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1. Introduction 

 

Nanostructures are small-scale mechanical models that 

are widely used in recent years by many researchers 

(Shodja et al. 2012, Sedighi 2014, Eltaher et al. 2016, 

2018b, 2019a, b, c, Ebrahimi and Barati 2016a, Sedighi and 

Bozorgmehri 2016, Ebrahimi and Barati 2017a, Sedighi and 

Sheikhanzadeh 2017, Romano et al. 2017, Khanik 2018, 

Hamidi et al. 2018, Bensaid et al. 2018, Faleh et al. 2018, 

Bensattalah et al. 2018, 2019, Akbas 2018, Belmahi et al. 

2018 and 2019, Aria et al. 2019, Mohamed et al. 2019, 

Barati and Shahverdi 2019, Hussain and Naeem 2019, Aria 

and Friswell 2019, Forsat et al. 2020), because of these 

models of interesting structures, several research 

investigations have been carried out on the study of the 

behaviors of these nanostructures made from a novel class 

of materials such as functionally graded materials (FGM 

structures) which the material properties vary gradually and 

continually through a given direction. For example, 

Rezaiee-Pajand et al. (2018) investigated on static analysis 

of FG non-prismatic sandwich-beams. The large 

deformation of FG visco-hyperelastic structures is 
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examined by Pascon (2018). The analytical solution for 

vibrational response of FG nanobeam is developed by 

Ebrahimi and Daman (2017). 

The static and dynamic analysis of the porous FG 

nanobeam is studied by Eltaher et al. (2018b) using the 

FEM method (finite element method). Ebrahimi and Barati 

(2016b) examined the effect of the external load on the 

vibrational parameter of the nonlocal FG beam. These last 

years, several scientists have examined the influence of the 

thermal and hygro thermal environment on the behavior of 

FG nanostructures. Ebrahimi and Salari (2015) examined 

the thermal stability and vibrational behavior of FG 

nanobeam using nonlocal Timoshenko beam theory. Barati 

and Shahverdi (2016) analyzed the thermal vibration of the 

FG nanoplate under various non-uniform thermal loads. 

Sobhy (2017) used the HSDT to examine the buckling and 

Hygro-thermo-mechanical vibration of E-FG nanoplate. 

Ebrahimi and Heidari (2018) examined the effect of the 

humid-thermal environment on the vibrational 

characteristics of FG nanoplate using (DQM) method. 

Recently, several investigations that focuses on the effect of 

hygro-thermal environment are published as (Shahsavari et 

al. 2018, Hajmohammad et al. 2018, Hosseini and Kolahchi 

2018, Akbas 2019a). 

In this research work, the hygro-thermal vibrational 

behavior of the simply supported P-FG and symmetric S-

FG nanobeams seated on Winkler-Pasternak elastic 
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Abstract.  In the current research, the free vibrational behavior of the FG nano-beams integrated in the hygro-thermal environment 

and reposed on the elastic foundation is investigated using a novel integral Timoshenko beam theory (ITBT). The current model has 

only three variables unknown and requires the introduction of the shear correction factor because her uniformed variation of the 

shear stress through the thickness. The effective properties of the nano-beam vary according to power-law and symmetric sigmoid 

distributions. Three models of the hygro-thermal loading are employed. The effect of the small scale effect is considered by using 

the nonlocal theory of Eringen. The equations of motion of the present model are determined and resolved via Hamilton principle 

and Navier method, respectively. Several numerical results are presented thereafter to illustrate the accuracy and efficiency of the 

actual integral Timoshenko beam theory. The effects of the various parameters influencing the vibrational responses of the P-FG and 

SS-FG nano-beam are also examined and discussed in detail. 
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foundation is investigated using the nonlocal elasticity and 

novel integral Timoshenko beam theory. The developed 

model needs to assure the zero shear stresses at free surface 

of the beam. The analytical solution of the vibrational 

behavior is determined via Hamilton principle and Navier 

method. The accuracy of the current model is verified by 

comparing the obtained results with those found in the 

literature. 

