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1. Introduction 

 

Recently, the development in the field of engineering 

materials has disclosed the advantages associated with the 

smart/intelligent materials. Incorporation of these smart 

materials in various multifunctional structures has paved 

way for tremendous changes in different engineering fields 

(Mahesh et al. 2018, 2019, Mirjavadi et al. 2017, 2018a, b, 

2019a, b, c, Azimi et al. 2017, 2018). Among them, 

magneto-electro-elastic (MEE) materials are unique as a 

matter of fact that it exhibits triple energy conversion 

between elastic, electrical and magnetic fields (Pan and Han 

2005, Mahesh and Kattimani 2019). Therefore, it has 

become a potential candidate for sophisticated applications 

such as vibration control (Li and Shi 2009, Guo et al. 2016), 

energy harvesting, sensors and actuators etc (Vinyas and 

Kattimani 2017a, b, c, d, 2018, Vinyas et al. 2019, 2020, 

Vinyas 2020a, b, c). More recently, attempts were made to 

synthesize MEE structures through composite materials and 

improvise the structural functionalities. For example, the 

mechanical characteristics of multi-phase MEE materials 

may be controlled via the variation of material composition 

and portion of each phase (Nan 1994). Having realized that 

the smart structures made of magneto-electro-elastic 

materials with different material composition play a 

significant role in industrial fields many pioneers have 
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devoted their research to access the mechanical response in 

various working environments (Kumaravel et al. 2007, 

Annigeri et al. 2007, Chaudhary et al. 2017, Semmah et al. 

2019). 

At nano range, significant influence of size effects is 

noticed on both physical as well as the mechanical 

properties. This phenomenon has motivated few researchers 

to divert their focus towards assessing the mechanical 

response of the nanostructures. The major limitation of the 

classical continuum mechanics is its inefficiency to model 

small size structures which paved way for the establishment 

of higher order continuum theories which incorporates the 

size dependency of structure with ease (Barati 2017, 

Aydogdu et al. 2018, Benmansour et al. 2019, Yazid et al. 

2018, Mokhtar et al. 2018, Ahmed et al. 2019, Al-Maliki et 

al. 2019, Fenjan et al. 2019). The Eringen’s nonlocal 

elasticity theory (Eringen 1972) proved to be handy in 

employing the size-effects. Due to the reason that 

performing experiment on a nano-size structure is still hard, 

many articles have been published to make the best 

utilization of this theory in evaluating the size-dependent 

structural response (Thai and Vo 2012, Eltaher et al. 2012, 

Zemri et al. 2015, Bounouara et al. 2016, Akbas 2016, 

Besseghier et al. 2015, Mouffoki et al. 2017, Berghouti et 

al. 2019). The major outcome these researches indicate that 

with the higher value of nonlocal parameter, that nonlocal 

elastic models are efficient enough only to yield stiffness-

softening effect. Incorporating the Eringen’s nonlocal 

elasticity theory few researchers attempted to analyze the 

MEE or piezo-magnetic nanostructures. Ke et al. (2014) 

examined linear free vibrations of MEE cylindrical 
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nanoshells via a numerical approach. Ebrahimi and Barati 

(2016) explored nonlocal small-amplitude vibrations of 

MEE nanobeams having viscoelastic properties. Farajpour 

et al. (2016) studied nonlinear vibrational behavior of a 

MEE nano-dimension plate via an analytical solution. Liu et 

al. (2018) researched vibration behavior of MEE 

nanobeams with functionally graded properties resting on 

visco-elastic foundation. Dehghan and Ebrahimi (2018) 

studied wave propagation in nanoshells taking into account 

nonlocal effects. In above works on MEE nanostructures, 

the authors did not consider the effect of different 

piezoelectric phase percentages (material composition). 

Up to now, many solution methods are introduced in the 

literature in order to solve nonlinear vibration problem of 

structures, especially nano-dimension structures. Most of 

these methods provide an approximate solution for the 

problem leading to a closed-form of vibration frequency 

(She et al. 2018, Alasadi et al. 2019). Most of these 

methods consider only the first harmonic in the solution 

procedure and this means that the solution is not exact. For 

improving the accuracy of solution, higher order harmonics 

must be added which makes the solution procedure 

difficult. Exact solution of the nonlinear equations of a 

vibrating structure can be found based on Jacobi elliptic 

functions (Liu et al. 2001). Such functions represent a more 

general class of periodic functions, which include 

trigonometric functions as a specific case. Further 

discussions on these functions are available in following 

sections. 

In view of the above, the aim of the present article is to 

develop a multi-phase MEE nanobeam resting on nonlinear 

elastic substrate under an excitation of elliptic type for 

forced vibration analysis within the framework of nonlocal 

elasticity theory. It is supposed that the MEE composite has 

two phases with piezoelectric and magnetic constituents. 

Eringen’s elasticity theory is served to study the nano-scale 

effect. Additionally, the equilibrium equations of nanobeam 

with MEE properties are derived utilizing Hamilton’s 

principle and von-Kármán geometric nonlinearity. Then, an 

exact solution based on Jacobi elliptic functions has been 

provided with high accuracy. A parametrical study is carried 

out to examine the influence of nonlocality, various 

piezoelectric volume, electro-magnetic field, elastic 

substrate coefficients, elliptic modulus and force magnitude 

on the structural performance of such nano-scale systems. 

The results of this paper can be a good reference for 

designing and optimizing the smart structures under 

dynamic loads. 
 

