefore, any variation in FPZ,
whether in its length or width, are directly associated with the fracture energy dissipation.

Regarding the influence of FPZ length on the fracture properties of materials, much evidence can
be found in the literature. One obvious fact is the unsuccessful application of classical lst&ar ela
fracture mechanics (LEFM) to concrete due to the neglect of the nonlinear zone that is almost
entirely filled by the FPZ. After substituting the crack lenggharp; instead of the original crack/
notch lengtha, into the corresponding “equivalent LEFM” formula, one can obtain the stable
fracture toughness (Za ant 2002, Karihaloo and Nallathambi 1990, Jeng and Shah 1985). The
energy consumption within the FPZ can be interpreted as the crack extension resistance, meaning
for crack further propagating, external work must be done to overcome the cohesive forces
distributed along the FPZ. THe resistance curve (Za ant and Kazemi 1990, Robert and Li 1991)
obtained from compliance method against the crack extension can be seen as the influence of the
length of FPZ on the energy dissipation within the FPZ.

When determining the energy needed for crack growth, such as the fracture energy, it is often
calculated as the area under the complete external load-displacement curve. One important premis
behind these models (whethBrresistance or the conventional fracture energy) is the assumption
that the work done by the external load is all consumed FPZ, neglecting that dissipated outside the
FPZ. With this assumption, these models predict the fracture behavior focused on the physically
geometrical specimen size such as the width and height of specimens and the external mechanice
feature such as the external load. The geometrically similar specimens of different sizes are used tc
determine the fracture energy by using the size effect laz (Ba ant and Kazemi 1490, Ba ant 1986).

The crack propagation is actually two-dimensional: linear growth in the predicted direction and
the opening perpendicular to the growth direction, expressing as the FPZ size: length and width. So
the fracture energy should include these two energy consumptions. As an alternative to study the
fracture behavior from the physically specimen geometries, the energy consumption can also be
studied from the direct interaction between the energy consumption and FPZ size, including its
length and width. The extended model (Hu 1992, 2002, Deiaal 2003) is one example of this
kind. In these papers, the width influence on the energy dissipation is examirezd, thv local
fracture energy is assumed to be distributed according to a bilinear function for simplicity and as a
first approximation. InKg resistance curve proposed by Prof. Xu and Reinhardt (1998, 1999), the
crack extension resistance (in terms of stress intefesitpr which can also be interpreted as the
energy required for the crack extension) is expressed directly relating to the FPZ length. Also, it has
been shown by experiments (Hu and Wittmann 1990, Idem 1991) that the length of the FPZ is not a
constant during fracture process even if the FPZ is fully developed, thus the resulting energy
consumption within this zone may vary accordingly.

The local fracture energy: perceived here is the fracture energy expended at a certain location
(or over an infinitesimal region). In the light of FPZ length and width, the local fracture emesgy
still a hot topic remaining to be further investigated in concrete fracture mechanics. In some reports
or is expressed as a bilinear function along the ligament length (Buah, 2002, Hu 2002). Its
average integration value over the ligament length will in fact be the specific fracture &aergy
recommended by RILEM (1985).

This paper summarizes the investigation on the local fracture egeafythe FPZ as well as its
average valueG,, along the ligament length, including their distribution, computation and properties.
Through the analysis of the local fracture energy and the average fracture energy, it is more clearly
to see how the FPZ size affects the energy consumption during the crack propagation, which is
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beneficial for better understanding the fracture behavior of concrete.
2. The distribution of the local fracture energy, 9

The widely used fracture energ@e, was initiated in the fictitious crack model (FCM) by
Hillerborg (1983). It is the energy absorbed per unit crack area when the crack surfaces separate
completely, or the equivalent amount of energy representing the crack growth resistance. It can be
determined by the area under the entire stress-crack opewing durve (Fig. 1), as given by the
following integration:

G = [, odw 1)

where wg, the terminal point of crack opening displacement, represents the limit point beyond
which no stress can be transferr§ds the direct tensile strength of the material. Note @ats

used instead ofG;, because the&s; value determined by the RILEM recommended method
exhibits a distinct sizeffect; Gg is the asymptotic value d& when the specimen is extremely
large. From Eq. (1) and Fig. 1, one can find that for a fixed point, the energy absorption from
zero displacement till a given opening widthis just the shaded area in Fig. 1. It can be
obtained by integrating the product of the stresses and the corresponding small displaegement d
overw, which provides

O (W) = [ odw )

The quantityg; is referred to henceforth as the local fracture enaltpp known as the breaking
energy (BZ ant 1996) or the partial fracture ene@uq, et al 1999), and can be interpreted as
the specific fracture energy or work required to open the crack surfacalisyaace ofw. Note
that if w=w,, we obtain the fracture ener@ in Eq. (1). It is apparent that only correlates to
the crack openingvidth w once the shape of traction-separation curve is decided.

