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Abstract.  A surface resisting protein adsorption and cell adhesion is highly desirable for many biomedical 
applications such as diagnostic devices, biosensors and blood-contacting devices. In this study, a surface 
conjugated with sulfobetaine molecules was fabricated via the click reaction for the anti-fouling purpose. An 
alkyne-containing substrate (Alkyne-PPX) was generated by chemical vapor deposition of 4-ethynyl-
[2,2]paracyclophane. Azide-ended mono-sulfobetaine molecules were synthesized and then conjugated on 
Alkyne-PPX via the click reaction. The protein adsorption from 10% serum was reduced by 57%, while the 
attachment of L929 cells was reduced by 83% onto the sulfobetaine-PPX surface compared to the protein 
adsorption and cell adhesion on Alkyne-PPX. In conclusion, we demonstrate that conjugation of mono-
sulfobetaine molecules via the click chemistry is an effective way for reduction of non-specific protein 
adsorption and cell attachment. 
 

Keywords:  anti-fouling; sulfobetaine; cell adhesion; protein adsorption; click chemistry 

 

 

1. Introduction 
 

Anti-fouling surfaces are highly in demand for some biomedical devices, such as diagnostic 

devices, biosensors and blood-contacting devices, in order to prevent detrimental clinical 

complications or device malfunction that are initiated by non-specific attachment of proteins/cells 

(Ratner 1993). One of the key characteristics of anti-fouling surfaces is the ability to attract tightly 

bound water molecules. A common strategy for creating anti-fouling surfaces is decorating a 

surface with hydrophilic materials such as poly(ethylene glycol), poly(2 -hydroxyethyl 

methacrylate), polyacrylamide, dextran and zwitterionic polymers (McArthur et al. 2000, Jiang 

and Cao 2010, Banerjee et al. 2011, Kuo et al. 2011, Zhao et al. 2011, Kuo et al. 2012, Liu et al. 

2012). Recently, zwitterionic materials such as phosphorylcholine, sulfobetaine, and 

carboxybetaine, which are overall charge-neutral molecules containing both positively and  
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negatively charged moieties, have attracted considerable attention for biomedical applications due 
to their excellent anti-fouling ability (Feng and Zhu 2005, Chang et al. 2006, Zhang et al. 2006, 
Jiang and Cao 2010, Ye et al. 2010, Kuo et al. 2011, Chien et al. 2013, Shen and Lin 2013, Diaz 
Blanco et al. 2014, Maeta and Ishihara 2014). The excellent anti-fouling property of zwitterionic 
materials is ascribed to their high water-binding capacity via electrostatic interactions (Jiang and 
Cao 2010).  

Facile and versatile techniques for surface conjugation of zwitterionic molecules are crucial for 
their anti-fouling applications. Zwitterionic polymers could be deposited on surfaces physically or 
chemically via “graft-to” or “graft-from” methods (Jiang and Cao 2010). In general, covalent 
immobilization of zwitterionic molecules is more desirable for long-term stability. For example, 
polymerization of sulfobetaine methacrylate from surface-immobilized initiators creates an 
anti-fouling surface that exhibits undetectable protein adsorption (<0.3 ng cm-2)  (Zhang et al. 
2006). However, many conjugation methods are substrate-dependent, tedious, and 
time-consuming. Thus, facial and versatile zwitterionization methods benefit the popularity of the 
anti-fouling applications in biomedical devices. 

Chemical vapor deposition (CVD) of poly-p-xylylenes (PPX) possesses several unique features 
such as applicability to a wide range of materials such as polymers, silicon, glass, and ceramics, 
ultra-thin coating (20-100 nm), solvent-free environment, and the absence of cytotoxic initiators 
and plasticizers (Chen et al. 2008a, b). Thus, PPX coating is especially suitable for surface 
modification of biomedical devices. One important feature of this technique is that a variety of 
functionalized p-cyclophanes could be used for the fabrication of functional PPX coatings, which 
can serve as excellent platforms for covalent immobilization of molecules (Chen et al. 2008a, b). 