 

2. Two-phase composite of magneto-electro-
elastic type 
 

Fig. 1 indicates a nano-scale beam made of magneto-

electro-elastic composite with two phases. Material 

properties of multi-phase MEE composite rely on the 

percentage and volume of piezoelectric phase (Vf). This 

article studies a nanobeam constructed by a composite of 

BaTiO3-CoFe2O4 for which Table 1 is devoted to represent 

the material properties. For such materials, BaTiO3 denotes 

the piezo-electrical ingredient and also CoFe2O4 denotes the 

 

Fig. 1 A piezo-magnetic composite nanobeam rested on 

elastic substrate 

 

 
Table 1 Material constants for BaTiO3-CoFe2O4 composite 

Property Vf = 0 Vf = 0.2 Vf = 0.4 Vf = 0.6 Vf = 0.8 

C11 (GPa) 286 250 225 200 175 

C13 170 145 125 110 100 

C33 269.5 240 220 190 170 

e31 (C/m2) 0 -2 -3 -3.5 -4 

e33 0 4 7 11 14 

q31 (N/Am) 580 410 300 200 100 

q33 700 550 380 260 120 

k11  

(10-9 Vm) 
0.08 0.33 0.8 0.9 1 

k33 0.093 2.5 5 7.5 10 

d11 

(10-12 Ns/VC) 

0 2.8 4.8 6 6.8 

d33 0 2000 2750 2500 1500 

x11  

(10-4 Ns2/C2) 
-5.9 -3.9 -2.5 -1.5 -0.8 

x33 1.57 1.33 1 0.75 0.5 

ρ (kg/m3) 5300 5400 5500 5600 5700 
 

 
 

piezo-magnetic ingredient. Based on Table 1, elastic (Cij), 

piezo-electrical (eij) and magneto-electric (qij) parameters 

have been presented. Furthermore, kij, dij and xij indicate the 

dielectric, magneto-electrical and magnetic permeability 

coefficients, respectively. 

 

 

3. Mathematical formulation 
 

So far, different beam and plate theories are available in 

the literature (Abualnour et al. 2019, Bedia et al. 2019, 

Addou et al. 2019, Alimirzaei et al. 2019, Balubaid et al. 

2019, Batou et al. 2019, Belbachir et al. 2019, Chaabane et 

al. 2019, Draiche et al. 2019, Draoui et al. 2019, Hussain et 

al. 2019, Hellal et al. 2019, Boutaleb et al. 2019, Bourada 

et al. 2019, Boulefrakh et al. 2019, Mahmoudi et al. 2019, 

Meksi et al. 2019, Medani et al. 2019, Tlidji et al. 2019, 

Zarga et al. 2019, Zaoui et al. 2019, Sahla et al. 2019, 

Boukhlif et al. 2019, Kaddari et al. 2020). In this section, 

the procedure of obtaining governing equations for a piezo-

magnetic nanobeam will be presented in the context of 

nonlocal and classic beam theories. For achieving this goal, 
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the displacement field of nano-scale beam based on axial 

(u) and transverse (w) displacements at the mid-axis may be 

written as 

𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤

𝜕𝑥
 (1) 

 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡) (2) 
 

For considering geometric nonlinearity, the axial strain 

of the beam should be written as (Alasadi et al. 2019). 
 

𝜀𝑥𝑥 =
𝜕𝑢1

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
+

1

2
(
𝜕𝑤

𝜕𝑥
)2 (3) 

 

In this research, it is supposed that electric voltage (VE) 

and magnetic field intensity (Ω) due to magnetic ϒ(𝑥, 𝑧, 𝑡) 

and electrical 𝛷(𝑥, 𝑧, 𝑡) field potentials are applied to the 

nano-size beam. The potentials can be expressed in the form 

(Ebrahimi and Barati 2016) 
 

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = − 𝑐𝑜𝑠( 𝛽𝑧)𝜙(𝑥, 𝑦, 𝑡) +
2𝑧

ℎ
𝑉𝐸  (4) 

 

ϒ(𝑥, 𝑦, 𝑧, 𝑡) = − 𝑐𝑜𝑠( 𝛽𝑧)𝛾(𝑥, 𝑦, 𝑡) +
2𝑧

ℎ
𝛺 (5) 

 

where 𝛽 = 𝜋/ℎ . Above potentials lead to induction of 

electrical field (𝐸𝑥, 𝐸𝑧) and magnetic field (𝐻𝑥, 𝐻𝑧) in x 

and z directions which can be derived via Eqs. (4) and (5) as 
 

𝐸𝑥 = −𝛷,𝑥 = 𝑐𝑜𝑠(𝛽𝑧)
𝜕𝜙

𝜕𝑥
                

𝐸𝑧 = −𝛷,𝑧 = −𝛽 𝑠𝑖𝑛(𝛽𝑧) 𝜙 −
2𝑉𝐸

ℎ
 

(6) 

 

𝐻𝑥 = −ϒ,𝑥 = 𝑐𝑜𝑠(𝛽𝑧)
𝜕𝛾

𝜕𝑥
 

𝐻𝑧 = −ϒ,𝑧 = −𝛽 𝑠𝑖𝑛(𝛽𝑧) 𝛾 −
2𝛺

ℎ
 

(7) 

 

There are four coupled governing equations for a multi-

phase piezo-magnetic nano-size beam embedded on elastic 

substrate which can be derived via Hamilton’s principle as 

(Fenjan et al. 2019). 
 

𝜕𝑁𝑥

𝜕𝑥
= 𝐼0

𝜕2𝑢

𝜕𝑡2
− 𝐼1

𝜕3𝑤

𝜕𝑥𝜕𝑡2
 (8) 

 

𝜕2𝑀𝑥

𝜕𝑥2
+

𝜕

𝜕𝑥
𝑁𝑥 (

𝜕𝑤

𝜕𝑥
) − 𝑘𝐿𝑤 + 𝑘𝑃

𝜕2𝑤

𝜕𝑥2
− 𝑘𝑁𝐿𝑤3 

= 𝐼0

𝜕2𝑤

𝜕𝑡2
+ 𝐼1(

𝜕3𝑢

𝜕𝑥𝜕𝑡2
) − 𝐼2𝛻2(

𝜕2𝑤

𝜕𝑡2
) + 𝑞𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 

(9) 

 

∫ (𝑐𝑜𝑠(𝛽𝑧)
𝜕𝐷𝑥

𝜕𝑥
+ 𝛽 𝑠𝑖𝑛(𝛽𝑧) 𝐷𝑧) 𝑑𝑧 = 0

ℎ/2

−ℎ/2

 (10) 

 

∫ (𝑐𝑜𝑠(𝛽𝑧)
𝜕𝐵𝑥

𝜕𝑥
+ 𝛽 𝑠𝑖𝑛(𝛽𝑧) 𝐵𝑧) 𝑑𝑧 = 0

ℎ/2

−ℎ/2

 (11) 

 

The elliptic force can be defined in the form 𝑞𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 =

𝐹𝑐𝑛(𝜓𝑡, 𝑘𝑓
2)  which has the magnitude of F, excitation 

frequency 𝜓 and the modulus of elliptic function kf. 