Taking a general crack ahead of which the FPZ is fully developed into account (graphically
illustrated in Fig. 2), one can give the distribution of local fracture energy over the &pgthith
the presence of FPZ, expressed as follows:

o)
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Fig. 1 The typical softening traction-separation curve
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Fig. 2 The distribution of local fracture energyover the crack extension span g,
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where thex coordinate is measured from the mouth of the noéghs the initial notch length;
aw, Is the effective crack length during the crack propagation; is the intersection of these two
expression where therack opemg displacemenCOD at this position is just equals t@; wy
corresponding to the crack opening width at positQrGe represents the energy needed for a
crack to open from zero to widiky as presented in Eq. (1).

With the above mentioned in mind, one can further get the average fracture energy, denoted as
Gra, along the crack extension incremant ap, which yields:

w, — 8o

a a—aw,
Gra(a) = Guy, + Gy, = Gy +G

a_ao f2 a— aO
in which y; andy; are the weight function related @&, andGy,, featuring respectively the contribution
of Gy, andGy, to the entire average fracture enei@y(a) over the crack length increase- ay,

whereasGy, andGy, are the average fracture energy over regign-a, anda — a,, which can
be calculated as

(4)

1 2w
Gn = awo—ao'[av gr (X)dx = G¢ )
_ 1 a _ 1 a W,
Gy, = a—awo-[%gf (x)dx = a—aNOI%o[IO odw] dx (6)

To avoid confusion, it should be noted that the meaning of local fracture egpagy)] is not
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the same as the average fracture en@&gla). In fact, the local fracture energyw(x)], directly

derived from the tensile strain-softening relation in Fig. 1, represents the energy consumption at
location x where the opening displacement varies from zeravitavhile the average fracture
energy Gi(a) is the average measurement over the crack increanem when the initial cack
length a, extends ta.

3. Analysis and computation of energy dissipation along FPZ through wedge
splitting test

The wedge splitting test method, originated by etiileier and Hilsdorf (1977) then refined by
Wittmann (Briihwieer and Wittmann 1988) in the late 1980s, proves to be a favorable test geometry
to perform stable fracture tests because of its several advantages compared to ditngrtestis
methods. It is easy to be fabricated on the field or drilled form existing structures; and the
calculating results will not be affected by its own weight because of the direction of load that
responsible for the splitting of specimens is in the horizontal. Wedge splitting specimens also own
superiority in its larger fracture area-weight ratio. Another further advantage of wedge splitting is by
the use of small wedge angle, which turns a small vertical load into a relatively large horizontal one
which actually responsible for the cracking of specimens, thus “artificially” reducing the requirement
for the testing machine.

In this section, tests to analyze the distribution of energy dissipation throughout the FPZ were

H, H,

Dy D
Clip gauge

P

Fig. 3 The configuration of wedge splitting specimen
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Table 1 The specimen dimensional and mechanical parameters

Dimension of specimen H; D Cubical compression  f; Wedge Wedge instrument
D,x2HxB (mm) (mm) (mm) strengthf,, (MPa) (MPa) anglef weight (kg)
200x200%x200 50 170 47.96 3.182 15 23

Table 2 Some measured experimental results

Test serial No. ay/D Elastic modulu€ (GPa)
WS2203 35.98
1 WS2303 0.353 35.58
WS2403 40.23
WS904 32.94
2 WS1004 0.471 30.67
WS1104 36.17
WS1205 0.588 36.16
WS1305 36.06
WS1405 35.60
WS1505 36.04
3 WS1605 36.99
WS1705 35.43
WS1905 35.88
WS2005 35.51
WS2506 35.74
4 WS2606 0.706 35.28
WS3106 35.70

conducted on geometrically similar notched wedge splitting concrete specirfeandibnly in the
initial relative notch lengttayD (Fig. 3). The composite matrix was composed of Porttzerdent,
limestone and river sand with a water-to-cement ratio of 0.56. The mix proportions are sand-to-
cement of 1.94 and limestone-to-cement of 3.17, with a maximum aggregate size of 20 mm. The
details of the test specimen, test procedure and experimental results have been previously reportes
(Zzhao 2002). Here some necessary specimen dimension and mechanical parameters (Table 1) &
well as some experimental results (Table 2) are listed briefly for clarity and completeness of the
article. The elastic modulus in Table 2 is calculated from the measured initial compliance of the
recorded load-displacement curve through a method proposed by RILEM.

