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1. Introduction 

 

Nano pipes (N.Ps) manufactured from laminate 

composite materials are widely used in many nanoelectro-

mechanical systems. Thus understanding the mechanical 

behavior of these nanostructures is much needed for design 

and development of a new class of nano-systems such as 

nano-actuators and nano-sensors. But the effect of internal 

defects may significantly change the stiffness and reduce 

the strength and lifetime of these composite nanostructures 

(Altabey 2017a, b). 

Delamination is one of the most common damages that 

can occur between layers in layered composite materials. In 

general, it can be caused due to manufacturing faults or 

service process effects such as impact loads, fatigue, etc. 

Better understanding of delamination mechanism in 

laminated composite materials will allow to increase use 

this material in nonstructural applications. The delamination 

detection in general is a very difficult and expensive job in 

particular N.Del in N.Ps from laminated composites 
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becomes near impossible. This difficulty of detection 

indicate to the importance of development of easy and 

economical technique for monitoring N.Del in that type of 

N.Ps (Zhao et al. 2017a, 2018a, b, 2019a, Altabey and 

Noori 2018a, Kost et al. 2019). 

Several methods have been found to be useful for in-situ 

evaluation of composite nanostructures, where the structural 

integrity of that nanostructures manufactured from laminate 

composite can be assessed effectively. Recently, various 

methods have been implemented for that nanostructures 

monitoring include Ultrasonic; X-Ray Radiography and 

Thermography (Zhao et al. 2017b, 2018c, 2019b, Noori et 

al. 2018, Ghiasi et al. 2019). 

Although, there is a diverse range of techniques for 

assessment composite nanostructures, the researchers were 

found the capabilities and limitations of each method are 

different, where each technique has its specific field of 

applicability although there is a level of overlap based on 

the type and accuracy of detection and the ability to detect 

more data of damage identification. For instance, it may be 

necessary to combine information obtained from acoustic 

emission and X-ray radiography to achieve a three-

dimensional map of the complex array of delamination 

location/size in a composite, however, no single method is 

capable of easily detecting, or identifying delamination with 

high level of accuracy, and at a low-cost (Mouritz 2003, 

Altabey 2017c, d, 2018, Al-Tabey 2014). 

ECS is one of the most mature and promising of new 
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Abstract.  In this work, the electrical potential (EP) technique with an artificial neural networks (ANNs) for monitoring of 

nanostructures are used for the first time. This study employs an expert system to identify size and localize hidden nano-

delamination (N.Del) inside layers of nano-pipe (N.P) manufactured from Basalt Fiber Reinforced Polymer (BFRP) laminate 

composite by using low-cost monitoring method of electrical potential (EP) technique with an artificial neural networks (ANNs), 

which are combined to decrease detection effort to discern N.Del location/size inside the N.P layers, with high accuracy, simple and 

low-cost. The dielectric properties of the N.P material are measured before and after N.Del introduced using arrays of electrical 

contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these 

changes in electrical potential due to N.Del, a finite element (FE) simulation model for N.Del location/size detection is generated by 

ANSYS and MATLAB, which are combined to simulate sensor characteristic, therefore, FE analyses are employed to make sets of 

data for the learning of the ANNs. The method is applied for the N.Del monitoring, to minimize the number of FE analysis in order 

to keep the cost and save the time of the assessment to a minimum. The FE results are in excellent agreement with an ANN and the 

experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique. 
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methods, which measures the capacitance change of multi-

electrode/nanoelectrode sensor due to the change in 

dielectric permittivity. It has the characteristics such as 

being a low cost, fast response, non-intrusive method with a 

broad range of applications and with a high level of safety 

(Yang et al. 1995a, b, Li and Huang 2000, Mohamad et al. 

2012, Zhang et al. 2014). 

As a result in our previous works by Altabey (2017e, f) 

and Altabey et al. (2018), the present method had been 

successfully assessment of the delamination location/size, 

crack identification (Altabey and Noori 2017), water 

absorption level (Altabey and Noori 2018b) in composite 

pipes and tensile creep monitoring of composite plates 

(Altabey et al. 2019). But they found a lot of FE 

calculations must be performed to obtain a sufficient 

number of sets of electric potential differences. This is the 

main drawback of the method identified so far. 