Also, Di and Bi display the displacement components of 

electrical and magnetic fields; kL, kP, kNL display linear, 

shear and non-linear coefficients of elastic layer. 

Furthermore, Nx and Mx are corresponding to in-plane 

forces and bending moments which can be defined by 

 

(𝑁𝑥, 𝑀𝑥) = ∫(1, 𝑧)𝜎𝑥
𝐴

𝑑𝐴 (12) 

 

(𝐼0, 𝐼1, 𝐼2) = ∫ (1, 𝑧, 𝑧2 )𝜌
ℎ/2

−ℎ/2

𝑑𝑧 (13) 

 

Knowing the fact that considered material is isotropic, 

one can reach to I1 = 0. Next, derived boundary conditions 

may be denoted by 

 

𝑁𝑥 = 0    𝑜𝑟    𝑢 = 0  (14) 

 
𝜕𝑀𝑥

𝜕𝑥
+ 𝑁𝑥 [

𝜕𝑤

𝜕𝑥
] = 0    𝑜𝑟    𝑤 = 0 (15) 

 

∫ 𝑐𝑜𝑠(𝛽𝑧) 𝐷𝑥𝑑𝑧 = 0    𝑜𝑟    𝜙 = 0
ℎ/2

−ℎ/2

 (16) 

 

∫ 𝑐𝑜𝑠(𝛽𝑧) 𝐵𝑥𝑑𝑧 = 0
ℎ/2

−ℎ/2

    𝑜𝑟    𝛾 = 0 (17) 

 

Introducing nonlocal parameter ea2, the constitutive 

relations for a nano-size piezo-magnetic beam should be 

written in the following forms. 

 

(1 − (𝑒𝑎)2𝛻2)𝜎𝑥𝑥 = 𝑐̃11𝜀𝑥𝑥 − 𝑒̃31𝐸𝑧 − 𝑞̃31𝐻𝑧 (18) 

 

(1 − (𝑒𝑎)2𝛻2)𝐷𝑥 = 𝑒̃15𝛾𝑥𝑧 + 𝑘̃11𝐸𝑥 + 𝑑̃11𝐻𝑥 (19) 

 

(1 − (𝑒𝑎)2𝛻2)𝐷𝑧 = 𝑒̃31𝜀𝑥𝑥 + 𝑘̃33𝐸𝑧 + 𝑑̃33𝐻𝑧 (20) 

 

(1 − (𝑒𝑎)2𝛻2)𝐵𝑥 = 𝑞̃15𝛾𝑥𝑧 + 𝑑̃11𝐸𝑥 + 𝜒11𝐻𝑥 (21) 

 

(1 − (𝑒𝑎)2𝛻2)𝐵𝑧 = 𝑞̃31𝜀𝑥𝑥 + 𝑑̃33𝐸𝑧 + 𝜒33𝐻𝑧 (22) 

 

where 𝑐̃𝑖𝑗 ,  𝑒̃𝑖𝑗 ,  𝑞̃𝑖𝑗,  𝑑̃𝑖𝑗 ,  𝑘̃𝑖𝑗 and 𝜒𝑖𝑗 illustrate modified 

properties for plane stress state 

 

𝑐̃11 = 𝑐11 −
𝑐13

2

𝑐33
,     𝑐̃12 = 𝑐12 −

𝑐13
2

𝑐33
,        𝑐̃66 = 𝑐66, 

𝑒̃15 = 𝑒15,                 𝑒̃31 = 𝑒31 −
𝑐13𝑒33

𝑐33
, 

𝑞̃15 = 𝑞15,                𝑞̃31 = 𝑞31 −
𝑐13𝑞33

𝑐33
, 

𝑑̃11 = 𝑑̃11,               𝑑̃33 = 𝑑̃33 +
𝑞33𝑒33

𝑐33
, 

𝑘̃11 = 𝑘11,               𝑘̃33 = 𝑘33 +
𝑒33

2

𝑐33
, 

𝜒11 = 𝜒11,               𝜒̃33 = 𝜒33 +
𝑞33

2

𝑐33
 

(23) 
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Integrating the constitutive equations represented in Eqs. 

(18)-(22) according to the thickness, the below expressions 

can be derived for a nano-size piezo-magnetic beam. 

 

(1 − (𝑒𝑎)2𝛻2)𝑁𝑥 = 𝐴11 (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

) 

−𝐵11

𝜕2𝑤

𝜕𝑥2
+ 𝐴31

𝑒 𝜙 + 𝐴31
𝑚 𝛾 − 𝑁𝑥

𝐸 − 𝑁𝑥
𝐻 

(24) 

 

(1 − (𝑒𝑎)2𝛻2)𝑀𝑥 = 𝐵11 (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

) 

−𝐷11

𝜕2𝑤

𝜕𝑥2
+ 𝐸31

𝑒 𝜙 + 𝐸31
𝑚 𝛾 − 𝑀𝑥

𝐸 − 𝑀𝑥
𝐻 

(25) 

 

∫ (1 − (𝑒𝑎)2𝛻2)𝐷𝑥 𝑐𝑜𝑠(𝛽𝑧) 𝑑𝑧

ℎ

2

−
ℎ

2

 

= 𝐹11
𝑒

𝜕𝜙

𝜕𝑥
+ 𝐹11

𝑚
𝜕𝛾

𝜕𝑥
 

(26) 

 

(1 − (𝑒𝑎)2𝛻2) ∫ 𝐷𝑧𝛽 𝑠𝑖𝑛(𝛽𝑧) 𝑑𝑧

ℎ

2

−
ℎ

2

 

= 𝐴31
𝑒 (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

) − 𝐸31
𝑒

𝜕2𝑤

𝜕𝑥2
− 𝐹33

𝑒 𝜙 − 𝐹33
𝑚𝛾  

(27) 

 

