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Abstract. The influence of the fracture process zone (FPZ) on the fracture properties is one 
hottest topics in the field of fracture mechanics for cementitious materials. Within the FPZ in front
traction free crack, cohesive forces are distributed in accordance with the softening stress-sep
constitutive relation of the material. Therefore, further crack propagation necessitates energy diss
which is the work done by the cohesive forces. In this paper gf, the local fracture energy characterizin
the energy consumption due to the cohesive forces, is discussed. The computational expression gf in
the FPZ can be obtained for any stage during the material fracture process regarding the variation 
whether in terms of its length or width. Gfa, the average energy consumption along the crack exten
region, has also been computed and discussed in this paper. The experimental results obtained 
wedge splitting tests on specimens with different initial notch ratios are employed to investiga
property of the local fracture energy gf and the average value Gfa over the crack extension length. Thes
results can be used to indicate the influence of the FPZ. Additionally, changes in the length of th
during the fracture process are also studied.

Keywords: energy dissipation; fracture process zone; softening law; fracture energy.

1. Introduction

For quasibrittle materials such as concrete or toughened ceramics, it is commonly accepted
front of a traction-free crack there exists a fracture process zone (FPZ). In cohesive-stress
fracture models (Hillerborg 1983, 1985), the cohesive forces along the FPZ are distribut
accordance with the strain-softening constitutive relation σ-w of the material, where the cohesiv
force σ decreases monotonically against the crack opening displacement w. In the crack band model
(CBM) (Ba ant 1983), the FPZ is not treated as slit-like, but with a certain width. A large am
of energy dissipation occurs in the FPZ during fracture process, which mainly involves debo
microcracking and frictional pull-out of grains. The work done by the cohesive forces in the
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during crack propagation necessitates a great deal of energy. Therefore, any variation in
whether in its length or width, are directly associated with the fracture energy dissipation.

Regarding the influence of FPZ length on the fracture properties of materials, much eviden
be found in the literature. One obvious fact is the unsuccessful application of classical linear stic
fracture mechanics (LEFM) to concrete due to the neglect of the nonlinear zone that is 
entirely filled by the FPZ. After substituting the crack length a0+aFPZ instead of the original crack/
notch length a0 into the corresponding “equivalent LEFM” formula, one can obtain the sta
fracture toughness (Ba ant 2002, Karihaloo and Nallathambi 1990, Jeng and Shah 1985
energy consumption within the FPZ can be interpreted as the crack extension resistance, m
for crack further propagating, external work must be done to overcome the cohesive 
distributed along the FPZ. The R resistance curve (Ba ant and Kazemi 1990, Robert and Li 19
obtained from compliance method against the crack extension can be seen as the influence
length of FPZ on the energy dissipation within the FPZ.

When determining the energy needed for crack growth, such as the fracture energy, it is
calculated as the area under the complete external load-displacement curve. One important 
behind these models (whether R resistance or the conventional fracture energy) is the assump
that the work done by the external load is all consumed FPZ, neglecting that dissipated outs
FPZ. With this assumption, these models predict the fracture behavior focused on the phy
geometrical specimen size such as the width and height of specimens and the external me
feature such as the external load. The geometrically similar specimens of different sizes are 
determine the fracture energy by using the size effect law (Ba ant and Kazemi 1990, Ba ant 

The crack propagation is actually two-dimensional: linear growth in the predicted direction
the opening perpendicular to the growth direction, expressing as the FPZ size: length and wi
the fracture energy should include these two energy consumptions. As an alternative to stu
fracture behavior from the physically specimen geometries, the energy consumption can a
studied from the direct interaction between the energy consumption and FPZ size, includ
length and width. The extended model (Hu 1992, 2002, Duan, et al. 2003) is one example of this
kind. In these papers, the width influence on the energy dissipation is examined, where the local
fracture energy is assumed to be distributed according to a bilinear function for simplicity and
first approximation. In KR resistance curve proposed by Prof. Xu and Reinhardt (1998, 1999)
crack extension resistance (in terms of stress intensity factor which can also be interpreted as th
energy required for the crack extension) is expressed directly relating to the FPZ length. Also
been shown by experiments (Hu and Wittmann 1990, Idem 1991) that the length of the FPZ i
constant during fracture process even if the FPZ is fully developed, thus the resulting e
consumption within this zone may vary accordingly.

