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Abstract.  This paper deals with the problem of steering a group of mobile robots along a reference 
path while maintaining a desired geometric formation. To solve this problem, the overall formation is 
decomposed into numerous geometric patterns composed of pairs of robots, and the state of the 
geometric patterns is defined. A control algorithm for the problem is proposed based on the Nash 
equilibrium strategies incorporating receding horizon control (RHC), also known as model predictive 
control (MPC). Each robot calculates a control input over a finite prediction horizon and transmits this 
control input to its neighbor. Considering the motion of the other robots in the prediction horizon, each 
robot calculates the optimal control strategy to achieve its goals: tracking a reference path and 
maintaining a desired formation. The performance of the proposed algorithm is validated using 
numerical simulations. 
 

Keywords:  nash equilibrium; geometric pattern formation (GPF); formation control; nonholonomic 
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1. Introduction 
 

A multi-robot coordination system is a promising alternative to a single robot system because it 

provides a higher level of robustness as a result of its redundancy and the potential for simpler 

functionality in each robot. Moreover, the possibility of conducting work in parallel allows various 

applications, e.g., cooperative transport, reconnaissance, coverage, and exploration tasks. In order 

to perform these tasks, robots must be capable of tracking a reference path while maintaining a 

desired formation. 

Several approaches to formation control have been investigated in previous researches. The 

classical approaches can be categorized into three types: behavioral approaches, leader-follower 

approaches, and virtual structure approaches. The behavioral approach (Balch and Arkin 1998) 

consists of some low-level behaviors (e.g., collision/obstacle avoidance, formation keeping, and 

goal seeking) to accomplish the group behavior. This is one of the simplest methods to implement, 

but the main problem is that it is difficult to analyze the approach theoretically and guarantee the 

convergence of the formation to a desired configuration. In the leader-follower approach (Desai et 

al. 2001, Tanner et al. 2004, Consolini et al. 2008, Chen et al. 2010), one of the robots is  
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considered to be a leader robot, while the rest are considered to be followers, which follow the 
leader by maintaining their range and/or bearing relative to the leader. The main drawback of this 
approach is that it depends only on the leader to form a formation. Hence, if the leader moves in an 
unexpected trajectory (e.g., turning sharply), then tracking the desired trajectory produced by the 
leader’s movement is not easy for followers in nonholonomic condition. This will be shown in 
Section 4. The virtual structure approach (Lewis and Tan 1997) regards the whole formation as a 
single rigid structure, where each robot tracks the relative trajectory formed by the movement of 
the structure. The conventional method for this approach, however, cannot be applied to 
formations that are time-varying, and it requires that the full states of the robots be shared with 
each other. Time-varying formations (Egerstedt and Hu 2001, Tabuada et al. 2005, Broek et al. 
2009, Sun et al. 2009) and the problem of limited information exchange between the robots in a 
team (Do and Pan 2007) have been considered. Recently, a multi-robot formation control scheme 
(Ou et al. 2012) based on Lyapunov function approach is proposed to form desired geometric 
patterns within a finite-time. This approach requires the communication topology graph to be 
connected and undirected. A neural network (NN)-based nonlinear optimal control scheme (Dierks 
et al. 2013) is proposed for mobile robot formations in the presence obstacles, and it shows better 
performance compared with that of a nonoptimal NN controller. 

Receding horizon control (RHC) (Fontes 2001, Gu and Hu 2005), also known as model 
predictive control (MPC), has been studied for application to multi-robot formation control in a 
distributed way (Dunbar and Murray 2006), modeled by fully actuated systems. RHC 
incorporating a linear quadratic Nash differential game, called a receding horizon (RH) Nash 
controller, was developed by Gu (2008) through the use of graph theory. The robots participating 
in the game have different cost functions from each other, and they calculate control policies 
depending on their initial state. Most of the cited researches on distributed RHC for multi-robot 
formation, however, have focused on fully actuated systems modeled by second order dynamics. 
For nonholonomic mobile robots, distributed formation control laws were developed by Dong and 
Farrell (2008) and Moshtagh et al.(2009), but the desired formation was very simple, e.g., 
maintaining a constant distance or a consensus for all headings. More recently, a leader-follower 
formation incorporating an RHC scheme was proposed to achieve various formation requirements 
such as formation forming, maintaining, and switching (Chen et al. 2010). 