∫ (1 − (𝑒𝑎)2𝛻2)𝐵𝑥 𝑐𝑜𝑠(𝛽𝑧))𝑑𝑧

ℎ

2

−
ℎ

2

 

= +𝐹11
𝑚

𝜕𝜙

𝜕𝑥
+ 𝑋11

𝑚
𝜕𝛾

𝜕𝑥
 

(28) 

 

∫ (1 − (𝑒𝑎)2𝛻2)𝐵𝑧𝛽 𝑠𝑖𝑛(𝛽𝑧))𝑑𝑧

ℎ

2

−
ℎ

2

 

= 𝐴31
𝑚 (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

) − 𝐸31
𝑚 𝛻2𝑤 − 𝐹33

𝑚𝜙 − 𝑋33
𝑚 𝛾 

(29) 

 

so that 
 

{𝐴11, 𝐵11, 𝐷11} = ∫ 𝑐̃11(1, 𝑧, 𝑧2 )
ℎ/2

−ℎ/2

𝑑𝑧 (30) 

 

{𝐴31
𝑒 , 𝐸31

𝑒 } = ∫ 𝑒̃31𝛽 𝑠𝑖𝑛(𝛽𝑧) {1, 𝑧}
ℎ/2

−ℎ/2

𝑑𝑧 (31) 

 

{𝐴31
𝑚 , 𝐸31

𝑚 } = ∫ 𝑞̃31𝛽 𝑠𝑖𝑛(𝛽𝑧) {1, 𝑧}
ℎ/2

−ℎ/2

𝑑𝑧 (32) 

 

{𝐹11
𝑒 , 𝐹33

𝑒 } = ∫ {𝑘̃11 𝑐𝑜𝑠2(𝛽𝑧) , 𝑘̃33𝛽2 𝑠𝑖𝑛2(𝛽𝑧)}
ℎ/2

−ℎ/2

𝑑𝑧 (33) 

 

{𝐹11
𝑚, 𝐹33

𝑚} = ∫ {𝑑̃11 𝑐𝑜𝑠2(𝛽𝑧) , 𝑑̃33𝛽2 𝑠𝑖𝑛2(𝛽𝑧)}
ℎ/2

−ℎ/2

𝑑𝑧 (34) 

 

{𝑋11
𝑚 , 𝑋33

𝑚 } = ∫ {𝜒11 𝑐𝑜𝑠2(𝛽𝑧) , 𝜒33𝛽2 𝑠𝑖𝑛2(𝛽𝑧)}
ℎ/2

−ℎ/2

𝑑𝑧 (35) 

Applied electro-magnetic force and moments provided 

in Eqs. (24)-(25) can be defined as follows. 
 

𝑁𝑥
𝐸 = − ∫ 𝑒̃31

2𝑉

ℎ
𝑑𝑧

ℎ

2

−
ℎ

2

, 

𝑁𝑥
𝐻 = − ∫ 𝑞̃31

2𝛺

ℎ
𝑑𝑧

ℎ/2

−ℎ/2

 

(36) 

 

𝑀𝑥
𝐸 = − ∫ 𝑒̃31

2𝑉

ℎ
𝑧𝑑𝑧

ℎ

2

−
ℎ

2

, 

𝑀𝑥
𝐻 = − ∫ 𝑞̃31

2𝛺

ℎ
𝑧𝑑𝑧

ℎ/2

−ℎ/2

 

(37) 

 

Four governing equations presented as Eqs. (8)-(11) can 

be represented in terms of displacements by placing Eqs. 

(24)-(29) in them as 
 

𝐴11 (
𝜕2𝑢

𝜕𝑥2
+

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
) 

−𝐵11

𝜕3𝑤

𝜕𝑥3
+ 𝐴31

𝑒
𝜕𝜙

𝜕𝑥
+ 𝐴31

𝑚
𝜕𝛾

𝜕𝑥
= 0 

(38) 

 

−𝐷11

𝜕4𝑤

𝜕𝑥4
+ 𝐸31

𝑒 (
𝜕2𝜙

𝜕𝑥2
) + 𝐸31

𝑚 (
𝜕2𝛾

𝜕𝑥2
) (1 − (𝑒𝑎)2𝛻2) 

(−𝐼0

𝜕2𝑤

𝜕𝑡2
− 𝐼1 (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
 ) + 𝐼2 (

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
) 

+ (𝐴11 (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

) 𝐵11

𝜕2𝑤

𝜕𝑥2
+ 𝐴31

𝑒 𝜙 + 𝐴31
𝑚 𝛾 

−𝑁𝑥
𝐸 − 𝑁𝑥

𝐻) [
𝜕2𝑤

𝜕𝑥2
] + (1 − (𝑒𝑎)2𝛻2) 

(−𝑘𝐿𝑤 + 𝑘𝑃

𝜕2𝑤

𝜕𝑥2
− 𝑘𝑁𝐿𝑤3) = (1 − (𝑒𝑎)2𝛻2)𝑞𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 

(39) 

 

𝐴31
𝑒 (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
𝜕𝑤

𝜕𝑥

𝜕𝑤∗

𝜕𝑥
) − 𝐸31

𝑒 (
𝜕2𝑤

𝜕𝑥2
) 

+ 𝐹11
𝑒 (

𝜕2𝜙

𝜕𝑥2
) + 𝐹11

𝑚 (
𝜕2𝛾

𝜕𝑥2
) − 𝐹33

𝑒 𝜙 − 𝐹33
𝑚𝛾 = 0 

(40) 

 

𝐴31
𝑚 (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
𝜕𝑤

𝜕𝑥

𝜕𝑤∗

𝜕𝑥
) − 𝐸31

𝑚 (
𝜕2𝑤

𝜕𝑥2
) 

+ 𝐹11
𝑚 (

𝜕2𝜙

𝜕𝑥2
) + 𝑋11

𝑚 (
𝜕2𝛾

𝜕𝑥2
) − 𝐹33

𝑚𝜙 − 𝑋33
𝑚 𝛾 = 0 

(41) 

 

It is also possible to reduce the number of above 

governing equations to three equation by deriving 𝜕𝑢/𝜕𝑥 

from Eq. (38) and then substituting it in Eqs. (39)-(41). 