The local fracture energy gf perceived here is the fracture energy expended at a certain loc
(or over an infinitesimal region). In the light of FPZ length and width, the local fracture energygf is
still a hot topic remaining to be further investigated in concrete fracture mechanics. In some r
gf is expressed as a bilinear function along the ligament length (Duan, et al. 2002, Hu 2002). Its
average integration value over the ligament length will in fact be the specific fracture enerGf

recommended by RILEM (1985).
This paper summarizes the investigation on the local fracture energy gf of the FPZ as well as its

average value, Gfa, along the ligament length, including their distribution, computation and proper
Through the analysis of the local fracture energy and the average fracture energy, it is more 
to see how the FPZ size affects the energy consumption during the crack propagation, w
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beneficial for better understanding the fracture behavior of concrete.

2. The distribution of the local fracture energy, g f

The widely used fracture energy, GF, was initiated in the fictitious crack model (FCM) b
Hillerborg (1983). It is the energy absorbed per unit crack area when the crack surfaces s
completely, or the equivalent amount of energy representing the crack growth resistance. It 
determined by the area under the entire stress-crack opening (σ-w) curve (Fig. 1), as given by the
following integration:

(1)

where w0, the terminal point of crack opening displacement, represents the limit point be
which no stress can be transferred; ft is the direct tensile strength of the material. Note that GF is
used instead of Gf, because the Gf value determined by the RILEM recommended meth
exhibits a distinct size effect; GF is the asymptotic value of Gf when the specimen is extremely
large. From Eq. (1) and Fig. 1, one can find that for a fixed point, the energy absorption
zero displacement till a given opening width w is just the shaded area in Fig. 1. It can b
obtained by integrating the product of the stresses and the corresponding small displacemw
over w, which provides

(2)

The quantity gf is referred to henceforth as the local fracture energy, also known as the breaking
energy (Ba ant 1996) or the partial fracture energy (Guo, et al. 1999), and can be interpreted a
the specific fracture energy or work required to open the crack surface by a distance of w. Note
that if w = w0, we obtain the fracture energy GF in Eq. (1). It is apparent that gf only correlates to
the crack opening width w once the shape of traction-separation curve is decided.

Taking a general crack ahead of which the FPZ is fully developed into account (graph
illustrated in Fig. 2), one can give the distribution of local fracture energy over the length aFPZ with
the presence of FPZ, expressed as follows:

GF σ wd
0

w0∫=

gF w( ) σ wd
0

w
∫=

šz

Fig. 1 The typical softening traction-separation curve
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where the x coordinate is measured from the mouth of the notch; a0 is the initial notch length;
aw0 is the effective crack length during the crack propagation; is the intersection of these
expression where the crack opening displacement COD at this position is just equals to w0; wx

corresponding to the crack opening width at position x; GF represents the energy needed for
crack to open from zero to width w0 as presented in Eq. (1).

With the above mentioned in mind, one can further get the average fracture energy, deno
Gfa, along the crack extension increment a − a0, which yields:

(4)

in which γ1 and γ2 are the weight function related to Gf1 and Gf2, featuring respectively the contribution
of Gf1 and Gf2 to the entire average fracture energy Gfa(a) over the crack length increase a − a0,
whereas Gf1 and Gf2 are the average fracture energy over region aw0 − a0 and a − aw0, which can
be calculated as

(5)

(6)

To avoid confusion, it should be noted that the meaning of local fracture energy gf[w(x)] is not

gf x( ) gf w x( )[ ]
GF a0 x aw0

≤ ≤

σ w x( )[ ]dw
0

wx∫ aw0
x a≤ ≤







= =

Gfa a( ) Gf1γ1 Gf2γ2+ Gf1

aw0
a0–

a a0–
------------------- Gf2

a aw0
–

a a0–
----------------+= =

Gf1
1

aw0
a0–

------------------ gf x( )dx GF=a0

aw0∫=

Gf2
1

a aw0
–

---------------- gf x( )dx
1

a aw0
–

---------------- σdw
0

wx∫[ ]dx
aw0

a

∫=
aw0

a

∫=

Fig. 2 The distribution of local fracture energy gf over the crack extension span a − a0
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the same as the average fracture energy Gfa(a). In fact, the local fracture energy gf[w(x)], directly
derived from the tensile strain-softening relation in Fig. 1, represents the energy consump
location x where the opening displacement varies from zero to w, while the average fracture
energy Gfa(a) is the average measurement over the crack increment a − a0 when the initial crack
length a0 extends to a.