Recently, we utilized amino-PPX substrates for conjugation of mono-zwitterionic molecules 
(Chien et al. 2014). Aldehyde-ended carboxybetaine molecules were synthesized and could be 
conjugated on the amino-PPX via the formation of imine bonds with the primary amines. The 
conjugation of aldehyde-ended carboxybetaine molecules reduces non-specific cell adhesion and 
protein adsorption. However, we found that the conjugation of carboxybetaine via the 
aldehyde-amine reaction is not satisfactorily effective, which deteriorates the applicability of this 
method. Therefore, we have been seeking more efficient conjugation chemistry in order to 
improve the conjugation of zwitterionic molecules.  

The click chemistry represents a family of powerful and efficient chemical reactions that 
generate substances quickly and reliably by joining small units together (Kolb et al. 2001). The 
characteristics of click chemistry include modular, wide in scope, with very high chemical yields, 
relatively insensitive to solvents and pH, and stereospecific. The most widely used click reaction is 
Huisgen 1,3-dipolar cycloaddition between azides and alkynes in the presence of copper(I) 
catalyst, often referred as the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) 
(Rostovtsev et al. 2002, Tornoe et al. 2002). Previously, sulfobetaine molecules containing azides 
have been conjugated efficiently on the polyurethane containing alkyne groups via the click 
chemistry (Huang and Xu 2011). Therefore, CuAAC has been applied to bio-functionalization of 
biomaterial surfaces.  

Nandivada et al. previously synthesized alkyne-containing p-cyclophanes 
(4-ethynyl-[2,2]paracyclophane) and then created Alkyne-PPX coatings via CVD (Nandivada et 
al. 2006). They showed that Alkyne-PPX is a convenient platform for conjugation of 
azide-containing molecules via CuAAC. In this study, we utilized this platform and evaluated 
whether the conjugation efficacy of zwitterionic molecules could be enhanced via CuAAC. We 
synthesized azide-ended mono-sulfobetaine molecules and conjugated them on the Alkyne-PPX 
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magnification). The DAPI-stained nuclei were counted from the fluorescent photos using Image J 
software (NIH) for the determination of cell densities (6 images/substrate). 

 
2.6 Determination of protein adsorption 
 
The adsorption of serum proteins to the SBAZ-modified surfaces was determined using a 

quartz crystal microbalance (QCM, ANTQ300, ANT Inc., Taipei, Taiwan). Alkyne-PPX was 
deposited on gold substrates of QCM quartz crystal chips (ca. 9 MHz resonance frequency), 
followed by SBAZ conjugation. Cell culture medium containing 10% fetal bovine serum flew into 
the QCM chamber at 50 µL/min. After the resonance frequency reached equilibrium, PBS then 
flew into the chamber to remove loosely bound proteins until the second equilibrium was reached. 
The mass of adsorbed proteins was calculated from the frequency shift according to the Sauerbrey 
equation (Babacan et al. 2000). 

 
2.7 Statistical analysis 
 
The data was reported as means ± standard deviation (SD). The statistical analyses between 

different groups were determined using Student’s t-test. A probability of p≤0.05 was considered a 
significant difference. All statistical analyses were performed using GraphPad Instat 3.0 program 
(GraphPad Software, USA). 

 
 

3. Results and discussion 
 
3.1 Surface characterization of SBAZ-modified substrates 
 
SBAZ was successfully synthesized, which is confirmed by the NMR and mass spectra (Fig. 

1). We next verified whether SBAZ molecules could be conjugated on Alkyne-PPX. The 
wettability of SBAZ-modified substrates was first investigated using WCA measurement. The 
deposition of Alkyne-PPX to TCPS was indicated by an increase of WCA from 68° to 82° (p<0.05, 
Table 1). Since sulfobetaine binds water tightly, we expected that the surface hydrophilicity would 
be increased after SBAZ immobilization. After the conjugation of SBAZ at 0.1, 1 or 5 mg/mL, the  

 
 

Table 1 The surface atomic compositions determined by ESCA and water contact angles (WAC) of the 
SBAZ-modified Alkyne-PPX 