Thus, knowing this fact that axial inertia has negligible 

impact on transversal vibrations, Eq. (38) becomes 
 

𝐴11 (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

) 

+𝐴31
𝑒 𝜙 + 𝐴31

𝑚 𝛾 − 𝑁𝑥
𝐸 − 𝑁𝑥

𝐻 = 𝐶1 

(42) 

 

Then 
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𝜕𝑢

𝜕𝑥
= −

1

2
(

𝜕𝑤

𝜕𝑥
)

2

−
𝐴31

𝑒

𝐴11
𝜙 −

𝐴31
𝑚

𝐴11
𝛾 +

𝑁𝑥
𝐸

𝐴11
+

𝑁𝑥
𝐻

𝐴11
+

𝐶1

𝐴11
 (43) 

 

Next, integrating Eq. (43) yields 

 

𝑢 = −
1

2
∫ (

𝜕𝑤

𝜕𝑥
)

2𝑥

0

𝑑𝑥 −
𝐴31

𝑒

𝐴11
∫ 𝜙

𝑥

0

𝑑𝑥 −
𝐴31

𝑚

𝐴11
∫ 𝛾

𝑥

0

𝑑𝑥 

         +
𝑁𝑥

𝐸

𝐴11
∫ 𝑑𝑥

𝑥

0

+
𝑁𝑥

𝐻

𝐴11
∫ 𝑑𝑥

𝑥

0

+
𝐶1

𝐴11
𝑥 + 𝐶2 

(44) 

 

Then, by satisfying edge conditions u(0) = 0, u(L) = 0, 

one can derive 

 

𝐶2 = 0 

𝐶1 =
𝐴11

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0

𝑑𝑥 +
𝐴31

𝑒

𝐿
∫ 𝜙

𝐿

0

𝑑𝑥 

          +
𝐴31

𝑚

𝐿
∫ 𝛾

𝐿

0

𝑑𝑥 − (𝑁𝑥
𝐸 + 𝑁𝑥

𝐻) 

(45) 

 

As the next step, finded constant must be situated in Eq. 

(44). Accordingly, the governing equations take the 

following forms. 

 

−𝐷11

𝜕4𝑤

𝜕𝑥4
+ 𝐸31

𝑒 (
𝜕2𝜙

𝜕𝑥2
) + 𝐸31

𝑚 (
𝜕2𝛾

𝜕𝑥2
) 

+(1 − (𝑒𝑎)2𝛻2) (−𝐼0

𝜕2𝑤

𝜕𝑡2
− 𝐼1 (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
) 

+𝐼2 (
𝜕4𝑤

𝜕𝑥2𝜕𝑡2
) + (𝐴11 (

1

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0

𝑑𝑥) 

−𝐵11

𝜕2𝑤

𝜕𝑥2
− 𝑁𝑥

𝐸 − 𝑁𝑥
𝐻)) [

𝜕2𝑤

𝜕𝑥2
] 

+(1 − (𝑒𝑎)2𝛻2) (−𝑘𝐿𝑤 + 𝑘𝑃

𝜕2𝑤

𝜕𝑥2
− 𝑘𝑁𝐿𝑤3) 

= (1 − (𝑒𝑎)2𝛻2)𝑞𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 

(46) 

 

𝐴31
𝑒 (−

𝐴31
𝑒

𝐴11
𝜙 −

𝐴31
𝑚

𝐴11
𝛾 +

1

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0

𝑑𝑥) 

−𝐸31
𝑒 (

𝜕2𝑤

𝜕𝑥2
) + 𝐹11

𝑒 (
𝜕2𝜙

𝜕𝑥2
) + 𝐹11

𝑚 (
𝜕2𝛾

𝜕𝑥2
) 

−𝐹33
𝑒 𝜙 − 𝐹33

𝑚𝛾 = 0 

(47) 

 

𝐴31
𝑚 (−

𝐴31
𝑒

𝐴11
𝜙 −

𝐴31
𝑚

𝐴11
𝛾 +

1

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0

𝑑𝑥) 

−𝐸31
𝑚 (

𝜕2𝑤

𝜕𝑥2
) + 𝐹11

𝑚 (
𝜕2𝜙

𝜕𝑥2
) + 𝑋11

𝑚 (
𝜕2𝛾

𝜕𝑥2
) 

−𝐹33
𝑚𝜙 − 𝑋33

𝑚 𝛾 = 0 

(48) 

 

 

4. Method of solution 
 
In this part, by employing Galerkin’s approach, the 

governing equations of motion for free vibrations of simply-

supported MEE nano-size beam have been solved. The 

displacement functions are provided as product of non-

unknown coefficients and known trigonometric functions to 

assure the boundary conditions at x = 0 and x = L as (Fenjan 

et al. 2019). 

 

𝑤 = ∑ 𝑊𝑚(𝑡)𝑋𝑚(𝑥)

∞

𝑚=1

 (49) 

 

𝜙 = ∑ 𝛷𝑚(𝑡)𝑋𝑚(𝑥)

∞

𝑚=1

 (50) 

 

𝛾 = ∑ ϒ𝑚(𝑡)𝑋𝑚(𝑥)

∞

𝑚=1

 (51) 

 

where (𝑊𝑚, 𝛷𝑚, 𝛾𝑚) display the field largest values and 

the function 𝑋𝑚 = 𝑠𝑖𝑛(𝑚𝜋𝑥/𝐿)  displays the shape 

function of simply supported beam (𝑤 =
𝜕2𝑤

𝜕𝑥2 = 𝛾 = 𝜙 =

0). Applying the functions Xm to the mentioned conditions 

shows the reliability of the functions in satisfying boundary 

conditions. 

Placing Eqs. (49)-(51) in Eqs. (46)-(48) yields below 

equations. 
 