3. Analysis and computation of energy dissipation along FPZ through wedge
splitting test

The wedge splitting test method, originated by Hillemeier and Hilsdorf (1977) then refined b
Wittmann (Brühwileer and Wittmann 1988) in the late 1980s, proves to be a favorable test geo
to perform stable fracture tests because of its several advantages compared to other existing test
methods. It is easy to be fabricated on the field or drilled form existing structures; an
calculating results will not be affected by its own weight because of the direction of load
responsible for the splitting of specimens is in the horizontal. Wedge splitting specimens als
superiority in its larger fracture area-weight ratio. Another further advantage of wedge splitting
the use of small wedge angle, which turns a small vertical load into a relatively large horizont
which actually responsible for the cracking of specimens, thus “artificially” reducing the require
for the testing machine.

In this section, tests to analyze the distribution of energy dissipation throughout the FPZ

Fig. 3 The configuration of wedge splitting specimen



52 Yanhua Zhao, Shilang Xu and Zongjin Li

nd-to-
. The

reported
le 1) as
of the
the

trate the

t be
t of

mplete
 series
conducted on geometrically similar notched wedge splitting concrete specimen different only in the
initial relative notch length a0/D (Fig. 3). The composite matrix was composed of Portland cement,
limestone and river sand with a water-to-cement ratio of 0.56. The mix proportions are sa
cement of 1.94 and limestone-to-cement of 3.17, with a maximum aggregate size of 20 mm
details of the test specimen, test procedure and experimental results have been previously 
(Zhao 2002). Here some necessary specimen dimension and mechanical parameters (Tab
well as some experimental results (Table 2) are listed briefly for clarity and completeness 
article. The elastic modulus E in Table 2 is calculated from the measured initial compliance of 
recorded load-displacement curve through a method proposed by RILEM.

Specimens WS2203, WS1104, WS1405, and WS2506 are taken as examples to demons
distribution of local fracture energy gf(x) along the FPZ as the initial crack a0 propagates till a. To
get the series effective crack length a, the set of points on the load-displacement response mus
carefully chosen. Much attention will be focused on the unstable stage of crack growth, so the se
points chosen, are all equal to and beyond the maximum load.

In light of the linear asymptotic superposition assumption (Shilang and Reinhardt 1999), a co
fracture process with nonlinear features can be solved through asymptotically superimposing a

Table 1 The specimen dimensional and mechanical parameters

Dimension of specimen
D1×2H×B (mm)

H1

(mm)
D

(mm)
Cubical compression

strength fcu (MPa)
ft

(MPa)
Wedge 
angle θ

Wedge instrument
weight (kg)

200×200×200 50 170 47.96 3.182 15° 23

Table 2 Some measured experimental results

Test serial No. a0 /D Elastic modulus E (GPa)

1
WS2203 35.98
WS2303 0.353 35.58
WS2403 40.23

2
WS9040 32.94
WS1004 0.471 30.67
WS1104 36.17

3

WS1205 0.588 36.16
WS1305 36.06
WS1405 35.60
WS1505 36.04
WS1605 36.99
WS1705 35.43
WS1905 35.88
WS2005 35.51

4
WS2506 35.74
WS2606 0.706 35.28
WS3106 35.70
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of linear solutions obtained by the approaches of LEFM. Any point on the nonlinear 
displacement curve can be treated as a special case of the assembly of a series of linear cas
solution of one point on a nonlinear load-displacement curve can be equivalently solved by 
approaches of LEFM. In view of the similarity in specimen geometry and loading cond
between wedge splitting and compact tension, the formula to evaluate the effective crack len
the compact tension specimen can be extended to the wedge splitting specimen (Murakami 1

(7)

where B = specimen thickness in the third dimension; D = specimen height (Fig. 3); E = material
elastic modulus; α = a/D is the relative crack length; the above empirical equation for the rela
between the load and loading line opening displacement is within 0.5 percent accurac
0.2 ≤ a ≤ 0.975.