The purpose of this paper is to provide a solution to the problem of steering a group of 
nonholonomic mobile robots along a reference path while maintaining a desired formation. To deal 
with this problem, this paper proposes a predictive control strategy based on the Nash equilibria 
(Jank and Abou-Kandil 2003, Engwerda 2005), which is a set of the best strategies of players 
involving a game in which each player is assumed to know the strategies of the others. The overall 
formation is decomposed into numerous pairs of robots, and then its state is defined as a set of 
parameters for a geometric pattern. Each robot calculates the local optimal control strategy to 
minimize its predefined cost function. Therefore, the formation will converge to a desired 
geometric configuration. 

The advantages of the proposed method can be summarized as follows: 
 This paper can deal with a nonholonomic type of robot. The distributed control algorithms 
(Dunbar and Murray 2006, Gu 2008) were proposed for fully actuated systems modeled by 
double integrator. Therefore, they can only deal with holonomic systems. The proposed method 
in this paper overcomes this limitation. 
 The control algorithm proposed in this paper is superior to the leader-follower approach. In 
the proposed algorithm, considering the other robot’s motion over finite horizon, each robot 
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maintains the balance between tracking a trajectory and maintaining geometric formations. 
Thus, the robots show good performance when turning sharply while maintaining desired 
formations. The formation control laws (Desai et al. 2001, Tanner et al. 2004, Consolini et al. 
2008, Chen et al. 2010, Gu 2008), based on leader-follower approach, however, do not show 
good performance on the reference paths that needs dramatic rotations. In this paper, the 
proposed algorithm was compared with the leader-follower approach intensively and 
statistically. 
 
The rest of this paper is organized as follows. Section 2 presents a system description with a 

group of nonholonomic mobile robots. Section 3 proposes a Nash equilibrium-based predictive 
control algorithm. The simulation results for the proposed algorithm are provided and discussed in 
Section 4. Finally, a conclusion is presented in Section 5. 
 
 
2. System description 
 

2.1 Formation state 
 

Consider a differential drive mobile robot i in a group of n robots that have nonholonomic 
constraint (i=1,…,n). The motion state defined by pi=[xi, yi, θi]

T can be described in discrete-time 
form as 

1
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                       (1) 

where pi is described by its position (xi, yi) and orientation (θi), vi and ωi are the linear and angular 
velocities of each robot i, respectively, tk is a time step, and ΔT is a sample time. The 
interconnections between the robots can be topologically described by a directed graph. In this 
paper, we only deal with a graph associated with unidirected information flow, referred to as a 
directed cyclic graph (Gross and Yellen 2004), for simplicity in dealing with a geometrically 
complex formation system involving nonholonomic mobile robots. Examples of directed cyclic 
graphs are shown in Fig. 1. Let us consider a couple of nodes (robots) and the orientation of the 
edge between the nodes. In a given graph, the orientation of the edge indicates the information 
flow from a source node to a sink node. Thus, regarding the sink node as robot i, the source node 
can be considered to be an upstream neighbor of robot i, which is denoted by -i. In addition, a 
robot that receives state information from i, can be defined as a downstream neighbor of robot i, 
denoted by +i. The following assumption is made throughout this paper. 

 
Assumption 1 (Connectivity) The interconnection between the robots is a directed cyclic graph 

with all the edges being oriented in the same direction. 
 
The tracking error of a pair of robots i and -i is now derived considering global frame G, 

coordinate frame Oi, and rotation frame Ri, as shown in Fig. 2. We introduce a state vector, ,
G
c ip , in 

global frame G as follows 
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Fig. 1 Examples of directed cyclic graph. In each case, the relationship of robots is as follows: (a) -2/+2=1, 

-1/+1=2. (b) -2/+3=1, -3/+1=2, -1/+2=3. (c) -2/+4=1, -3/+1=2, -4/+2=3, -1/+3=4. -i=j indicates that 
robot i receives its information from robot j; +i=j indicates that robot i delivers the information to 
robot j. 