In this study, we applied the previous electrical potential 

(EP) technique in N.Ps manufactured from BFRP laminate 

composite materials to improve one of most common 

nanostructures (e.g., nano-diaphragms, nano-pipes), which 

used in nanoelectro-mechanical systems. In order to avoid 

main drawback of this method, a FEM is generated with an 

artificial neural networks (ANNs), which are combined to 

decrease detection effort to discern N.Del location/size 

inside the N.P layers, with high accuracy, simple and low-

cost. By ANSYS and MATLAB, split into four scenarios 

only of N.Del location/size and learning of the ANNs under 

each N.Del scenario. The ANNs are adopted as solvers to 

obtain relationships between the electric potential 

differences and the N.Del location/size in order to keep the 

cost and save the time of the FE assessment data to a 

minimum. Our presented technique results are showed the 

excellent agreement between FE and ANN results. 

 

 

2. Principle of Electrical Capacitance Sensor (ECS) 
 

ECS was first introduced in the 1980s by a group of 

researchers from the US Department of Energy, at 

Morgantown Energy Technology Center (METC), to measure 

 

 

fluidized bed systems (Fasching and Smith 1988, 1991, 

Huang et al. 1989). The technique further developed and 

advanced rapidly during the past 10 years. It has gained 

attention and found important applications in monitoring 

industrial processes, due to its low cost and its operability 

under harsh environmental conditions. 

ECS converts the permittivity of the piping system to 

inter-electrode capacitance, which is the ECS forward 

problem. Capacitance measuring circuit takes the 

capacitance data and transfers that to imaging computer. 

Imaging computer reconstructs the distribution image with 

a suitable algorithm, which is called ECS inverse problem. 

The need for a more accurate measurement of ECS has 

led to the study of the factors which influence and affect 

ECS sensitivity and the sensitive domain of ECS electrodes. 

In general, there are three factors that have been studied and 

found that they affect ECS measurements, e.g., Monitoring 

target manufacturing material (Jaworski and Bolton 2000, 

Pei and Wang 2009, Al-Tabey 2010, Asencio et al. 2015, 

Sardeshpande et al. 2015, Mohamad et al. 2016, Altabey 

2016a) and Monitoring target thickness (Daoye et al. 2009, 

Altabey 2016b). Altabey (2016c) found that the 

environmental temperature also affect ECS sensitivity and 

sensitive domain of ECS electrodes with high percentage. 

Therefore, it was concluded that the environmental 

temperature should be considered as the fourth factor which 

influences the ECS measurement sensitivity. 

Fig. 1 is a schematic representation of an expert system 

for N.Del assessment using electrical potential (EP) 

technique with an ANNs, in which R1 is inner N.P radius; R2 

is outer N.P radius; R3 is earthed screen radius. The ECS 

also includes radial guard electrodes to constrain the field 

lines from the excited nano-electrode (N.E) and to reduce 

the dependence of spacing between the nano-electrodes 

(N.Es) and the screen as shown in the Fig. 1. The function 

of the sensor includes measuring the capacitance between 

all possible combination pairs of the N.Es and converting 

the measured capacitance values in the voltage signals. The 

sensors physical specifications and the permittivity values 

of BFRP N.Ps are shown in Table 1. 

 

 

 

Fig. 1 Schematic representation of the N.Del monitoring method using an ECS method with an ANNs 
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Table 1 Sensor physical specification 

ECS system Specification 

No. of Nano-electrodes 12 

Space Nano-electrodes 2 nm 

Nano Pipe diameter (di) 94 nm 

Nano Pipe thickness (h) 6 nm 

Earth Screen diameter 110 nm 

Thickness of Nano-electrodes 1 nm 

height of Nano-electrodes 0.3 µm 

Permittivity Basalt fiber/Polymer εb = 2.2 Fm-1 

Permittivity of Water εw = 80 Fm-1 

Permittivity of Air εa = 1.0 Fm-1 

Excitation voltage φ = 15 mV 
 

*Remark: Other parameters of the electrical property can be found 

in Zhao et al. (2018a) 

 

 

The electric potential differences of each segment 

between N.Es are measured for various scenarios of N.Del 

location/size. From the measured data, the relationships 

between electric potential differences and N.Del 

location/size are obtained using an ANNs. 