Also, it should be noted that direct experimental data (Pvl, CMODl) recorded from experiments
must undergo some transformation before substitution into Eq. (7), that is

Ph = Pv/(2tgθ) (8)

According to Eq. (7) and Eq. (8), a values may be solved according to a linear asympto
superposition assumption (Hu and Wittmann 1990). The next step is to compute the local fr
energy in Eq. (2). The crack opening width with w(x), with coordinate x away from the crack
mouth, can be captured (for simplifying reason) in a straightforward linear way featured in Fig. 

(9)

where CMOD is the acronym for crack mouth opening displacement. Thereafter the transitio
coordinate aw0 may be calculated by substituting w0 for w(x) in Eq. (9). As the softening traction
separation law for concrete is used, the non-linear expression proposed by Reinhardt,et al.
(1986) which is widely used in both numerical and analytical analyses by many research
employed here (sketched in Fig. 1)

(10)

where, the coefficients c1 and c2 are assumed to be material constants. For normal concrete
three parameters in Eq. (10) were determined as c1 = 3, c2 = 6.93, w0 = 160µm according to the testing
data using a fitting process. when the shape of softening relation is determined, the local f
energy gf(w) in Eq. (2) can be obtained by integrating Eq. (10) over the zone 0− w (let t = w/w0)

(11)

In general, the detailed procedure to determine the distribution of the fracture energy gf[w(x)]

COD PV α( ) BE⁄=

V α( ) 1 α+
1 α–
------------- 

 
2

2.163 12.219α 20.065α2 0.9925α3 20.609α4 9.9314α5
–+––+( )=

w x( ) CMOD
a x–

a
-----------=

σ ft 1 c1
w
w0

------ 
  3

+ exp c2
w
w0

------– 
  w

w0

------ 1 c1
3+( )exp c2–( )–

 
 
 

=

gf w( )
ftw0

---------------- σ
ft

-----dt
1
c2

---- 1 6
c1

c2

---- 
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3
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e
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along the FPZ for wedge splitting specimen contains the following steps:
(1) From the experimental data (Pv, CMOD), one can get the effective crack length a containing

the FPZ according to Eq. (7) and Eq. (8) as well as some specimen dimension values;
(2) With the aid of softening traction-separation relation, the fracture energy GF can be obtained

from Eq. (11) with t = 1, as well as the transition crack length aw0 from Eq. (9);
(3) For the local fracture energy gf [w(x)] distribution over a−a0, Eq. (3) is exploited;
(4) Carry out the numerical scheme to get Gf1 and Gf2, the average fracture energy over regio

aw0−a0 and a−aw0 from Eq. (5) and Eq. (6), together with their respective weight functionγ1,
γ2 and the entire average fracture energy Gfa over a−a0.

Some of the computation results are reported in Table 3. For wedge splitting specimen W
WS1104, WS1405 and WS2506, the distributions of local fracture energy are illustrated in Fi
7, respectively.

Table 3 Some of the computation results

Specimen
No.

a0/D
Pvl

(KN)
CMODl

(mm)
aw0

/D a/D aFPZ/D
Gf1

(N/m)
γ1

Gf2

(N/m)
γ2

Gfl

(N/m)

WS2203 0.353

5.740 0.0663 0.529 0.176 26.23 1.000 26.23
4.449 0.1125 0.661 0.308 46.10 1.000 46.10
3.424 0.1593 0.739 0.386 58.68 1.000 58.68
1.595 0.2713 0.850 0.497 76.11 1.000 76.11
1.545 0.2741 0.355 0.852 0.497 99.12 0.004 76.31 0.996 76.3
1.087 0.3261 0.449 0.881 0.432 99.12 0.182 76.31 0.818 80.4
0.718 0.4122 0.557 0.911 0.354 99.12 0.366 76.31 0.634 84.6
0.308 0.5892 0.685 0.941 0.256 99.12 0.565 76.31 0.435 89.2
0.103 0.8034 0.769 0.96 0.191 99.12 0.685 76.31 0.315 91.9

WS1104 0.471

3.731 0.0699 0.613 0.142 99.12 20.68 1.000 20.68
02.2755 0.1428 0.769 0.298 99.12 47.51 1.000 47.51
01.0045 0.2643 0.873 0.402 99.12 69.38 1.000 69.38
0.697 0.3381 0.475 0.901 0.426 99.12 0.009 76.31 0.991 76.5