 

 

2. Theoretical formulations 
 

2.1 Models of the FG nanobeam 
 

In the present investigation, Consider a simply 

supported FG nanobeam with dimensions ( 𝑙𝑒𝑛𝑔ℎ𝑡 “𝑎”,
𝑤𝑖𝑑𝑡ℎ ”𝑏”  𝑎𝑛𝑑  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ”ℎ” ) reposed on the elastic 

foundation type Winkler Pasternak (as shown in the Fig. 1). 

Two types of the simply supported FG nanobeam are 

employed namely Power law FG nanobeam and Symmetric 

sigmoid FG nanobeam. The effective properties of the FG 

nanobeam of the both types are given as 

 

𝑃(𝑧)  =  𝑃𝑐𝑉𝑐 + 𝑃𝑚𝑉𝑚 (1) 

 

With 𝑉𝑐 + 𝑉𝑚 = 1. 
Where 𝑃𝑖 and 𝑉𝑖 are the properties and volume fraction 

of the material with (𝑖 = 𝑐,𝑚). 
 

2.1.1 Power law FG nanobeam (P-FG nanobeam) 
In the first model of the properties of the FG nanobeam 

vary according to the power-law volume fraction (Fig. 2), 

the function of the ceramic volume fraction can be written 

as 
 

 

 

Fig. 1 Geometry of FG nanobeam resting on elastic 

foundation 

 

 

 

Fig. 2 Variation of ceramic volume fraction along the 

thickness of the P-FG nanobeam 
 

𝑉𝑐 = (
2𝑧 + ℎ

2ℎ
)
𝑝

     with     𝑝 ≥ 0 (2) 

 

Where 𝐸, 𝐺, 𝜌, 𝛼, and  𝛽 are Young’s modulus, shear 

modulus, mass density, thermal expansion and moisture 

expansion coefficient, respectively. 

 

 

2.1.2 Symmetric sigmoid FG nanobeam 
(SS-FG nanobeam) 

The second type of the volume fraction (SS-FG) varies 

symmetrically with respect to the mean axis by using two 

power law volume fractions (see Fig. 3). The symmetric 

sigmoid volume fraction is expressed as 

 

𝑉𝑚(𝑧) =

{
 
 

 
 
(
2𝑧 + ℎ

ℎ
)
𝑃

     for    −
ℎ

2
≤ 𝑧 ≤ 0

(
−2𝑧 + ℎ

ℎ
)
𝑃

     for    0 ≤ 𝑧 ≤
ℎ

2

 (3) 

 

To obtain the effective properties of the P-FG and SS-

FG nanobeams such as (𝐸(𝑧), 𝐺(𝑧), 𝜌(𝑧), 𝛼(𝑧), 𝛽(𝑧)) just 

replace the volume fraction in the corresponding model into 

Eq. (1). 

For studying the behavior of the FG- nanobeam under 

thermal loading precisely, the temperature was taken 

depend on the material properties. The thermo-elastic 

Material properties “𝑃”  in function of the temperature 

“𝑇(𝑘)” can be given in the nonlinear form as (Ebrahimi 

and Salari 2015) 

 

𝑃(𝑇) = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇

1 + 𝑃2𝑇
2 + 𝑃3𝑇

3) (4) 

 

Where 𝑃  and  𝑇  are the material property and the 

environmental temperature, respectively. 𝑃𝑖 indicates the 

temperature-dependent coefficients of the 𝑆𝑈𝑆304 (Metal) 

and 𝑆𝑖3𝑁4 (Ceramic) as mentioned in Table 1. 

 

2.2 Integral Timoshenko’s beam theory 
 

Based on the Timoshenko beam theory and supposing 

that the total bending rotation equal 𝑘1 ∫𝜃(𝑥, 𝑡) 𝑑𝑥. The 

current displacement field of the integral Timoshenko beam 

 

 

 

Fig. 3 Variation of ceramic volume fraction along the 

thickness of the Symmetric S-FG nanobeam 
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theory can be expressed as 
 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧𝑘1∫𝜃(𝑥, 𝑡) 𝑑𝑥 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) 
(5) 

 

Where 𝑢0(𝑥, 𝑡), 𝑤0(𝑥, 𝑡)  and 𝜃(𝑥, 𝑡)  are unknowns’ 

displacement. “𝑘1 = 𝜆
2” with 𝜆 presented in Eq. (7). 