Specimens WS2203, WS1104, WS1405, and WS2506 are taken as examples to demonstrate th
distribution of local fracture energy(x) along the FPZ as the initial craek propagates tila. To
get the series effective crack lengththe set of points on the load-displacement response must be
carefully chosen. Much attentionillxbe focused on the unstable stage of crack growth, so the set of
points chosen, are all equal to and beyond the maximum load.

In light of the linear asymptotic superposition assumption (Shilang and Reinhardt 1999), a complete
fracture process with nonlinear features can be solved through asymptotically superimposing a series
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of linear solutions obtained by the approaches of LEFM. Any point on the nonlinear load-
displacement curve can be treated as a special case of the assembly of a series of linear cases. So
solution of one point on a nonéar load-displacement curve can be equivalently solved by the
approaches of LEFM. In view of the similarity in specimen geometry and loading condition
between wedge splitting and compact tension, the formula to evaluate the effective crack length for
the compact tension specimen can be extended to the wedge splitting specimen (Murakami 1987)

COD = P\V(a)/BE

V(a) = DlJ’—O’Ef(2.163+ 12.21@ — 20.065° — 0.9925° + 20.60%* —9.9314°)  (7)
th - O

where B = specimen thickness in the third dimensi@n; specimen height (Fig. 3E = material
elastic modulusp = a/D is the relative crack length; the above empirical equation for the relation
between the load and loading line opening displacement is within 0.5 percent accuracy for
0.2<a<0.975.

Also, it should be noted that direct experimental d&a CMOD) recorded from experiments
must undergo some transformation before substitution into Eq. (7), that is

Ph = Py/(2tg0) (8)

According to Eqg. (7) and Eq. (8% values may be solved according to a linear asymptotic
superposition assumption (Hu and Wittmann 1990). The next step is to compute the local fracture
energy in Eq. (2). The crack opening width wiilix), with coordinatex away from the crack
mouth, can be captured (for simplifyimgason) in a straightforward linear way featured in Fig. 2

w(x) = CMOD*=> 9)

where CMOD is the acronym for rack mouth opening gplacement. Thereafter the transition
coordinatea,,, may be calculated by substituting for w(x) in Eq. (9). As the softening traction-
separation law for concrete is used, the non-linear expression proposed by Reighaildt,
(1986) which is widely used in both numerical and analytical analyses by many researchers is
employed here (sketched in Fig. 1)

0 wT 0. wo w 3 [}
o= f[][1+ — }ex —C,—=——(1+c;)exp(-c 10
i Froge ) |SXPLT Cogy (1 (L + EDOXM s (10)

where, the coefficients; andc, are assumed to be material constants. For normal concrete, the
three parameters in Eq. (10) were determined, as3, ¢, = 6.93,w, = 160um according to the &ting

data using a fitting process. when the shape of softening relation is determined, the local fracture
energygy(w) in Eqg. (2) can be obtained by integrating Eq. (10) over the zens (et t = wiwg)

gWw) _ wwg 1 C1F .0z 3t e_t 60 (1+cde
fiwg _'[0 ftd C2[1+GDC D} 2 1+C1D T, ten” &

2 O C, C2 Cg O 2

In general, the detailed procedure to determine the distribution of the fracture egfe g}
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along the FPZ for wedge splitting specimen contains the following steps:
(1) From the experimental dat®,(CMOD), one can get the effective crack lengtltontaining
the FPZ according to Eq. (7) and Eg. (8) as well as some specimen dimension values;
(2) With the aid of softening traction-saption relation, the fracture ener®¢ can be obtained
from Eq. (11) witht = 1, as well as the transitiarack lengtha,,, from Eq. (9);
(3) For the local fracture energy[w(x)] distribution overa—ay, Eq. (3) is exploited;
(4) Carry out the numerical scheme to @t andGy, the average fracture energy over region
awy—a anda-a,, from Eq. (5) and Eq. (6), together with their respective weight fungtion
¥ and the entire average fracture energydsera—a,.
Some of the computation results are reported in Table 3. For wedge splitting specimen WS2203,
WS1104, WS1405 and WS2506, the distributions of local fracture energy are illustrated in Figs. 4-
7, respectively.