 

Fig. 2 State description of a geometric pattern with a pair of robots 
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where (xc,i, yc,i) denotes the center position of the pair of robots and θc,i denotes its orientation 
defined by the average of θi and θ-i. In frame Oi, ˆ O

iy  is a unit vector pointing toward the position 
of robot -i from ,

G
c ip , and ˆ O

ix  is an orthogonal axis to ˆ O
iy . Frame Ri can be obtained by rotating 

global frame G by θc,i. Here, we introduce a virtual center, ,
O
v ip , fixed at coordinate frame Oi, 

which is a vector pointing the formation center inferred by the pair of robots i and -i such that the 
formation center follows a given reference path, G

rp . The tracking error, ,
R
e ip , between reference 

path G
rp  and ,

G
v ip  in rotation frame Ri can be represented as 

 
, , ,

, , ,

= ( )

= ( ) ( ) ,
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e i c i r v i
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c i r c i i v i
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                      (2) 

where T(·) is a rotational transformation matrix, i.e.,  
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and the reference path at time tk is given by ,])( )( )([=)( T
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G
r ttytxtp  where 

,))()(),()(2(arctan=)( 11   krkrkrkrkr txtxtytyt and it is assumed that G
rp  is continuously 

differentiable at any time. 
Next, in order to describe the geometric shape of the formation, a geometric pattern is defined 

as T
ii

G
i lq ],[=  , where 22 )()(= iiiii yyxxl   and ),2(arctan= iiiii yyxx   , which are 

invariant under the transformation of the reference frame, i.e., = =G O R
i i iq q q . With the given 

desired geometric pattern, T
irir

R
ir lq ] ,[= ,,,  , the geometric pattern error is defined as R

i
R

ir
R

ie qqq ,, = . 
Note that a formation can be described by geometric patterns; thus, the number of geometric 
patterns is equal to the number of edges on their network graph. 

The formation state error, ze,i, consisting of tracking error T
ieieie

R
ie yxp ],,[= ,,,,   and geometric 

pattern error T
ieie

R
ie lq ],[= ,,,  , can be described for each robot i, as T

ieieieieieie lyxz ],,,,[= ,,,,,,   
where ,)(sin)(cos)(sin)(cos= ,,,,,,, yiicxiicicricicricie ppyyxxx   =,iey   

yiicxiicicricicric ppyyxx )(cos)(sin)(cos)(sin ,,,,,,   , icrie ,, =   ,  iirie lll ,, = , 
and  iirie  ,, = . By differentiating ze,i with respect to time, the error state equation of the 
formation state for robot i can be represented as 

   , 1 ,( ) = ( ), ( ), ( )e i k i e i k i k i kz t f z t u t u t                         (3) 

where ui = [vi, ωi]
T , u-i = [v-i, ω-i]

T, and 5225: if . The elements of the obtained error 
state difference equation ze,i(tk+1) are as follows 

  
    

  
    

    

      )()(cos)()()(cos)(
)(

)()(=)(

,)()(sin)()()(sin)()()(=)(

)),()(()(=)(

,)()(cos)()()(cos)(
)(

)(
                                            

)(sin)()()()()(=)(

,)()(cos)()()(cos)(
)(

)(
                                            

)()(cos)()()()()(=)(

,1,

,1,

,,1,

2,

,2,,,,1,

1,

,,1,,,,1,

kikikikikiki
ki

krkiekie

kikikikikikikrkiekie

kickrkiekie

kikikikikiki
ki

ki

kiekrkikiekickiekie

kikikikikiki
ki

ki

kickiekrkikiekickiekie

tttvtttv
tl

T
tTtt

tttTvtttvTtlTtltl

ttTtt

tttvtttv
tl

t
T

ttvttxtTtyty

tttvtttv
tl

t
T

tvttvttytTtxtx


















































 

where vc,i = (vi+v-i)/2, ωc,i = (ωi+ω-i)/2, )(cos)(sin= ,,1, iicyiicxi pp   ,
2, =i

)(sin)(cos ,, iicyiicx pp   , and vr and ωr are the desired linear and angular velocities of the 
center of the formation, which can be derived by differentiating pr. 
 

2.2 Control objectives 
 

The control objective is to achieve two goals at the same time: tracking a reference path and 
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maintaining a desired formation in a cooperative and distributed way. Suppose that robot -i (i.e., 
an upstream neighbor of i) transmits its state information predicted over a receding horizon to 
robot i. Based on the future state information of its upstream neighbor, robot i makes a decision 
about where it should move. This problem is called the geometric pattern formation (GPF) 
problem in this paper and is stated formally in the following. 