𝐾1
𝑆𝑊𝑚 + 𝐺1𝑊𝑚

3 + 𝑄1𝑊𝑚
2 + 𝑀𝑊̈𝑚 

             +𝐾1
𝐸𝛷𝑚 + 𝐾1

𝐻ϒ𝑚 = 𝐹𝑐𝑛(𝜓𝑡, 𝑘𝑓
2) 

𝐾2
𝑆𝑊𝑚 + 𝐺2𝑊𝑚

2 + 𝐾2
𝐸𝛷𝑚 + 𝐾2

𝐻ϒ𝑚 = 0 
𝐾3

𝑆𝑊𝑚 + 𝐺3𝑊𝑚
2 + 𝐾3

𝐸𝛷𝑚 + 𝐾3
𝐻ϒ𝑚 = 0 

(52) 

 

in which 
 

𝐾1
𝑆 = −𝐷11(𝛬40) − 𝑘𝑤𝛬00 + 𝑘𝑝𝛬20 

           −(𝑁𝑥
𝐸 + 𝑁𝑥

𝐻)𝛬20 + (𝑒𝑎)2(𝑁𝑥
𝐸 + 𝑁𝑥

𝐻)𝛬40 
(53) 

 

𝐺1 =
𝐴11

2𝐿
𝛬11𝛬20 − (𝑒𝑎)2

𝐴11

2𝐿
𝛬11𝛬40 

          −𝑘𝑛𝑙(𝛬0000 − (𝑒𝑎)2(𝛬1100 + 𝛬2000)) 
(54) 

 

𝐾1
𝐸 = 𝐸31

𝑒 𝛬20 (55) 

 

𝐾1
𝐻 = 𝐸31

𝑚 𝛬20 (56) 

 

𝐾2
𝑆 = −𝐸31

𝑒 𝛬20 (57) 

 

𝐾3
𝑆 = −𝐸31

𝑚 𝛬20 (58) 

 

𝐺2 =
𝐴31

𝑒

2𝐿
𝛬0𝛬11 (59) 

 

𝐺3 =
𝐴31

𝑚

2𝐿
𝛬0𝛬11 (60) 

 

𝐾2
𝐸 = −

(𝐴31
𝑒 )2

𝐴11

𝛬00 + 𝐹11
𝑒 𝛬20 − 𝐹33

𝑒 𝛬00 (61) 

 

𝐾2
𝐻 = −

𝐴31
𝑒 𝐴31

𝑚

𝐴11
𝛬00 + 𝐹11

𝑚𝛬20 − 𝐹33
𝑚𝛬00 (62) 

 

𝐾3
𝐸 = −

𝐴31
𝑒 𝐴31

𝑚

𝐴11
𝛬00 + 𝐹11

𝑚𝛬20 − 𝐹33
𝑚𝛬00 (63) 
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𝐾3
𝐻 = −

(𝐴31
𝑚 )2

𝐴11
𝛬00 + 𝑋11

𝑚𝛬20 − 𝑋33
𝑚 𝛬00 (64) 

 

𝑀 = −𝐼0𝛬00 + (𝑒𝑎)2𝐼0𝛬20 + 𝐼2𝛬20 − (𝑒𝑎)2𝐼2𝛬40 (65) 
 

where 
 

𝛬00 = ∫ 𝑋𝑚𝑋𝑚𝑑𝑥
𝐿

0

,       Λ20 = ∫ 𝑋𝑚
′′ 𝑋𝑚𝑑𝑥

𝐿

0

 

𝛬40 = ∫ 𝑋𝑚
′′′′𝑋𝑚𝑑𝑥

𝐿

0

,     Λ11 = ∫ 𝑋𝑚
′ 𝑋𝑚

′ 𝑑𝑥
𝐿

0

 

𝛬̃00 = ∫ (𝑋𝑚)4𝑑𝑥
𝐿

0

,       Ξ11 = ∫ 𝑅𝑚
′ 𝑋𝑚

′ 𝑑𝑥
𝐿

0

 

𝛤20 = ∫ 𝑅𝑚
′′ 𝑅𝑚𝑑𝑥

𝐿

0

,       𝛤40 = ∫ 𝑅𝑚
′′′′𝑅𝑚𝑑𝑥

𝐿

0

 

(66) 

 

By using last two relations in Eq. (52), components 𝛷𝑚 

and ϒ𝑚 can be calculated as 
 

𝛷𝑚 = 𝛧1𝑊𝑚 + 𝛧2𝑊𝑚
2,           ϒ𝑚 = 𝛧3𝑊𝑚 + 𝛧4𝑊𝑚

2 

𝑍1 = −
(𝐾2

𝐻𝐾3
𝑆 − 𝐾3

𝐻𝐾2
𝑆)

𝐾3
𝐸𝐾2

𝐻 − 𝐾2
𝐸𝐾3

𝐻 ,   𝑍2 = −
(𝐺3𝐾2

𝐻 − 𝐺2𝐾3
𝐻)

𝐾3
𝐸𝐾2

𝐻 − 𝐾2
𝐸𝐾3

𝐻  

𝑍3 = −
(𝐾3

𝐸𝐾2
𝑆 − 𝐾2

𝐸𝐾3
𝑆)

𝐾3
𝐸𝐾2

𝐻 − 𝐾2
𝐸𝐾3

𝐻 ,    𝑍4 = −
+(𝐺2𝐾3

𝐸 − 𝐺3𝐾2
𝐸)

𝐾3
𝐸𝐾2

𝐻 − 𝐾2
𝐸𝐾3

𝐻  

(67) 

 

Placing gained relations of Eq. (67) in 1st equation of 

Eq. (52) leads to 
 

𝐾∗

𝑀
𝑊 +

𝐺1

𝑀
𝑊3 +

𝑍∗

𝑀
𝑊2 + 𝑊̈ 

=
𝐹𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

𝑀
𝑐𝑛(𝜓𝑡, 𝑘𝑓

2) 
(68) 

 

where 
 

𝐾∗ = 𝐾1
𝑆 + 𝐾1

𝐸𝛧1 + 𝐾1
𝐻𝛧3 

𝑍∗ = 𝐾1
𝐸𝛧2 + 𝐾1

𝐻𝛧4 
(69) 

 

For solving the non-linear governing equation, the 

maximum deflection (W) can be approximated via Jacobi 

elliptic function (cn) as (Liu et al. 2001). 
 