Table 3 Some of the computation results

Specimen P,  CMOD Gn G, Gy
No. 2P kny  mm) MP AP ED gy W wm) % (um)
574  0.0663 0529 0.176 2623 1000 26.23
4449 01125 0.661 0.308 4610 1.000 46.10
3424  0.1593 0.739 0.386 58.68 1.000 58.68
1595 0.2713 0.5 0.497 7611 1.000 76.11

WS2203 0.353 1545 0.2741 0.355 0.852 0.497 99.12 0.004 76.31 0.996 76.38
1.087 0.3261 0.449 0.881 0.432 99.12 0.182 76.31 0.818 80.45
0.718 0.4122 0.557 0911 0.354 99.12 0.366 76.31 0.634 84.67
0.308 0.5892 0.685 0.941 0.256 99.12 0565 76.31 0435 89.21
0.103 0.8034 0.769 0.96 0.191 99.12 0.685 76.31 0.315 91.94

3.731 0.0699 0.613 0.142 99.12 20.68 1.000 20.68
2.2755 0.1428 0.769 0.298 99.12 4751 1.000 4751
1.0045 0.2643 0.873 0.402 99.12 69.38 1.000 69.38

WS1104 0.471 0.697 0.3381 0475 0901 0426 99.12 0.009 76.31 0.991 76.50
0.4305 0.4281 0.579 0.924 0.345 99.12 0.238 76.31 0.762 81.73
0.246 0.5574 0.672 0.943 0.271 99.12 0426 76.31 0574 86.04
0.0615 0.72¢ 0.7 0.961 0.211 99.12 0.569 76.31 0.431 89.31

2.6445 0.0804 0.681 0.093 99.12 15.00 1.000 15.00
2.214 0.1161 0.747 0.159 99.12 28,50 1.000 28.50
1.189 0.2004 0.845 0.257 99.12 50.08 1.000 50.08
WS1405 0.588 0.8z  0.2691 0.882 0.294 99.12 60.81 1.000 60.81

0.265 0.433 0.589 0.934 0.345 99.12 0.003 76.31 0.997 76.37
0.1025 0.5247 0.65 0.9 0.2 99.12 0.199 76.31 0.801 80.87
0.0205 0.6297 0.716 0.96 0.244 99.12 0.344 76.31 0.656 84.17

1.353 0.1044 0.782 0.076 99.12 14.01 1.000 14.01
WS2506 0.706 0.697 0.2148 0.877 0.171 99.12 40.42 1.000 40.42
0 0.5157 0.958 0.252 99.12 72.27 1.000 72.27
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Fig. 8 The length of FPZ variation along the crack growth

4. Discussion

For specimen WS2203 with the initial crack ratio besgfp = 0.353, as an example, one can see
from Fig. 4 and Table 3 that when the vala® is less than 0.85, the FPZ is only partially
developed, viz, th€TOD (crack tip opening displacementxD = 0.353) is less than the terminal
point wy of the softening traction-separation curve, and the local fracture egéxydistributed
along the FPZ can be fitted by a second order polynomial. As the crack progresses (when the value
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a/D is larger than 0.85), the FPZ varies both in length and width, guiding the change in the spread
pattern of the local fracture energy. This feature can be reflected in two different expressions: the
first region is the horizontal plateau wigh(X) = Gr over the range o, — a,; while the expression
for the second regioa - a,, shows a descending trend profile just like the case in wdidhis
less than 0.85. The intersection of these two distribution lines corresponds to the crack,jgngth
which is an important distinguished pareter in the computation of the entire average fracture
energy Gy, over the entire crack —a,. As seen from Table 3 and Fig. 4, the average fracture
energyG, increases proportionally more with the increase of the effective crack lanigding to
the accretion in the entire average fracture en@gyThe same thing can be said for specimens
WS1104, and WS1405. However care must be taken when dealing with WS2506, because its
relatively large initial crack lengthy/D is 0.706, rather close to the height of the specimen. Thus
the FPZ cannot be fully developed, and only the second profile of the local fracture energy is
presented. For all the specimens under consideration, the fracture become unstable before the FP.
is saturated. In the aforementioned analysis, an ititggething that makes sense should be pointed
out, that is the variation of the FPZ lengdhs; when the initialcrack agp moves forward. From
Table 3, it can be found that for geometrically identical specimens, the initial asaattvances
in Mode | pattern, andyp; variation falls into two apparently diffent stages as manifested in
Fig. 8, and this phenomenon again strengthens the conclusion that the length of FPZ is not a
constant even if it develops fully. The first is on the ascending branch agpfilattaining a
maximum valuearp;, ensuing which a somewhat steeper descending profile is metawith
possessing some importance for better understanding the distribution of local fracturegeaeegy
the crack growth quantity, corresponds to one state during the crack growth, whé&TQie
approachesn, indicating the beginning of full development of FPZ. Before this state, the FPZ
ahead of the traction-free crack is only partially developed, inducing small energy consumption as
can be seen from Figs. 4-7. As the crack moves forward agatilreachesagp,, the distribution of
fracture energyg: will begin to experience two different types as stated above. It should be pointed
out that in this case the length &fy; still declines along with the increase of the effective crack
lengtha.