 
Problem Definition 1 (GPF) Consider a group of nonholonomic mobile robots, given a 

reference path pr(tk) and desired geometric patterns qr,i(tk), which are differentiable in time with 
bounded time-derivatives. For each robot i, find a predictive controller such that the total 
formation state error, ||ze,i(tk)|| , converges to zero as tk→∞. 

 
Note that pv,i for i = 1,…,n would be different from each other with respect to global frame G  

initially. However, if ||ze,i|| converges to zero, pv,i indicate the same position with the others. 
Therefore, as viewed from an overall perspective, the formation will converge to a desired state. 
 
 
3. Nash equilibrium-based local predictive control strategy 

 
In this section, a local predictive control algorithm based on Nash equilibrium is proposed for a 

GPF problem in a distributed way. The algorithm provides the optimal control strategy to achieve 
the goals of reference path tracking and formation keeping. 
 

3.1 Local predictive control based on nash equilibrium 
 
As described in Problem Definition 1, two control objectives should be accomplished. 

Considering the system in Eq. (3) with an upstream neighbor -i, the cost function, Ji, for robot i 
over finite horizon N corresponding to update time step k can be expressed as follows 

 222
,

1

0=

2
, )()()(

2

1
)(

2

1
RjkiRjkiQjkie

N

j
QNkiei tututztzJ 　　　　　　　　 



             (4) 

where 0 TQQ , 0 TRR , and 2
Qx　  represents xTQx . Each robot i tries to minimize its own 

cost function Eq. (4) subject to Eq. (3) by using the state information of robot -i over the prediction 
horizon to make a correct decision according to the local predictive control strategy, i.e., 
depending on the future trajectory of robot -i, robot i computes its optimal policy for the prediction 
horizon. In the literature on dynamic games, this problem is known as the open-loop Nash 
nonzero-sum linear quadratic differential game (Jank and Abou-Kandil 2003, Engwerda 2005), 
and solving the problem gives the optimal control strategy, that is the Nash equilibrium strategy. In 
order to apply the Nash equilibrium strategy to system Eq. (3), we restrict the game to a two-
player case, and Eq. (3) is modeled by a linear discrete-time process model as follows 

  )()()()()(ˆ)(=)(ˆ ,1, kikikikikiekikie tutBtutBtztAtz                      (5) 

where iez ,ˆ  is the linearized state error, and Ai, Bi, and B-i are Jacobians of Eq. (3) given by 

ieii zfA ,/=  , iii ufB  /= , and iii ufB  = . The details of the Jacobian are provided in Appendix A. 
To obtain optimal control inputs, a new performance index Hi considering the constraints in Eq. (5) 
is defined as follows 
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where 
,ˆ( ) = ( ) ( )i i e ik K k z k  is the Lagrangian multiplier for = 1,...,k N , and ˆ

iJ  is defined in 

terms of 
,ˆe iz  as follows 
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Setting the partial differentiation of Eq. (6) with respect to 
,ˆe iz  to zero, 

i  can be rewritten as 

1 , 1 ,ˆ ˆ( ) = ( ) ( ) ( ) ( ).T T
i k i k i k e i k e i kt A t K t z t Q z t                        (7) 

The Nash equilibrium strategies * *( , )i iu u  are defined by the condition * * *( , ) ( , )i i i i i iJ u u J u u   
for i = 1,…,n. Using the Nash strategy, each robot cooperates with the others in order to move 
toward an equilibrium state. Minimization of Eq. (6) with respect to ui and u-i yields the open-loop 
Nash strategies (Jank and Abou-Kandil 2003, Engwerda 2005) 

1( ) = ( ) ( ),T T
i k i k i ku t R B t t

                            (8) 

1( ) = ( ) ( ).T T
i k i k i ku t R B t t

                                (9) 

Substituting Eqs. (8) and (9) into Eq. (5) and again substituting it into Eq. (7) yields the Riccati 
difference equation 