 

 

3. Finite element simulation model 
 

3.1 Physical properties of the BFRP N.P 
 

Table 2 list all the parameters required for physical and 

mechanical properties of the BFRP laminate composite. 

These FRP composite properties were tested at the National 

and Local Joint Engineering Research Center for FRP 

Production and Application Technology, Nanjing, China, a 

high-tech company specialized in the research and 

development, manufacturing, marketing and technical 

assessment of high-performance fibers and composites. To 

examine the effect of N.Del on the dielectric properties in 

BFRP laminated panel, the FE analysis of the electric field 

intensity of laminated panel were designed using ANSYS 

ver.15. Suitable finite elements were selected and employed 

to simulate FRP properties, i.e., PLANE121 element is used 

to simulate nano-structural property, triangular 6-node, and 

the element has one degree of freedom, voltage, at each 

node, and SOLID123 is used to simulate electrical property. 

 

3.2 ECS governing equations 
 

In terms of Electrical Capacitance sensor (ECS), the 

forward problem is the problem of calculating the 
 

 

capacitance matrix C from a given set of sensor design 

parameters and a given cross-sectional permittivity 

distribution 𝜀(𝑥, 𝑦). Thus, the system was governed by the 

following Poisson equation 
 

𝛻. 𝜀(𝑥, 𝑦)𝛻𝜑(𝑥, 𝑦)  =  0 (1) 
 

Where: 𝜑(𝑥, 𝑦) is the potential distribution inside the 

ECS was determined by solving the Poisson’s equation. For 

tlatktj the boundary condition imposed on the ECS head by 

the measurement system. The electric field vector 𝐸(𝑥, 𝑦), 
the electric flux density 𝐷(𝑥, 𝑦) and the potential function 

𝜑(𝑥, 𝑦) are related as follows 
 

𝐸(𝑥, 𝑦)  =  −𝛻𝜑(𝑥, 𝑦) (2) 
 

𝐷 =  𝜀(𝑥, 𝑦)𝐸(𝑥, 𝑦) (3) 
 

The change on the N.Es, and hence the inter N.E 

capacitances could be found using the definition of the 

capacitance and Gauss’s law based on the following surface 

integral 

𝑄𝑖𝑗 = ∮ (ε(𝑥, 𝑦)𝛻𝜑(𝑥, 𝑦). �̂�)
𝑆𝑗

𝑑𝑠 (4) 

 

where: 𝛻. 𝜀(𝑥, 𝑦)  is the divergence of permittivity 

distribution, 𝛻𝜑(𝑥, 𝑦)  is the gradient of potential 

distribution, 𝑆𝑗 is a surface enclosing electrode 𝑗, ds is an 

infinitesimal area on electrode 𝑗 , 𝑛  is the unit vector 

normal to Sj and ds is an infinitesimal area on that. 
 

3.3 The boundary conditions 
 

The potential boundary conditions were applied to the 

sensor-plate (nano-electrodes). For one N.E, the boundary 

condition of electric potential (V = V0) with 15 mV (V0) 

was applied and another N.Es was kept at ground (V = 0) 

potential to simulate a 15 mV (RMS) potential gradient 

across the N.Es. For representing the natural propagation of 

electric field, the default boundary condition of continuity 

(𝑛 . (𝐷1 −  𝐷2)  =  0)  was maintained for the internal 

boundaries. 
 

 

4. Artificial Neural Network (ANN) Modeling 
 

The RBNN has three layers consisting of an input, a 

unique hidden layer (function) and an output layer. The 

input layer is composed of input data and the output layer 

produces the network response. The function layer is an 

intermediate layer between the input and the output layer. 