To justify the influence of the specimen size on the local fracture energy, theutistribf the
local fracture energy over the FPZ is perceived for typical specimen WS2203, WS1104, WS1405

——WS2203
=—\WS1104

80 ;' z <
= ‘\t\{\ —— WS1406
2 60 —— WS2506
= !

40
0 ! x/D

0.3 04 05 06 0.7 0.8 0.8 1.0

Fig. 9 The distribution of the local fracture energyadD=0.96 for wedge splitting specimen with different
initial crack length
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Table 4 The entire average fracture endggydistribution of test specimens

Test serial no. ay/D ay/D a/D Gia (N/m)
WS2203 0.769 0.96 91.94
WS2303 0.353 0.793 0.95 92.83
WS2403 0.733 0.96 90.61

Ave. 91.80
WS904 0.715 0.96 87.68
WS1004 0471 0.775 0.961 90.45
WS1104 0.75 0.961 89.31
Ave. 89.14
WS1205 0.72 0.961 84.36
WS1305 0.714 0.96 84.01
WS1405 0.716 0.96 84.17
WS1505 0.588 0.727 0.95 84.85
WS1605 0.729 0.959 85.00
WS1705 0.717 0.96 84.21
WS1905 0.697 0.961 82.95
Ave. 82.30
WS2005 0.686 0.96 83.98
WS2506 0.706 0.661 0.958 72.27
WS2606 0.66 0.958 72.23
Ave. 70.46

Gp(N/m)

100

95 |
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70 |
65 |
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0. 80

Fig. 10 The average fracture enefgy for wedge splitting specimen with different initial crack length ra4ib

and WS2506 when the effective crack lengtla/[3 = 0.96, approaching the height of the specimen.
The plot in Fig. 9 is the computation results of local fracture energy over the entire effective crack
lengtha - a,. Obviously, specimen WS2203 with a relative longer ligament consumes more energy
during the failure procedure, with the FPZ developing more fully. With a decrease in the ligament,
the FPZ may not develop sufficiently, just as in specimen WS2506.

Also the average fracture ener@y, over the entire effective crack length incremanta, is
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computed for all the test specimens with differmtial crack ratiosay/D, as illustrated in Table 4

and Fig. 10. In an explicit manner, tk&, values decrease slowlyittv the incease of the initial

notch ay/D, namely G, increases with the ligamentcreases. The variation of FPZ, whether in
length or width, can account for this phenomenon. As the ligament length shortens, the FPZ
development will be confined to relatively small zone. Consequently, due to the incompletely developed
distribution of FPZ which can be seen clearly in specimen WS2506, WS2606 and WS3006, the
energy absorption to overcome the cohesive forces along the FPZ during the crack advances will be
less.

5. Conclusions

The local fracture energg: and the average fracture ener@y over the crack increment is
proposed in this study as an indication of the energy consumption in the regimaclofextension
ahead of the initial rack a,. Their properties are associated with the FPZ development during the
fracture process of concrete structures. The influence of FPZ, both in length and width, on the
energy dissipation along FPZ is investigated in this paper, which yields some significant
conclusions:

1. The length of FPZ, denoted bysz is not a constant during the fracture process, even if it is
fully developed. It increases with the propagation of the crack before attaining the critical value
arpz. When theCTOD (crack tip opening displacement) just arrives at the velyethen the
descending branch will ensue.

2. The local fracture energy, directly related to the width of the FPZ, represents the energy
consumption at a certain location which can be determined according to the softening traction-
separation relation. Its distribution along the crack extension is characterized by two portion
after the FPZ is fully developed, the first is over the traction-free region with the Ggluke
other is over thearpz with varying values ofg: which can be fitted by a second order
polynomial. The intersection of these two distribution corresponds to the crack Epgth
where the crack opening displacement at this location iswysbn the softening traction-
separation curve. But it should be pointed out that for a specimen in which ligament length is
rather small, or the initiatrack length is very close to the specimen boundary, the FPZ can not
be sufficiently evolved, and thg will only be distributed in one form with the absenceGpf
values.

3. The averaged fracture ener@y is just the average energy dissipated by the cohesive forces
along the FPZ. For specimens with different initial crack leragthGe, values decrease with
increasingay, or in a general way we can s&, values increase with increasing ligament
length. This phenomenon can be attributed to the boundary effect on the restriction of FPZ
development.
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