1
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where  1 1
1 1( ) = ( ) ( ) ( ) ( ) ( ) ( )T T

k i k i k i k i k i k i kW t I B t R B t K t B t R B t K t 
     . By substituting Eq. (5) into 

Eq. (8), the control function, ui(tk), is given by 

1
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             (11)              

Once Ki(tk) is obtained through a backward calculation, as in Eq. (10), ui(tk) can be computed 
through a forward calculation using Eq. (11). Thus, the local predictive strategy for robot i can be 
computed via Riccati iterations. According to Theorem 7.2 in Engwerda (2005), if the Riccati 
difference equation (10) has a solution, then the linear quadratic differential game has a unique 
open-loop Nash equilibrium for every initial state. Based on the theorem, the existence of the 
solution to Eqs. (10) and (11) is proved in the following theorems. 

 
Theorem 1 If 1( )i kK t   is positive semidefinite, then ( )kW t  is positive definite and invertible, 

where 1 1
1 1( ) = ( ) ( ) ( ) ( ) ( ) ( )T T

k i k i k i k i k i k i kW t I B t R B t K t B t R B t K t 
     . 

 
Proof. Since the matrix, 1( ) ( )T

i k i kB t R B t , in ( )kW t  is symmetric and 0R   is diagonal, it 
can be rewritten as 
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for any nonzero vector v. Thus, 1( ) ( ) 0T
i k i kB t R B t  . As indicated in Theorem 3 in Meenakshi and 

Rajian (1999), a product of positive semidefinite matrices is also positive semidefinite. If 
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Theorem 2 If 1( )i kK t   is symmetric, then 1
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Theorem 3 (Existence) If Ki(tN) is positive definite (positive semidefinite) and Ai(tk) is a 
nonsingular matrix, then there exists a solution of ui(tk) for =1,..., 1k N  . 

 
Proof. For {1,..., 1}k N  , let’s begin with = 1k N  . Since ( ) = 0NK t Q  , 

1( ) > 0NW t   is 
invertible, and its inverse is also positive definite. As appeared in Theorem 3.6 in Chen (1999), 
every real symmetric matrix can be decomposed into a product of a matrix and its transpose, i.e., 
Theorem 2 implies that there exists a nonsingular matrix ( )kM t  such that 

1
1( ) ( ) = ( ) ( )T

i k k k kK t W t M t M t
 . Thus 

1
1 1 1 1

1 1 1 1

( ) = ( ) ( ) ( ) ( )
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since 0Q  . Repeating the above process for k from 2N   to 1, we can obtained that ( ) 0i kK t   
for all k. Using Theorem 1, ( )kW t  is invertible over =1,..., 1k N  . Therefore, ( )i ku t  has a 
solution given by Eq. (11) for =1,..., 1k N  . 
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3.2 Distributed predictive control algorithm for GPF 
 

Let δt denote the control time interval and ΔT denote the prediction time interval, where     
δt ≤ ΔT. Using the received state error from its upstream neighbor -i, robot i predicts the future 
formation state error, ze,i, with time interval ΔT at update time step k. Thus, based on the roughly 
predicted motion of robot -i, robot i moves to reduce the cost function in Eq. (4). For each robot i 
at update time step tk, we define: 

 
 ( | )i k j kp t t : the predicted motion state 
 

, ( | )e i k j kz t t : the predicted formation state error 
 ( | )i k j ku t t : the predicted control input 

 
where j denotes a time step for the prediction horizon. 

Using these notations, the procedure of the distributed local predictive control algorithm for 
GPF is described as follows. 

 
1. Based on a desired formation of robots, construct feasible desired geometric patterns, 

qr,i(tk) , for each robot i. 
2. Given ze,i(tk+j) at initial time j = 0, the predicted control input, ( | )i k j ku t t , over the 

prediction horizon (i.e., 11,...,,0= Nj ) is set to zero, and then each robot transmits 
the predicted control function, ( | )i k j ku t t , and the current motion state, pi(tk), to its 
downstream neighbor robot  +i. 

3. Based on the received ( | )i k j ku t t   and ( )i kp t  from robot -i, each robot i   
calculates ( | )i k j kp t t   for the prediction horizon. 