𝑊 = 𝑊̃𝑐𝑛(𝜓𝑡, 𝑘2) (70) 
 

Here, k2 denotes the modulus of the elliptic function; 𝑊̃ 

denotes vibrational amplitude. The Jacobi elliptic function 

(cn) can be written in series of trigonometric form as a 

function of complete elliptic integral of the first kind K(k) 

as 

𝑐𝑛(𝜔𝑡, 𝑘2) =
2𝜋

𝑘𝐾
∑

𝑞𝑟+
1

2

1 + 𝑞2𝑟+1

∞

𝑟=0

𝑐𝑜𝑠 ((2𝑟 + 1)
𝜋𝜓𝑡

2𝐾
) (71) 

 

Here, 𝑞 = 𝑒𝑥𝑝( − 𝜋𝐾 ′/𝐾) and 𝐾 ′ = 𝐾(𝑙) denotes the 

associated complete elliptic integral of the first kind and 
 

𝐾 = ∫
𝑑𝜃

√1 − 𝑘2 𝑠𝑖𝑛2 𝜃

𝜋/2

0

 (72) 

 

Then, inserting Eq. (71) into Eq. (68) and with the use 

of series expansion for 𝑐𝑛|𝑐𝑛| ≈ 𝑎0𝑐𝑛 + 𝑎1𝑐𝑛3 one can 

obtain that 
 

𝑊̃3 +
𝐶2

𝐾∗

𝑀
− (1 − 2𝑘𝑓

2)𝐶2𝜓2 − 2𝑘𝑓
2𝜓2𝐶4

𝐶4
𝐺1

𝑀

𝑊̃ 

−
𝐹𝐶2

𝐺1𝐶4
= 0 

(73) 

 

𝑘2 =

𝐾∗

𝑀
|𝑊̄|𝑎1 +

𝐺1

𝑀
𝑊̄2

2 (
𝐾∗

𝑀
+

𝑍∗

𝑀
|𝑊̄|(𝑎0 + 𝑎1) +

𝐺1

𝑀
𝑊̄2)

 (74) 

 

where 
 

𝐶2 = ∫ 𝑐𝑛2
4𝐾(𝑘)

0

𝑑𝜓 (75) 

 

𝐶2𝑟+2 = ∫ 𝑐𝑛2𝑟+2
4𝐾(𝑘)

0

𝑑𝜓 

           =
2𝑟(2𝑘2 − 1)𝐶2𝑟 + (2𝑟 − 1)(1 − 𝑘2)𝐶2𝑟−2

(2𝑟 + 1)𝑘2
, 

𝑟 = 1,2,3, .. 

(76) 

 

Also, dimensionless quantities are selected as 

 

𝐾𝐿 = 𝑘𝐿

𝐿4

𝐷11
,         𝐾𝑝 = 𝑘𝑝

𝐿2

𝐷11
,      𝐾𝑁𝐿 = 𝑘𝑁𝐿

𝐿4

𝐴11
 

𝜔̃ = 𝜓𝐿2√
𝜌𝐴

𝑐̃11𝐼
,     𝜇 =

𝑒𝑎

𝐿
 

(77) 

 

 

5. Obtained results and discussion 
 

Throughout the present section, several graphical 

examples have been presented and also obtained results 

have been discussed to survey the correctness of the 

presented theory in evaluating the free vibrational 

properties of multi-phase MEE nano-size beams. Obtained 

results have been provided from the geometrically perfect 

assumption for the nanobeam. The magnitude of length for 

nano-scale beam has been chosen to be L = 10 nm. For 

corroborating the reliability of the presented approach, the 

obtained findings have been compared with the work of Li 

et al. (2018) for the non-linear vibration frequencies of 

imperfect nanobeam based on a variety of maximum 

vibration amplitude (𝑊̃) presented in Table 2. One can 

observe that the results are in accordance with those 

provided by Li et al. (2018) which demonstrate the efficient 

of the present model. A comparison between approximate 

and exact solutions for non-linear vibration frequency at 

 

 

Table 2 Validation of nonlinear vibration frequency for 

nanobeams 

𝑊̃ = 0.2 
Li et al. (2018) 9.9065 

Present 9.9065 

𝑊̃ = 0.4 
Li et al. (2018) 10.0166 

Present 10.0166 
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Table 3 Comparison between approximate and exact 

solutions for non-linear vibration frequency at 

different values of normalized amplitude (L/h = 20) 

 
𝑊̃

ℎ
= 0.5 

𝑊̃

ℎ
= 0.6 

𝑊̃

ℎ
= 0.7 

𝑊̃

ℎ
= 0.8 

𝑊̃

ℎ
= 0.9 

Approximate

 solution 
26.2198 27.2925 28.6134 29.8191 31.2421 

Exact 

solution 
26.1998 27.2571 28.4420 29.7388 31.1334 

 

 

 

 

Fig. 2 Effect of the modulus of the Jacobi elliptic function 

on vibration frequency curves of the nanobeam 

(L/h = 20, Vf = 20%, 𝐹̃ = 0.01, VE = 0, Ω = 0) 
 

 

different values of normalized amplitude has been presented 

in Table 3. In this table the dimensionless nonlocal 

parameter is set to µ = 0.2. As can be seen, approximate 

solution gives larger frequencies than exact solution due to 

ignoring higher harmonics. In the following, exact solution 

will be used for presenting obtained results. 
 

 

 

Fig. 3 Effect of force magnitude on vibration frequency 

curves of the nanobeam (L/h = 20, Vf = 20%, 

VE = 0, Ω = 0, k2
f = 0.5) 

In Fig. 2, the effect of the modulus of elliptic function 

(kf
2) on frequency-amplitude curves of a MEE nanobeam is 

presented assuming that the force magnitude is 𝐹̃ = 0.01 

and nonlocal factors is set to µ = 0.2. It is well known that 

the nonlinear vibrational frequencies of a beam are 

independent of the normalized amplitude of their 

corresponding mode shapes in the cases of linear vibration 

behavior, while they are dependent upon the normalized 

amplitude of their corresponding mode shapes in the cases 

of geometrical nonlinear behavior, which often occurs when 

the vibrational amplitude of the mode shape approaches the 

total thickness of the beam. However, the frequency-

amplitude curve has a jump when the excitation frequencies 

reaches the natural frequency. It is shown that natural 

frequency and magnitude of beam deflection are dependent 

on the modulus of elliptic force function. It is clear that the 

higher the modulus kf, the lower the amplitude for certain 

frequencies. Moreover, the jump is shifted to higher 

frequencies for the higher values of the modulus. It must be 

stated that when kf = 0, the elliptic force reduces to a simple 

trigonometric force with single excitation. 