The integral term appears in the Eq. (5) can be resolve 

via Navier method and can be expressed as 
 

∫𝜃𝑑𝑥 = 𝐴′
𝜕𝜃

𝜕𝑥
 (6) 

 

Where the coefficient is adopted according to the 

present solution (Navier Method) and can be obtained as 
 

𝐴′ = −
1

𝜆2
     with     𝜆 = 𝑚𝜋/𝑎 (7) 

 

The non-zero linear strains of the present integral 

Timoshenko beam theory are obtained as follow 
 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝑘1𝐴

′𝜂𝑥 
𝛾𝑥𝑧 = 𝛾𝑥𝑧

0 + 𝑘1𝐴
′𝛽𝑥𝑧 

(8) 

 

With 
 

𝜀𝑥
0 =

𝜕𝑢0
𝜕𝑥

,   𝜂𝑥 = −
𝜕2𝜃

𝜕𝑥2
,   𝛾𝑥𝑧

0 =
𝜕𝑤0
𝜕𝑥

,   𝛽𝑥𝑧 = −
𝜕𝜃

𝜕𝑥
 (9) 

 

2.3 Hamilton’s principle (HP) 
 

In the actual investigation, the Three equations of 

motion of the FG beam are determined via Hamilton 

principle, which stipulate that the motion of FG nanobeam 

during the time 𝑡 ∈ [0, 𝑡] . The analytical form of the 

Hamilton principle (HP) can be expressed as (Eltaher et al. 

2018a, Yüksela and Akbaş 2018) 
 

0 = ∫ 𝛿(𝑈 + 𝑉 − 𝐾)𝑑𝑡
𝑡

0

 (10) 

 

Where 𝛿𝑈, 𝛿𝑉  and  𝛿𝐾 are the variations of the strain 

energy, work performed by external forces and kinetic 

energy of the FG-beam. 

 

 

 

The formulation of the strain energy variation “𝛿𝑈” 

can be expressed as 
 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑥𝑑𝑧
ℎ/2

−ℎ/2

𝐿

0

 

= ∫ (𝑁𝑥𝛿𝜀𝑥
0 +𝑀𝑥𝑘1𝐴

′𝜂𝑥 + 𝑄𝑥𝑧𝛾𝑥𝑧

𝐿

0

)𝑑𝑥 

(11) 

 

With 
 

{
𝑁𝑥
𝑀𝑥
} = ∫ 𝜎𝑥 (

1
𝑧
) 𝑑𝑧

ℎ/2

−ℎ/2

;      𝑄𝑥𝑧 = ∫ 𝜏𝑥𝑧𝑑𝑧
ℎ/2

−ℎ/2

 (12) 

 

Where “𝑁𝑥,  𝑀𝑥  and  𝑄𝑥𝑧” are the stress resultants. 

The variations of the work performed by applied forces 

(Hygro-thermal load and elastic foundation) can the 

following mathematical form 
 

𝛿𝑉 = ∫ [
(𝑁𝑇 +𝑁𝐻) (

𝜕𝑤0
𝜕𝑥

𝜕𝛿𝑤0
𝜕𝑥

)

−𝐾𝑤𝑤0𝛿𝑤0 + 𝐾𝑠 (
𝜕𝑤0
𝜕𝑥

𝜕𝛿𝑤0
𝜕𝑥

)

]
𝐿

0

𝑑𝑥 (13) 

 

Where “𝐾𝑤, 𝐾𝑠  and  𝑁
𝑇,  𝑁𝐻” are Winkler, Pasternak 

coefficients and the applied forces due to temperature and 

moisture change, respectively. The “𝑁𝐻  and  𝑁𝑇” can be 

given as 
 

𝑁𝐻 = ∫ 𝐸(𝑧)𝛽(𝑧, 𝑇)(𝐶 − 𝐶0)𝑑𝑧
ℎ/2

−ℎ/2

 (14a) 

 

𝑁𝑇 = ∫ 𝐸(𝑧)𝛼(𝑧, 𝑇)(𝑇 − 𝑇0)𝑑𝑧
ℎ/2

−ℎ/2

 (14b) 

 

Where “𝑇0  and  𝐶0”  are the moisture concentrations 

and reference temperature, respectively. 