The activation function of the neurons of the hidden layer is 

a Gaussian transfer function 
 

 

Table 2 Physical and mechanical properties of the BFRP 

EX EY = EZ GXY = GXZ GYZ PRXY = PRXZ PRYZ rho 

96.74 GPa 22.55 GPa 10.64 GPa 8.73 GPa 0.3 0.6 2700 kg/m3 
 

*Remark: rho is material density, EX, EY, EZ are elastic modulus in the X, Y and Z directions respectively, GXY, GYZ, GXZ are Shear 

modulus in the XY, YZ and XZ Planes respectively, PRXY, PRYZ, PRXZ are Poisson’s Coefficient in the XY, YZ and XZ Planes 

respectively 
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𝛷(𝑥) = 𝑒𝑥𝑝 [−(∑‖𝑥𝑗 − 𝑐𝑖‖
2

𝑗𝑗

𝑗=1

2𝜎𝑖
2⁄ )] (5) 

 

where (x) is the input vector, ci is the center of a region 

called a receptive field, σi is the width of the receptive field, 

Φ(x) is the output of the ith neuron, and i is the number of 

neurons. 

RBNN Network can learn faster than Feed-Forward 

Neural Networks (FFNN) and requires less training data. 

The performance of the RBNN essentially depends on the 

chosen center where the value of the function is higher and 

the spread, which indicates the radial distance from the 

radial basis function (RBF) center, in which the function 

value resides, is significantly different from zero (Buhmann 

2003). The spread value in this work is selected arbitrarily 

based on the minimum error criteria. 
 

4.2 Performance evaluation measures 
 

It is very useful from the designer’s point of view to 

have a neural system that helps decide whether its 

suggested design is appropriate or not by calculating the 

Mean Square error (MSE) from the equation 
 

𝑀𝑆𝐸 =∑((𝐸𝑖𝑗)𝑛𝑛 − 𝐸𝑖𝑗)
2

𝑛⁄  (6) 

 

where (𝐸𝑖𝑗)𝑛𝑛 the predicted electric potential differences, 

𝐸𝑖𝑗  the electric potential differences measured from FE 

method, and 𝑛 is the number of FE measured data values. 

Thus, the performance index will have either an overall 

minimum, depending on the characteristics of the input 

vectors. The local minimum is the minimum of a function 

over a limited range of input values. The local minimum is 

unavoidable when the ANN is installed. Thus, a local 

minimum may be good or bad depending on the proximity 

of the local minimum to the global minimum and how much 

an MSE is required. In any case, the method applied to 

solve this problem and go down the local minimum with 

momentum. Momentum allows a network to respond not 

only to the local gradient, but also to recent trends in the 

error surface. Without dynamism, a network can become 

stuck in a shallow local minimum. 

The estimation performances of N.Del location/size is 

evaluated by the lack of fit with the adjusted coefficient of 

the multiple determination 𝑅2
𝑎𝑑𝑗

 (Myers and Montgomery 

2002, Jiang et al. 2014); 𝑅2
𝑎𝑑𝑗 is defined as 

 

𝑅2 𝑎𝑑𝑗 = 1 −
𝑆𝑆𝐸 (𝑛 − 𝑘 − 1)⁄

𝑆𝑦𝑦 (𝑛 − 1)⁄
 (7) 

 

The value of 𝑅2 𝑎𝑑𝑗  is equal to or less than 1.0. A 

higher value of 𝑅2 𝑎𝑑𝑗 implies a better fit. When the ANN 

shows a very good fit, 𝑅2 𝑎𝑑𝑗 approaches 1.0. A good fit of 

the ANN means that the ANN gives good gives good 

estimates for the change in dielectric properties used for the 

regression. Lower 𝑅2 𝑎𝑑𝑗 values mean lower estimations 

and the error band of the estimated result is wider. 
 

5. Results and discussion 
 

5.1 Convergence study and accuracy 
 

In this subsection, a convergence study is carried out for 

the proposed method, the differences of electrical potential 

of normalization between the electrodes due to the 

delamination are calculated and compared with the 

experimental results available in the literatures. The dataset 

used for the validation of the presented technique is adapted 

from Todoroki et al. (2004). The tests were carried out on 

laminated composite beams made from unidirectional 

carbon/epoxy (CFRE) layers, the stacking sequence is 

[02/902]s and the thickness of the laminates is approximately 

t = 1 mm. The volume fraction of fiber is approximately Vf 

= 0.5. The beam type specimens have a length of 270 mm 

and a width of 15 mm. Seven electrodes are mounted on the 

surface of the sample. All of these electrodes are placed on 

one side of a sample. For the electrode model, the thickness 

of the electrodes is 10 mm, the space between the electrodes 

is 45 mm and the limit condition of the electric potential (V 

= V0) with + 5V (V0). The electrical potential changes of 

each segment between the electrodes are measured for 

various cases of location and size of delamination. From the 

measured data, the relationships between the electrical 

potential change and the location and size of the 

delaminations are obtained using the surface response 

method. Table 3 presents a convergence and comparison 

study for the proposed method data and the experimental 

data of Todoroki et al. (2004). 