00.4305 0.4281 0.579 0.924 0.345 99.12 0.238 76.31 0.762 81.7
0.246 0.5574 0.672 0.943 0.271 99.12 0.426 76.31 0.574 86.0

00.0615 0.7290 0.750 0.961 0.211 99.12 0.569 76.31 0.431 89.31

WS1405 0.588

02.6445 0.0804 0.681 0.093 99.12 15.00 1.000 15.00
2.214 0.1161 0.747 0.159 99.12 28.50 1.000 28.50
1.189 0.2004 0.845 0.257 99.12 50.08 1.000 50.08
0.820 0.2691 0.882 0.294 99.12 60.81 1.000 60.81
0.265 0.4330 0.589 0.934 0.345 99.12 0.003 76.31 0.997 76.37

00.1025 0.5247 0.660 0.950 0.290 99.12 0.199 76.31 0.801 80.87
00.0205 0.6297 0.716 0.960 0.244 99.12 0.344 76.31 0.656 84.17

WS2506 0.706
1.353 0.1044 0.782 0.076 99.12 14.01 1.000 14.01
0.697 0.2148 0.877 0.171 99.12 40.42 1.000 40.42

0 0.5157 0.958 0.252 99.12 72.27 1.000 72.27
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4. Discussion

For specimen WS2203 with the initial crack ratio being a0/D = 0.353, as an example, one can s
from Fig. 4 and Table 3 that when the value a/D is less than 0.85, the FPZ is only partiall
developed, viz, the CTOD (crack tip opening displacement at x/D = 0.353) is less than the termina
point w0 of the softening traction-separation curve, and the local fracture energy gf(x) distributed
along the FPZ can be fitted by a second order polynomial. As the crack progresses (when th

Fig. 4 The local fracture energy distribution over
(a−a0)/D for specimen WS2203

Fig. 5 The local fracture energy distribution over
(a−a0)/D for specimen WS1104

Fig. 6 The local fracture energy distribution over
(a−a0)/D for specimen WS1405

Fig. 7 The local fracture energy distribution over
(a−a0)/D for specimen WS2506

Fig. 8 The length of FPZ variation along the crack growth
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a/D is larger than 0.85), the FPZ varies both in length and width, guiding the change in the 
pattern of the local fracture energy. This feature can be reflected in two different expression
first region is the horizontal plateau with gf(x) = GF over the range of aw0 − a0; while the expression
for the second region a − aw0 shows a descending trend profile just like the case in which a/D is
less than 0.85. The intersection of these two distribution lines corresponds to the crack lengaw0,
which is an important distinguished parameter in the computation of the entire average fract
energy Gfa over the entire crack a − a0. As seen from Table 3 and Fig. 4, the average fract
energy Gfa increases proportionally more with the increase of the effective crack length a, leading to
the accretion in the entire average fracture energy Gfa. The same thing can be said for specime
WS1104, and WS1405. However care must be taken when dealing with WS2506, beca
relatively large initial crack length a0/D is 0.706, rather close to the height of the specimen. T
the FPZ cannot be fully developed, and only the second profile of the local fracture ene
presented. For all the specimens under consideration, the fracture become unstable before 
is saturated. In the aforementioned analysis, an interesting thing that makes sense should be point
out, that is the variation of the FPZ length aFPZ when the initial crack a0 moves forward. From
Table 3, it can be found that for geometrically identical specimens, the initial crack a0 advances
in Mode I pattern, and aFPZ variation falls into two apparently different stages as manifested i
Fig. 8, and this phenomenon again strengthens the conclusion that the length of FPZ is
constant even if it develops fully. The first is on the ascending branch until aFPZ attaining a
maximum value a*

FPZ, ensuing which a somewhat steeper descending profile is met with a*
FPZ,

possessing some importance for better understanding the distribution of local fracture energy gf over
the crack growth quantity, corresponds to one state during the crack growth, when the CTOD
approaches w0 indicating the beginning of full development of FPZ. Before this state, the 
ahead of the traction-free crack is only partially developed, inducing small energy consumpt
can be seen from Figs. 4-7. As the crack moves forward until aFPZ reaches a*

FPZ, the distribution of
fracture energy gf will begin to experience two different types as stated above. It should be po
out that in this case the length of aFPZ still declines along with the increase of the effective cra
length a.