The variation of kinetic energy is expressed as 
 

𝛿𝐾 = ∫ ∫ [𝑢̇𝛿𝑢̇ + 𝑤̇𝛿𝑤̇]𝜌(𝑧)𝑑𝑥𝑑𝑧
ℎ/2

−ℎ/2

𝐿

0

 (15) 

 

By replacing the displacement field of Eq. (5) in Eq. 

(15), we obtain 

 

Table 1 Temperature-dependent material properties of FGM constituents (Ebrahimi and Salari 2015) 

Material Properties P0 P-1 P1 P2 P3 

Si3N4 

E (Pa) 3,4843e+11 0 -3,070e-04 2,160e-07 -8,946e-11 

α (K-1) 5,8723e-06 0 9,095e-04 0 0 

ρ (Kg/m3) 2370 0 0 0 0 

ν 0,24 0 0 0 0 

SUS 304 

E (Pa) 2,0104e+11 0 3,079e-04 -6,534e-07 0 

α (K-1) 1,233e-05 0 8,086e-04 0 0 

ρ (Kg/m3) 8,17e+03 0 0 0 0 

ν 3,262e-01 0 -2,002e-04 3,797e-07 0 
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𝛿𝐾 = ∫ [𝐼0(𝑢̇0𝛿𝑢̇0 + 𝑤̇0𝛿𝑤̇0)
𝐿

0

 

           −𝐼1 (𝑘1𝐴
′𝑢̇0

𝜕𝛿𝜃̇

𝜕𝑥
+ 𝑘1𝐴

′𝛿𝑢̇0
𝜕𝜃̇

𝜕𝑥
) 

           +𝐼2(𝑘1𝐴
′)2
𝜕𝜃̇

𝜕𝑥

𝜕𝛿𝜃̇

𝜕𝑥
] 

(16) 

 

with 
 

𝑢̇0 =
𝜕𝑢0
𝜕𝑡
,     𝑤̇0 =

𝜕𝑤0
𝜕𝑡

     and     𝜃̇ =
𝜕𝜃

𝜕𝑡
 (17) 

 

and 
 

(𝐼0, 𝐼1, 𝐼2) = ∫ (1, 𝑧, 𝑧2)𝜌(𝑧)𝑑𝑧
ℎ/2

−ℎ/2

 (18) 

 

where “𝐼0, 𝐼1  and  𝐼2”  are mass inertias. “𝜌(𝑧)”  is the 

mass density. 

Substituting the Eqs. (11)-(15) and Eq. (15) into Eq. 

(10), integrating by parts the results equation, and 

separating the terms of displacement “𝛿𝑢0, 𝛿𝑤0  and  𝛿𝜃”. 
The equations of motion of the FG beam expressed by 

resultants stresses “𝑁𝑥,  𝑀𝑥  and  𝑄𝑥𝑧” are obtained as 
 

𝛿𝑢0 :     
𝜕𝑁𝑥
𝜕𝑥

= 𝐼0𝑢̈0 + 𝐼1𝑘1𝐴
′
𝜕𝜃̈

𝜕𝑥
 (19a) 

 

𝛿𝑤0 :     −
𝜕𝑄𝑥𝑧
𝜕𝑥

− (𝑁𝑇 + 𝑁𝐻)
𝜕2𝑤0
𝜕𝑥2

 

               −𝐾𝑤𝑤0 − 𝐾𝑠
𝜕2𝑤0
𝜕𝑥2

= −𝐼0𝑤̈0 

(19b) 

 

𝛿𝜃:     − 𝑘1𝐴
′
𝜕2𝑀𝑥
𝜕𝑥2 + 𝑘1𝐴

′
𝜕𝑄𝑥𝑧
𝜕𝑥  

             = 𝐼1𝑘1𝐴
′
𝜕𝑢̈0
𝜕𝑥

+ 𝐼2𝑘1
2𝐴′2

𝜕2𝜃̈

𝜕𝑥2
 

(19c) 

 

2.4 Nonlocal elasticity 
 

The nonlocal theory of (Eringen 1972, 1983) is 

employed herein to derive the non-local equations of 

motion, which take into account the small scale effect. 