Table 3 presented a comparison between finite element 

(FE) data and experimental results available in the 

literature, it can be seen that the numerical results are in 

excellent agreement with the experimental results of the 

electric potential differences of normalization presented by 

Todoroki et al. (2004). This validates the precision of the 

technique presented. 

 

5.2 Electrical Potential (EP) technique for Nano-
Delamination (N.Del) monitoring 

 

To study the effect of N.Del on the dielectric properties 

of N.P material, FE analysis of the electric field intensity of 

the BFRP piping system was performed using commercially 

available 2D ANSYS software, ANSYS (The Electrostatic 

Module in the Electromagnetic subsection of ANSYS 2015,          

Al-Tabey 2012, Altabey et al. 2018a, b). The software 

calculates only the potential and electric field values at the 

element nodes and interpolates between these nodes to 

obtain the values of other points in the elements. 

The simulations and the potential distribution of the 

nodes of the N.P before and after the N.Del initiated for the 

ANSYS 2D simulation, when the N.E (1) is excited, are 

illustrated in Fig. 2 respectively to the right and to the left. 

The blue area represents the region of the potential-free 

N.P i.e., φ = 0 but the colored areas represent the region of 

the N.P having the different potential (different node 

potential), the area of the electrode can be sensitive or 

domain detection. 
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Fig. 2 The node potential distribution of BFRP N.P 

before embedded N.Del right and after embedded 

N.Del left 
 

 

 

 
From the FE simulation shown in Fig. 2, we can 

conclude that this is a significant difference before and after 

the N.Del introduced into the potential of the node and the 

intensity of the electric field. 

The capacitance values between the N.Es (Cij) and the 

potential differences (Eij) of the 2D simulations are 

calculated before the N.Del0 and after N.Deli, where i = 1, 2 

.... is the number of scenarios of N.Del (FE models). In 

general, this study must use at least 66 different FE model 

of N.Del scenarios (N.Deli) (Eq. (8)) to validate the 

accuracy and reliability of the proposed technique, which 

means a great effort and a high cost, also very long time to 

assess N.Del location/size. 

 
 

 

Table 3 Convergence study of normalization electrical potential differences of the CFRE laminated composite beams 