Surfacesa 
Surface atomic percentages WCA 

(degree) C N O S 

Alkyne-PPX 88.2 0 11.8 0 82.0±4.1 

SBAZ_0.1 85.6 0.8 12.6 0.9 61.7±3.9b 

SBAZ_1 84.6 2.2 11.7 1.5 59.6±2.6b 

SBAZ_5 82.2 3.4 11.3 3.1 54.7±6.0b 

a. The Alkyne-PPX surfaces treated with 0.1, 1 or 5 mg/mL of SBAZ were referred to as SBAZ_0.1, 
SBAZ_1 or SBAZ_5, respectively 
b. p<0.05 vs. Alkyne-PPX. n=5, value=mean±standard deviation 
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Conjugation of mono-sulfobetaine to alkyne-PPX films via click reaction to reduce cell adhesion 

3.4 Alkyne-PPX as a platform for conjugation of anti-fouling sulfobetaine molecules 
 
We previously conjugated aldehyde-ended carboxybetaine molecules to Amine-containing PPX 

for anti-fouling purposes (Chien et al. 2014). Aldehyde-ended carboxybetaine molecules could be 
coupled to Amino-PPX, and then reduce cell adhesion and protein adsorption, but a high 
concentration of aldehyde-ended carboxybetaine molecules (>50 mg/mL) is needed in the 
conjugation to Amino-PPX in order to reduce a significant amount of cell adhesion and protein 
adsorption. We suggest that the reason for the requirement for the high concentrations of 
aldehyde-ended carboxybetaine molecules should be due to low reactivity between aldehydes and 
amines. Therefore, a highly reactive functionality is needed for efficient conjugation of 
zwitterionic molecules on a surface. 

In this study, the Alkyne-PPX platform is used for the conjugation of zwitterionic sulfobetaine 
molecules. Cell adhesion and protein adsorption are greatly reduced on the SBAZ-modified 
surfaces. Due to the effectiveness of CuAAC, a much less amount of SBAZ molecules is sufficient 
to reach a similar level of protein/cell-resistance that is achieved by the aldehyde/amine system. In 
this study, 1 mg/mL (~4 mM) of SBAZ was sufficient to achieve significant resistance to protein 
adsorption and cell adhesion to a level, which is achieved by 50 mg/mL aldehyde-ended 
carboxybetaine in our previous study (Chien et al. 2014). The CuAAC reaction provides a more 
effective tool for surface conjugation of zwitterionic molecules compared to the aldehyde-amine 
reaction.  

In spite of preliminary success, the overall anti-fouling ability of the SBAZ-conjugated PPX is 
still inferior to the zwitterionic surfaces that are created using surface-initiatd atom transfer radical 
polymerization (Yang et al. 2009, Inoue and Ishihara 2010, Nguyen et al. 2011), or self-assembled 
zwitterionic monolyaer (Chen et al. 2005, Wu et al. 2010, Huang and Chang 2014). We conjecture 
that the conjugation density of SBAZ molecules on Alkyne-PPX might not be high enough to 
completely inhibit protein adsorption and cell adhesion. The conjugation of SBAZ is limited by the 
amount of surface alkyne groups of Alkyne-PPX. Unfortunately, we could not determine the 
amount of alkyne groups on Alkyne-PPX. Previously, Chang et al. determined the total deposition 
weight of PPX using QCM, and then estimated the amount of functional groups on PPX as 
5.30±0.11 nmol·cm-2 (Chang et al. 2014). However, the actual density of functional groups on the 
outmost layer of PPX films should be much lower that value since PPX deposition is not merely a 
monolayer. Since we only conjugated mono-sulfobetaine molecules instead of polymeric 
sulfobetaine, the conjugation of mono-sulfobetaine might not fully cover the whole surface. 
Therefore, we suggest that the density of surface-bound sulfobetaine molecules should be 
increased by the conjugation of oligo- or poly-zwitterionic molecules instead of mono-zwitterionic 
molecules, in order to reach ultra-low fouling.  

 
 

4. Conclusions 
 
The present study displays an effective method for preparation of surfaces to reduce cell 

adhesion and protein adsorption.  
• An azido mono-sulfobetaine molecule was synthesized. 
• SBAZ was conjugated to a alkyne-poly-p-xylylene film via copper(I)-catalyzed azide-alkyne 

cycloaddition. 
• Protein adsorption and cell adhesion were greatly reduced on the SBAZ surface. 
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• Alkyne-PPX is a suitable substrate for effective conjugation of anti-fouling molecules. 
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