Thus, the normal and shear stresses “𝜎  and  𝜏”  of 

nonlocal theory For FG nanobeam can be obtained as 

 

(1 − 𝜇𝛻2) (
𝜎𝑥𝑥
𝜏𝑥𝑧
) = [

𝑄11 0
0 𝑄44

] (
𝜀𝑥𝑥
𝛾𝑥𝑧
) (2) 

 

Where 𝜇 = (𝑒0𝑎)
2 and 𝑄𝑖𝑖 are the small scale effect 

and stiffnesscoefficients, and can be defined as 

 

𝑄11 = 𝐸(𝑧),     𝑄44 = 𝐺(𝑧) (21) 

 

Substituting Eq. (12) into Eq. (20). The resultants forces 

and moment “𝑁𝑥,  𝑀𝑥  and  𝑄𝑥𝑧” can be obtained in the 

nonlocal form as follow 
 

(1 − 𝜇𝛻2) (
𝑁𝑥
𝑀𝑥
) = [

𝐴11 𝐵11
−𝑘1𝐴

′𝐵11 −𝑘1𝐴
′𝐷11

] (
𝜀𝑥
0

𝜂𝑥
) (22) 

 

With 
 

(1 − 𝜇𝛻2)𝑄𝑥𝑧 = 𝐴44
𝑠 𝛾𝑥𝑧 (23) 

 

Where the stiffness components 𝐴11, 𝐵11, 𝐷11 and 𝐴55 

are defined as 
 

{𝐴11, 𝐵11, 𝐷11} = ∫ 𝑄11(𝑧)(1, 𝑧, 𝑧
2)𝑑𝑧

ℎ

2

−
ℎ

2

, 

𝐴44
𝑠 = 𝐹𝑐

𝑠∫ 𝑄44(𝑧)𝑑𝑧
ℎ/2

−ℎ/2

 

(24) 

 

With “𝐹𝑐
𝑠” is the shear correction factor. 

To obtain the Equations of motion as function of 

displacement terms “𝛿𝑢0, 𝛿𝑤0  and  𝛿𝜃”, just we replace 

the Eq. (22) in (19). the equations of motion become 

 

𝐴11
𝜕2𝑢0
𝜕𝑥2

− 𝑘1𝐴′𝐵11
𝜕3𝜃0
𝜕𝑥3

= 𝐼0𝑢̈0 + 𝐼1𝑘1𝐴′
𝜕3𝜃̈0
𝜕𝑥3

 (25a) 

 

−𝐴55 (
𝜕2𝑤0
𝜕𝑥2

− 𝑘 𝐴1 ′
𝜕2𝜃0
𝜕𝑥2

) − (𝑁𝑇 + 𝑁𝐻) (
𝜕2𝑤0
𝜕𝑥2

) 

−𝑘𝑤𝑤0 − 𝑘𝑠 (
𝜕2𝑤0
𝜕𝑥2

) = −𝐼0𝑤̈0 

(25b) 

 

−𝑘1𝐴
′𝐵11

𝜕3𝑢0
𝜕𝑥3 − 𝑘1𝐴

′𝐷11
𝜕4𝜃0
𝜕𝑥4  

+𝐴44
𝑠 𝑘1𝐴′(

𝜕2𝑤0
𝜕𝑥2

− 𝑘1𝐴′
𝜕2𝜃0
𝜕𝑥2

) 

= 𝐼1𝑘1𝐴′
𝜕𝑢̈0
𝜕𝑥

+ 𝐼2(𝑘1𝐴′)
2
𝜕2𝜃̈0
𝜕𝑥2

 

(25c) 

 

 

3. Analytical solution 
 

To solve analytically the above equations of motion for 

studying the vibrational behavior of the simply supported 

FG nanobeam, it is better to use the Navier method which 

the term of displacement is assumed as follows (Ebrahimi 

and Salari 2015) 
 

{

𝑢0
𝑤0
𝜃
} = ∑ {

𝑢𝑚 𝑐𝑜𝑠(𝜆𝑥) 𝑒
𝑖𝜔𝑡

𝑤𝑚 𝑠𝑖𝑛(𝜆𝑥) 𝑒
𝑖𝜔𝑡

𝜃𝑚 𝑠𝑖𝑛(𝜆𝑥) 𝑒
𝑖𝜔𝑡

}

∞

𝑚=1

 (26) 

 