4. Using  ( | )i k j ku t t  ,  ( | )i k j kp t t  ,  ( )r k jv t  , and  ( )r k jt  , calculate the error state, 

, ( | )e i k j kz t t , and the matrices, ( | )i k j kA t t , ( | )i k j kB t t , and ( | )i k j kB t t  , 
corresponding to the prediction horizon. 

5. Given the boundary condition, Ki(tN) = Q, perform backward calculations of Ki(tk) in  
Eq. (10). 

6. Perform forward calculations to obtain ( | )i k j ku t t  by using Eq. (11) with the error 
model in Eq. (5). 

7. The control input is applied to robot i only over period [tk, tk + δt) where tk is the time 
at step k and δt ≤ ΔT, and then robot i transmits ( | )i k j ku t t  and pi(tk) to robot +i. 

8. Update the time step as tk+1 ← tk+δt. 
9. Repeat the procedure from step 3 until a certain termination condition is satisfied. 

 
When calculating ( | )i k j kA t t , ( | )i k j kB t t , and ( | )i k j kB t t   in step 4, we use 

1( | )i k j ku t t   
instead of ( | )i k j ku t t  because ( | )i k j ku t t  is not accessible at update step tk. However, if 

t T   (about 10 times), then the state predicted at tk-1 would be similar to the state predicted at 
step tk. Therefore, the assumption that 

1( | ) ( | )k j k k j ku t t u t t    is acceptable. 
 
 

4. Simulation results 
 
In this section, we present several simulation results to validate the proposed algorithm. The 
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number of prediction horizon steps is selected as N = 20, while the control time interval and 
prediction time interval are selected to be δt = 0.01 s and ΔT = 0.1 s, respectively. Thus, the 
prediction horizon is 2 s. 

In the first test, we present a simulation in which two robots maintain an in-line formation. The 
two robots use the network graph described in Fig. 1(a). This implies that the upstream neighbor of 
robot 1 is robot 2, i.e., -1=2 and -2=1. The reference path for the first test is Ref. path 1 given by 
Table 1, which starts from the origin with θr(t0) = π/6 rad. The initial poses of the robots are set to 
p1 = [-0.05, -0.055, π/10]T  and p2 = [-0.05, 0.055, π/10]T, respectively. The desired geometric 
patterns for the two robots are 1 = [0.1, ]T

r rq   and 2 = [0.1, ]T
r rq  , which requires them to move 

along the reference path with a parallel formation and keep themselves aligned with a direction 
perpendicular to the reference path. To track the reference path by the center of the formation, the 
virtual center is selected to be pv,i = [0, 0, 0]T. The weight matrices are selected as              
Q = diag[0.1, 0.1, 0.1, 0.5, 0.001] and R = diag[0.1, 0.1]. 

To show the performance of the proposed algorithm, the leader-follower approach is also tested. 
The pose and control input of the leader are defined as [xl, yl, θl]

T and [vl, ωl]
T, respectively. Given 

the follower’s pose, [xf, yf, θf]
T, the control input for follower [vf, ωf]

T is calculated by a Lyapunov-
based controller (Chen et al. 2010) 

= cos ,

sin
= ,

f l x x

f l l y

v v e k e

e
k e v e

e




 



 



 
 

where = cos ( ) sin ( )x f d f f d fe x x y y    , = sin ( ) cos ( )y f d f f d fe x x y y     , = l fe   , 
= cos( )d l r r lx x l    , = sin( )d l r r ly y l    , and kx and kθ are fixed control gains set to 0.1. To 

maintain the desired in-line formation, lr and ψr are set to 0.1 and π/2, respectively. 
The trajectories generated by the proposed algorithm and the leader-follower approach are 

shown in Fig. 3. The squares, triangles, and circles denote the trajectories for robot 1, robot 2, and 
the formation center, respectively, by the proposed method. The dashed-line denotes the follower’s 
trajectory, in which robot 1 is regarded as its leader. From the trajectories of robot 1 and robot 2, it 
is shown that the two control objectives of trajectory tracking and formation keeping can be 
optimally achieved using the proposed method. When the robots perform turns to track the 
reference path, the robot located on the outside turns quickly while the other robot turns slowly to 
maintain the in-line formation. This can also be seen from the control input computed by the 
proposed algorithm in Fig. 4. This work cannot be accomplished by the leader-follower approach 
in the case of nonholonomic mobile robots, as shown in Fig. 3. As can be seen from Fig. 5, the 
follower generates a large bearing error when its leader (i.e., robot 1) turns abruptly because of 
nonholonomic constraint. However, the trajectories generated by the proposed algorithm produce 
only small geometric pattern errors in formation keeping compared to the leader-follower 
approach. 