Showed in Fig. 3 is the efficacy of exerted load 

magnitude on deflection-frequency curve of multi-phase 

MEE nano-scale beams under an excitation of elliptic type 

with kf
2 = 0.5. Based on this figure, one may understand that 

the shift frequencies are un-varied by the increasing in force 

magnitude. It can be explained that the frequency is only 

dependent on effective linear stiffness and mass density of 

the nano-scale beam. Therefore, the shift frequency is not 

influenced by exerted dynamic load. Yet, non-dimension 

deflection of the nano-scale beam goes larger via applying a 

greater load. 

Fig. 4 indicates the efficacy of the small scales on the 

non-linear vibrational frequency of two-phase MEE nano-

size beam versus normalized vibrational amplitudes (𝑊̃/ℎ). 

It may be seen that as the dimensionless nonlocal parameter 

(µ) enhances, the normalized shift frequency declines. 

Afterwards, it may be deduced that the classical elastic (i.e., 

the local) theory, which does not incorporate the small size 

 

 

 

Fig. 4 Effect of dimensionless nonlocal factor on 

vibration frequency curves of the nanobeam 

(L/h = 20, Vf = 20%, VE = 0, k2
f = 0.5, Ω = 0) 
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(a) VE = +0.01 V 
 

 

(b) VE = +0.01 V 

Fig. 5 Effect of piezoelectric percentage and electric voltage 

on vibration frequency curves of the nanobeam 

(µ = 0.2, Ω = 0, k2
f = 0.5, KL = 100, KP = 20, KNL = 0) 

 

 

impacts, will provide the higher approximations for the 

normalized vibrational frequency. However, the nonlocal 

continuum mechanics will give more precise and 

dependable results. 

Combined influences of exerted electrical voltage and 

piezoelectric volume on forced vibrational curves of the 

nanobeam is shown in Fig. 5 considering 𝐹̃ = 0.01. The 

volume of piezoelectric ingredient has been selected to be 

Vf = 0%, 40% and 80%. From the figure, it may be 

understood that enhancing the volume of piezoelectric 

ingredient yields lower shift frequencies. This is associated 

with the decrement in the elastic stiffness of nano-scale 

beams by increasing in piezoelectric portion. Afterwards, 

the elastic modulus of composites decreases by increasing 

in piezoelectric ingredient as presented in Table 1. Also, as 

the magnitude of electric voltage is lower, the curves are 

closer to each other. Accordingly, a MEE nano-scale beam 

with higher percentages of piezoelectric ingredient is more 

susceptible to the induced electrical fields. 

Non-dimension deflection of MEE nano-scale beam 

 

(a) KL = 100, KP = 0 
 

 

(b) KL = 100, KP = 20 

Fig. 6 Effect of elastic foundation parameters on 

vibration frequency curves of the nanobeam 

(Vf = 20%, µ = 0.2, k2
f = 0.5, VE = 0, Ω = 0) 

 

 

against non-dimension excitation frequency has been 

displayed in Fig. 6 based on diverse substrate coefficients 

(KL, KP, KNL). The amplitude of exerted force is chosen as 

𝐹̃ = 0.01 and the piezoelectric ingredient volume is chosen 

as Vf = 20%. One may observe that growth of linear (KL) 

and shear (KP) substrate coefficients makes the MEE nano-

size beam more rigid leading to greater natural frequencies. 

As regards, nonlinear substrate coefficient has no influence 

on the measure of natural frequencies. However, enlarging 

the values of KNL yields more tendency of frequency-

deflection curves to the right. This means that the hardening 

influences of geometrical nonlinearity become more 

announced with increase of KNL. 

Changes of non-linear vibration frequency versus 

normalized amplitude in various electric voltage (VE) and 

magnetic field intensity (Ω) are respectively presented in 

Figs. 7 and 8. One can observe that the non-linear shift 

frequency reduces via changing of applied field from 

negative to positive voltages. As seen, if magnetic field 

intensity is increased from negative to positive, non-linear 

54



 

Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force 

 

Fig. 7 Effect of applied voltage on vibration frequency 

curves of the nanobeam (Vf = 20%, µ = 0.2, 

KL = 100, KP = 20, Ω = 0) 
 

 

 

Fig. 8 Effect of magnetic field intensity on vibration 

frequency curves of the nanobeam (Vf = 20%, 

µ = 0.2, VE = 0, KL = 100, KP = 20, KNL = 0) 
 

 

vibration frequency is increased. The reason of this 

behavior is that MEE material has the ability to absorb 

magnetism and keep it and by rising magnetic field 

intensity, this ability shows own more. Such materials are 

capable to convert force of magnetic potential to 

mechanical force. Thus, via the growth of field intensity, 

non-linear vibration frequency enlarges because magnetic 

field creates tensile forces in nanobeam. 
 

 

6. Conclusions 
 

The presented research examined nonlocal non-linear 

forced vibration frequency of two-phase MEE nanobeams 

under elliptic-type excitation by presenting an exact 

solution using Jacobi elliptic functions. The nanobeam was 

assumed to be rested on elastic foundation with three 

parameters including linear, shear and nonlinear. It was seen 

that as the dimensionless nonlocal parameter increases, the 

normalized shift frequency decreases. Thus, it can be 

deduced that the classical elastic (i.e., the local) model, 

which does not consider the small-scale impacts, will give 

higher approximations for the non-dimension vibrational 

frequency. However, impact of non-linear foundation 

parameter on vibration frequency curves has an increasing 

trend with increasing in vibration amplitude. Also, magnetic 

field effect on vibration characteristics of MEE nanobeams 

relies on the value of piezoelectric volume. But, the rate of 

frequency increment versus magnetic field intensity 

becomes lower by increase of piezoelectric volume. It was 

found that the higher the modulus kf, the lower the 

amplitude for certain frequencies. Moreover, the jump is 

shifted to higher frequencies for the higher values of the 

modulus. 
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