e1-2 
(1) 0.9918 0.2922 0.6931 0 0 0.6315 0.1897 0.0105 0.3158 0.0184 

(2) 0.9914 0.2873 0.6877 0 -0.0057 0.6007 0.1869 0.0059 0.3111 0.0139 

e2-3 
(1) 0.0015 0.3512 0.7177 0.1683 0 0.3724 0.3711 0.0158 0.4531 0.0187 

(2) -0.1305 0.3478 0.7127 0.1669 -0.0172 0.3682 0.3686 0.0094 0.4470 0.0139 

e3-4 
(1) 0 0.4497 0.1380 0.5911 0.5125 0.5848 0.7355 0.0008 0.3992 0 

(2) 0 0.4461 0.1375 0.5881 0.5113 0.5813 0.7294 0 0.3976 0 

e4-5 
(1) 0 0.5243 0.0173 0.6786 0.7826 0.4106 0.5473 0 0.5481 0.2392 

(2) 0 0.5217 0.0125 0.6754 0.7814 0.4069 0.5451 0 0.5457 0.2371 

e5-6 
(1) 0 0.3269 0 0.3721 0.2894 0.0006 0 0.5900 0.4711 0.2671 

(2) 0 0.3251 -0.0125 0.3698 0.2873 0 0 0.5885 0.4692 0.2650 

e6-7 
(1) 0 0.4699 0 0.1856 0.2175 0 0 0.8111 0.1683 0.9369 

(2) 0 0.4687 0 0.1823 0.2126 0.0065 -0.0026 0.8085 0.1655 0.9344 

Loca 

tion 

(1) -127.35 -113.23 -81.53 -68.37 -18.22 7.86 19.58 67.34 97.39 108.19 

(2) -127.5 -113.5 -82 -69 -18.5 8 20 68 98 109 

Size 
(1) 5.48 4.87 1.96 5.46 5.92 2.91 5.96 8.48 5.98 4.95 

(2) 5.5 5 2 5.5 6 3 6 8.5 6 5 
 

(1) Proposed method, (2) Todoroki et al. (2004) 

 

Fig. 3 Effect of N.Deli on electric potential difference (mV) when N.E (1) is excited 
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𝑀 =
𝑁(𝑁 − 1)

2
 (8) 

 

where 𝑁 is the number of N.Es, and 𝑀 is the number of 

N.Del scenarios. 

In this study, an electrical potential (EP) technique is 

applied with artificial neural networks (ANNs), which are 

combined to decrease the detection effort to discern the 

location / size of the N.Del by minimizing the number of FE 

models in order to keep save the time of the N.Del 

assessment to a minimum. The method has successfully 

monitored the N.Del location / size using only four 

scenarios instead of 66 scenarios, the first scenario (N.Del1) 

has a size θ = 5º, is located at r = 51 nm and Ψ = 0º, the 

second scenario (N.Del2) has the size θ = 10º, is located at r 

= 51 nm and Ψ = 90º, the third scenario (N.Del3) has the 

size θ = 15º, is located at r = 51 nm and Ψ = 180º and the 

final scenario (N.Del4) has the size θ = 20º, is located at r = 

51 nm and Ψ = 270º, respectively, as shown in Table 4. 

As shown in Fig. 3 and Table 4 of the node potential 

differences (Ei-j) with different N.Del scenarios when the 

electrode (1) is excited, we can be seen that the effect of 

N.Del has occurred on the potential of node distributions the 

degradation in the potential differences occurred, this 

degradation is according to the N.E that mounted near the 

N.Del location occurred (for example the degradation in the 

value E1-4 is due in the N.Del scenario (N.Del3), value E1-7 is 

due to the scenario (N.Del4) and the value E1-10 is due to the 

scenario (N.Del1)), except that the scenario (N.Del2) is 

influenced by all the values potential differences from E1-2 

 

 

 

 

to E1-12 because the N.Del is located near the N.E (1), and so 

this behavior will be repeated when the other N.Es are 

excite (see Fig. 1). 

Fig. 4 shows the ECS sensitivity versus N.Del scenarios 

(N.Deli). The ECS sensitivity is defined as 

 

𝐸𝐶𝑆 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦% =
𝐶𝑑𝑒𝑙0 − 𝐶𝑑𝑒𝑙𝑖

𝐶𝑑𝑒𝑙0
× 100 (9) 

 

where: 𝐶del0 and 𝐶del are the capacitance measurements for 

before and after N.Del started respectively. 
 

 

 

Fig. 6 The relation between Mean Square error (MSE) and 

the number of hidden layer neurons 
 

 

Fig. 4 ECS sensitivity versus N.Deli 

 

Fig. 5 Schematic illustration of RBNN design for present study with input data Ψ, θ, ε 
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Fig. 7 The relation between Mean Square error (MSE) and 

selected spread parameters 
 

 

As shown in Fig. 4, the sensitivity of the ECS depends 

on the N.Del size (θ), the ECS sensitivity increase with 

N.Del size increases, the sensitivity of the sensor varies 

between 6.13 and 26.723% for the scenario (N.Del1) to 

scenario (N.Del4) respectively and the selected ECS 

geometry parameters. 
 

 

 

Fig. 8 Training performance of suggested RBNN 
 

 

5.3 RBNN structure design and learning 
 

A RBNN structure is designed based on one input layer, 

three hidden layers and one output layer respectively as 

shown in Fig. 1. The first hidden layer with radial basis 

neurons while the second and third layer with pure linear 

ones as shown in Fig. 5. 
 