To validate the superiority of the proposed algorithm compared to the conventional leader-
follower approach, we also performed a statistical analysis of the formation errors from all the 
trajectories with four reference paths. The reference paths used in the analysis are summarized in 
Table 1. The geometric pattern formation error distributions, qe,i, which are generated by the 
leader-follower approach and the proposed algorithm, are shown in box and whisker plots as in 
Figs. 6 and 7. The results show that the errors in the proposed algorithm are very small compared 
to the leader-follower approach. Furthermore, the error deviations of the proposed algorithm are  
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Fig. 3 In-line formation tracking ‘8’-shaped path. When turning along the trajectory, the inside robot turns 

slowly while the outside robot turns quickly to maintain the formation  
 

 
Fig. 4 Control inputs computed by the proposed algorithm for tracking ‘8’-shaped path shown in Fig. 3
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Fig. 5 Plot of the geometric pattern errors during tracking ‘8’-shaped path. (a) le,1(= le,2), and range error of 

leader-follower (LF). (b) ψe,1(=ψe,2), and bearing error of LF 
 
Table 1 Reference paths for statistical analysis 

 Equations Shape 

Ref. path 1 
xr(tk) = sin(tk /10) 

‘8’ 
yr(tk) = sin(tk /20) 

Ref. path 2 
xr(tk) = 0.8cos(tk /20) 

circle 
yr(tk) = 0.8sin(tk /20) 

Ref. path 3 
xr(tk) = tk /10 

sinusoidal 
yr(tk) = 0.8sin(tk /10) 

Ref. path 4 
xr(tk) = 0.01cos(tk /10) spiral 

yr(tk) = 0.01sin(tk /10)  
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Fig. 6 Distance errors in box and whisker plots for four reference paths. Each box has three horizontal lines 

at the lower quartile, median, and upper quartile values. The whisker shows the range of the errors 
 

 
Fig. 7 Angle errors in box and whisker plots for four reference paths. Each box has three horizontal lines at 

the lower quartile, median, and upper quartile values. The whisker shows the range of the errors 
 
 
much smaller than the leader-follower approach in all the cases. 

In the next test, three mobile robots are used with the network graph described in Fig. 1(b). The 
reference path is linear, which is given by xr(tk) = 0 and yr(tk) = 0.1tk for tk < 20 s, and         
xr(tk) = 0.1(tk -20) and yr(tk) = 0.1tk for tk ≥ 20 s. Initially, the robots are located at p1 = [0, 0.05, 
π/2]T, p2 = [-0.05,  -0.05, π/2]T, and p3 = [0.05, -0.05, π/2]T, respectively. The desired geometric 
pattern is an equilateral triangle formation whose desired separation between the robots are lr,i = 
0.1 and 

, , ,= [( 3 6) , ( 3 6) , 0]T
v i r i r ip l l  for i = 1, 2, 3. The weight matrices are set as Q = diag[0.1, 

0.1, 0.1, 0.2, 0.01] and R = diag[0.1, 0.1]. The resulting trajectories are shown in Fig. 8. It is shown  
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Fig. 8 Triangular formation tracking a line. The robot locations sampled at every 5s are indicated by squares, 

stars, and triangles for i = 1, 2, 3, and the black dots denote the center of the formation 

 

 
Fig. 9 Relative distance errors between the robots during tracking a line 

 
 
that three robots maintain a triangular formation while the center of the formation tracks the given 
reference path using only the local information, i.e., the state of its upstream neighbor. Figure 9 
shows the relative distance errors between the robots, where the errors converge to zero, with a 
small deviation when the direction of the reference path is changed. 