To justify the influence of the specimen size on the local fracture energy, the distribution of the
local fracture energy over the FPZ is perceived for typical specimen WS2203, WS1104, W

Fig. 9 The distribution of the local fracture energy at al /D=0.96 for wedge splitting specimen with differen
initial crack length
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and WS2506 when the effective crack length is a/D = 0.96, approaching the height of the specime
The plot in Fig. 9 is the computation results of local fracture energy over the entire effective 
length a − a0. Obviously, specimen WS2203 with a relative longer ligament consumes more e
during the failure procedure, with the FPZ developing more fully. With a decrease in the liga
the FPZ may not develop sufficiently, just as in specimen WS2506.

Also the average fracture energy Gfa over the entire effective crack length increment a − a0 is

Table 4 The entire average fracture energy Gfa distribution of test specimens

Test serial no. a0/D aw0/D a/D Gfa (N/m)

WS2203
0.353

0.769 0.960 91.94
WS2303 0.793 0.960 92.83
WS2403 0.733 0.960 90.61

Ave. 91.80

WS904
0.471

0.715 0.960 87.68
WS1004 0.775 0.961 90.45
WS1104 0.750 0.961 89.31

Ave. 89.14

WS1205

0.588

0.720 0.961 84.36
WS1305 0.714 0.960 84.01
WS1405 0.716 0.960 84.17
WS1505 0.727 0.960 84.85
WS1605 0.729 0.959 85.00
WS1705 0.717 0.960 84.21
WS1905 0.697 0.961 82.95

Ave. 82.30

WS2005
0.706

0.686 0.960 83.98
WS2506 0.661 0.958 72.27
WS2606 0.660 0.958 72.23

Ave. 70.46

Fig. 10 The average fracture energy Gfa for wedge splitting specimen with different initial crack length ratio a0/D
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computed for all the test specimens with different initial crack ratios a0/D, as illustrated in Table 4
and Fig. 10. In an explicit manner, the Gfa values decrease slowly with the increase of the initial
notch a0/D, namely Gfa increases with the ligament increases. The variation of FPZ, whether 
length or width, can account for this phenomenon. As the ligament length shortens, the
development will be confined to relatively small zone. Consequently, due to the incompletely dev
distribution of FPZ which can be seen clearly in specimen WS2506, WS2606 and WS300
energy absorption to overcome the cohesive forces along the FPZ during the crack advances
less.

5. Conclusions

The local fracture energy gf and the average fracture energy Gfa over the crack increment is
proposed in this study as an indication of the energy consumption in the region of crack extension
ahead of the initial crack a0. Their properties are associated with the FPZ development during
fracture process of concrete structures. The influence of FPZ, both in length and width, o
energy dissipation along FPZ is investigated in this paper, which yields some signi
conclusions:

1. The length of FPZ, denoted by aFPZ, is not a constant during the fracture process, even if i
fully developed. It increases with the propagation of the crack before attaining the critical 
a*

FPZ. When the CTOD (crack tip opening displacement) just arrives at the value w0, then the
descending branch will ensue.

2. The local fracture energy gf, directly related to the width of the FPZ, represents the ene
consumption at a certain location which can be determined according to the softening tra
separation relation. Its distribution along the crack extension is characterized by two p
after the FPZ is fully developed, the first is over the traction-free region with the value GF; the
other is over the aFPZ with varying values of gf which can be fitted by a second orde
polynomial. The intersection of these two distribution corresponds to the crack lengthaw0,
where the crack opening displacement at this location is just w0 on the softening traction-
separation curve. But it should be pointed out that for a specimen in which ligament len
rather small, or the initial crack length is very close to the specimen boundary, the FPZ can
be sufficiently evolved, and the gf will only be distributed in one form with the absence of GF

values.
3. The averaged fracture energy Gfa is just the average energy dissipated by the cohesive fo

along the FPZ. For specimens with different initial crack length a0, Gfa values decrease with
increasing a0, or in a general way we can say Gfa values increase with increasing ligamen
length. This phenomenon can be attributed to the boundary effect on the restriction o
development.
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