 

  

(a) Predicted data 

 

(b) Performance 

Fig. 9 Comparison between the Finite Element (FE) data and Radial Basis neural networks (RBNN) predicted data 

for nano-delamination scenario (N.Del1) 
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Learning vectors formed the initial centers of Gaussian 

RBFs. Determination of the hidden layer, in addition to the 

number of nodes in the input and output layers, to provide 

the best training results, was the initial phase of the training 

procedure. The goal of MSE to reach at the end of the 

simulations was 0.0001. Since the second step was largely a 

trial-and-error process, and involved RBNNs with the 

number of hidden layer neurons more than 13, it did not 

show any sizeable improvement in prediction accuracy. 

Thus the number of neurons (the number of RBFs) for the 

single hidden layer was selected as 13 neurons. Selection of 

the number of hidden layer neurons, with respect to the 

MSE term in the presence of different spread parameterized 

RBNNs is shown in Fig. 6. 

Choosing an appropriate spread constant will increase 

the accuracy of the network. The spread (the width of the 

RBFs’) constant of radial basis function was selected by 

using Genetic Algorithm (GA). GA may have the tendency 

to converge towards local optimum (Valle et al. 2008) 

rather than the global optimum of the problem, if the fitness 

function is not defined properly. The optimum spread 

parameter was selected as constant for all group of 

permittivity, after the trials with the selected hidden layer 
 

 
 

neurons number, the spread constant was selected as 0.31 as 

shown in Fig. 7. 

 

5.4 Nano-Delamination (N.Del) location/size 
estimation using Radial Basis Neural Networks 
(RBNN) 

  

RBNN is trained by measuring values of Ψ, θ, ε to 

predict the potential differences (EPD) Ei-j. In the first 

RBNN structure is applied for training the data of ECS in 

Table 4. Fig. 8 shows the training performance of suggested 

RBNN. 

Figs. 9 and 10 represent the comparison between the FE 

data and the RBNN predicted data for N.Del scenarios 

(N.Del1) and (N.Del3). The results of the RBNN show much 

satisfactory predication quality for this case study. The 

value of mean square error (MSE) between the FE and 

RBNN predicted data for scenarios (N.Del1) and (N.Del3), in 

order to obtain the best performances of the present neural 

network are 0.0964 and 0.044 respectively. The adjusted 

coefficient R2
adj of the predicted result is 0.9945 and 0.9985 

for scenarios (N.Del1) and (N.Del3) respectively. 

Figs. 11 and 12 show the comparison between the FE 

 

 
 

 

(a) Predicted data 

 

(b) Performance 

Fig. 10 Comparison between the Finite Element (FE) data and Radial Basis neural networks (RBNN) predicted data 

for nano-delamination scenario (N.Del3) 
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data and the Radial Basis neural networks (RBNN) expected 

data for N.Del scenarios (N.Del2) and (N.Del4). From Figs. 

11 and 12, we can see the good convergence between the 

 

 

 

 

RBNN expected data and FE data. The value of mean square 

error (MSE) between the RBNN expected data and FE data 

for scenarios (N.Del2) and (N.Del4), is 0.0695 and 0.0208 

 

 

 

 

 

 

(a) Expected data  

 

(b) Performance 

Fig. 11 Comparison between the Finite Element (FE) data and Radial Basis neural networks (RBNN) expected data 

for nano-delamination scenario (N.Del2) 

 

(a) Expected data  

Fig. 12 Comparison between the Finite Element (FE) data and Radial Basis neural networks (RBNN) expected data 

for nano-delamination scenario (N.Del4) 
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(b) Performance 

Fig. 12 Continued 

 

(a) Location, Ψ 

 

(b) Size, θ 

Fig. 13 The Radial Basis neural networks (RBNN) Estimation results of nano-delamination (N.Del) in BFRP nano-

pipe3 (N.P) 
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respectively. The 𝑅2 𝑎𝑑𝑗 of the expected result is 0.9978 

and 0.9905 for scenarios (N.Del2) and (N.Del4) respectively. 
 