Finally, three robots are tested with a circle reference path given by Ref. path 2 in Table 1. The 
robots are placed with the initial configuration of p1 = [0.8, 0.065, 1.5]T, p2 = [0.75, -0.05, 1.5]T, 
and p3 = [0.85, -0.05, 1.5]T. The other parameters are selected to be lr,i = 0.1, 

, , ,= [( 3 6) , ( 3 6) , 0]T
v i r i r ip l l , Q = diag[0.1, 0.1, 0.1, 0.2, 0.01], and R = diag[0.1, 0.1]. Figure 10  
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Fig. 10 Triangular formation tracking a circle. The robot locations sampled at every 8 s are indicated by 
squares, stars, and triangles for i = 1, 2, 3, and the black dots denote the center of the formation. The 
headings are tangential to the robot's path 

 

 
Fig. 11 Relative distance errors between the robots during tracking a circle 

 
 

shows the robots maintaining the desired geometric formations while following the reference path. 
Fig. 11 shows the relative distance errors, le,i between the robots. However, there are still formation 
errors among the robots as shown in Fig. 11. The errors are caused by suboptimal solutions 
obtained through the linearization of the multiple nonlinear systems. Although the errors can be 
reduced by increasing the prediction horizon or increasing the weight matrix Q, these can result in 
some problems: the increased prediction horizon results in increased computation time and the 
increased Q also causes large control inputs. Thus the prediction horizon and weight matrix should 
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be set to moderate values. 
 
 

5. Conclusions 
 

In this paper, a distributed predictive control scheme was developed for the GPF problem with 
nonholonomic mobile robots. On a directed cyclic graph, the overall formation is decomposed into 
pairs of robots, and then the state between the robots is defined. Referring to the control strategies 
of the others, each robot calculates the optimal control strategy using the proposed algorithm based 
on the Nash equilibrium to achieve its goal. In the simulations, using the proposed algorithm, the 
robots moved to track a given reference path, while maintaining the desired formation. Moreover, 
even with a reference path having sharp edges, it was verified that the formation of robots could 
still track the reference path by predicting the future states. 
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Appendix 
 

A. Jacobian matrices of the formation state 
 

In (5), the system state transition matrix Ai can be obtained by the Jacobian as follows 

, 13 14 15

, 23 24 25

43 45

53 54 55

1

1

= 0 0 1 0 0

0 0 1

0 0 1

c i

c i

i

T Ta Ta Ta

T Ta Ta Ta

A

Ta Ta

Ta Ta Ta




    
     
 
   
    

               (12) 

The elements are 

 

 

13 , 1, 1, 1,

1, 1,

1,
14 2

= sin cos( ) 2 sin( )

                                                                                cos( ) 2 sin( ) ,

= cos(

ie e
r e c i i i i i i i i

i

i e
i i i i i i

i

i
i

i

v
a v

l

v

l

a v
l

 



        

     





 

     

   

  

   

 

15 , 1, 1, 1, 1, 1,

23 , 2, 2, ,2

) cos( ) ,

= cos( ) sin( ) cos( ) sin( ) ,

= cos cos( ) 2 sin( )

                               

i i i i i

i ie e e
c i i i i i i i i i i i i i

i i

ie e
r e c i i i i i e i i

i

v

v v
a

l l

v
a v

l

  

 

  

             

        

 


 

  

       

    

 2, 2,                                                cos( ) 2 sin( ) ,i e
i i i i i i

i

v

l
     

    

 

   
 

2,
24 2

25 , 2, 2, 2, 2, 2,

43

45

53

= cos( ) cos( ) ,

= cos( ) sin( ) cos( ) sin( ) ,

= 2 cos( ) cos( ) ,

= cos( ) cos( ),

2
=

i
i i i i i i

i

i ie e e
c i i i i i i i i i i i i i

i i

i i i i i i

i i i i i i

a v v
l

v v
a

l l

a v v

a v v

a

  


   

             

   
   

 


 

 

 

   

       

   

  

 

 

 

54 2

55

sin( ) sin( ) ,

1
= cos( ) cos( ) ,

1
= sin( ) sin( ) ,

i i i i i i
i

i i i i i i
i

i i i i i i
i

v v
l

a v v
l

a v v
l

   

   

   

 

 

 

  

   

   

 

where 

58



 
 
 
 
 
 

Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots 

1,
1, , ,
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1, , ,
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ie
i x c i i y c i i
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    


 

 
The input matrices Bi and B-i are also given by 

 

 

 
 

1,
1,

2,
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1 1
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