5.5 The use of present RBNN for predicting non-FE 
data 

 

The main target of artificial neural network design is the 

prediction of non-FE data. In this section, we will use the 

suggested RBNN to predict some non-EF data that is not 

included in the FE assessment. It is selected to use nine 

random N.Del location / size scenarios for all potential 

differences (EPD) Ei-j. The three previous parameters Ψ, θ, 

ε are the input vectors for the artificial neural network, 

while the output is the vector of the signal is the electric 

potential differences. 

Fig. 13 shows the RBNN estimated results of the non-FE 

N.Del location, Ψ and size, θ N.P. The R2
adj of non-FE 

result is 0.9733 and 0.9625 for location and size 

respectively. All of the estimations are plotted on the 

diagonal line. 

The error band is defined as the maximum error of the 

estimated non-FE N.Del location/size. The error band from 

the diagonal line is less than 7.75 and 2.25 degrees for 

location and size respectively. 

The estimated non-FE results of the location Ψ and size 

θ by RBNN are presented in Table 5. As a result, a RBNN 

gave good estimations for non-FE data even for 

extrapolations N.Del location/size in composite N.P. 
 

 

6. Conclusions 
 

In the present study, an electrical potential (EP) 

technique is adopted as an expert system for assessing 

N.Del location/size in N.P manufactured from Basalt Fiber 

Reinforced Polymer (BFRP) laminate composite using ECS 

with ANNs, which are combined to decrease detection effort 

to discern N.Del location/size inside the N.P layers, in order 

to keep the cost and save the time of the FE N.Del to keep 

 

 

the cost and save the time of the FE N.Del assessment 

data to a minimum with high accuracy, simple and low-

cost. The results obtained are as follows: 
 

(1) Electric potential difference due to different N.Del 

scenarios can be measured with multiple N.Es 

mounted on an outer surface of the N.P.  

(2) The sensor sensitivity and assessment performance 

was found depend on the N.Del size (θ), as the 

N.Del size (θ) increases, the sensor sensitivity 

increased. 

(3) The methodology has successfully monitored the 

N.Del location/size using only four scenarios of 

N.Del location/size are used for training the ANNs 

to estimate the non-FE results with good 

performance. 

(4) The FE results are in excellent agreement with an 

RBNN results, thus validating the accuracy and 

reliability of the proposed technique, as shown in 

Table 5. 

(5) N.Del size/ location assessment with RBNN can be 

successfully performed for non-FE N.Del size/ 

location scenarios in N.P with adjusted coefficient 

of multiple determination R2
adj is 0. 0.9625 and 

0.9733 respectively, see Fig. 13. 

(6) The electrical potential (EP) technique with ANNs 

was gave good estimations of non-FE data even for 

extrapolations within the error band of less than 

7.75 and 2.25 degree for N.Del location and size 

respectively, see Fig. 13. 

(7) Finally, as a result, the proposed technique was 

successfully assessing the N.Del for a N.P with 

within low error band, and reduced the scenarios of 

N.Del to four scenarios only instead of 66 scenarios 

that must be used in other methods, This represents 

a significant saving of time and cost reduction 

associated with the electrical potential (EP) with 

ANNs method instead of the other methods. 

Table 5 Estimations and errors comparison between RBNN Data (unit degrees) 

Nano-Delamination 

Scenario 
RBNN Estimated Data 

Error of Estimations 

Size, θ Location, Ψ 

θ Ψ θ Ψ RBNN% RBNN% 

5 0 5.125a 3.332a 2.5a 3.332a 

6.75 30 7.15c 27.24c 5.926c 9.2c 

8.5 60 8.31c 62.8c 2.235c 4.667c 

10 90 10.666b 86.153b 2.22b 4.274b 

11.75 120 11.02c 122.34c 6.213c 1.95c 

13.5 150 13.21c 145.47c 2.148c 3.02c 

15 180 14.213a 182.112a 5.246a 1.173a 

16.75 210 16.12c 207.11c 3.761c 1.3762c 

18.5 240 18.72c 243.8c 1.189c 1.5833c 

20 270 21.133b 276.938b 5.665b 2.5696b 

21.75 300 22.34c 297.15c 2.713c 0.95c 

23.5 330 23.24c 325.42c 1.106c 1.388c 
 

a Predicted Data, b Expected Data, c Non-FE Data  
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