Where the terms “𝑢𝑚, 𝑤𝑚  and  𝜃𝑚” are arbitrary 

parameters to be found, “𝜔”  is the eigenfrequency 

correspond to m-th eigenmode 

Substituting the analytical solution (Navier method) of 

Eq. (26) in equations of motion of Eq. (25). We obtain the 

following matrix system 
 

([

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] − 𝜉𝜔 [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

]) {

𝑢𝑚
𝑤𝑚
𝜃𝑚
} 

= {
0
0
0
} 

(27) 

 

Where 
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𝑎11 = −𝐴11𝜆
2;                     𝑎12 = 0 

𝑎13 = −𝐵11𝑘1𝐴′𝜆
3;             𝑎21 = 𝑎12 

𝑎22 = −𝐴
𝑠
55𝜆

2 + (𝑁𝑇 +𝑁𝐻)𝜆2 
𝑎23 = −𝐴

𝑠
55𝑘1𝐴′𝜆

2;           𝑎31 = 𝐵11𝜆
3 

𝑎32 = 𝐴
𝑠
55𝑘1𝐴′𝜆

2 + 𝐷11𝑘1𝐴′𝜆
4 

𝑎33 = −𝐴
𝑠
55𝜆

2 
𝑚11 = −𝐼0;                           𝑚12 = 0 
𝑚13 = 𝐼1𝑘1𝐴′;                      𝑚21 = 𝑚12 
𝑚22 = −𝐼0;                           𝑚23 = 0 
𝑚31 = −𝐼1𝜆;                        𝑚32 = 𝑚23 
𝑚33 = 𝐼2𝑘1𝐴′𝜆

2;                 𝜉 = 1 + 𝜇𝜆2 

(28) 

 

 

4. External loads types (hygro-thermal loads) 
 

4.1 Uniform model 
 

In the first model the moisture and temperature raise 

uniformly .The moisture from “𝐶0” to a final value “𝐶” 
with “Δ𝐶 = 𝐶 − 𝐶0”. Also, the temperature from “𝑇0” to 

final value “𝑇” with Δ𝑇 = 𝑇 − 𝑇0. 
 

4.2 Linear model 
 

In the second model, the moisture and temperature raise 

linearly across the thickness of the FG nanobeam as Kiani 

and Eslami (2013) 
 

𝑇 = 𝑇𝑚 + Δ𝑇 (
𝑧

ℎ
+
1

2
), (29a) 

 

𝐶 = 𝐶𝑚 + Δ𝐶 (
𝑧

ℎ
+
1

2
) (29b) 

 

Where (Δ𝑇,Δ𝐶) are defines as 
 

Δ𝑇 = 𝑇 − 𝑇0     and     Δ𝐶 = 𝐶 − 𝐶0 (30) 
 

4.3 Sinusoidal model 
 

In the Third model, the moisture and temperature rise 

are supposed to vary according to sinusoidal function as 

(Na and Kim 2004, Ebrahimi and Barati 2016b) 
 

𝑇 = 𝑇𝑚 + Δ𝑇 (1 − 𝑐𝑜𝑠 (
𝜋

2
) (
𝑧

ℎ
+
1

2
)), (31a) 

 

𝐶 = 𝐶𝑚 + Δ𝐶 (1 − 𝑐𝑜𝑠 (
𝜋

2
) (
𝑧

ℎ
+
1

2
)) (31b) 

 

 

 

With Δ𝑇 = 𝑇 − 𝑇0  and  Δ𝐶 = 𝐶 − 𝐶0. 
 

 

5. Numerical results and discussions 
 

In this work, the free vibrational behavior of the P-FG 

and symmetric S-FG nanobeam is investigated using an 

integral nonlocal shear deformation beam theory. The beam 

is supposed seated on elastic foundation type (Winkler-

Pasternak). In the first section, several comparisons are 

provided to valid the current model and the second part is 

dedicated to the parametric studies to determine the 

different factors influencing the fundamental frequency of 

simply supported FG nanobeam reposed on elastic 

foundation. 
 

5.1 Comparison and validation 
 

To compare the current results obtained using an 

integral nonlocal shear deformation theory with those 

obtained by the others theory existing in the literature, the 

nondimensional fundamental frequencies and foundation 

parameters are presented in the following adimensional 

form 

𝜔̂ = 𝜔𝐿2√
𝜌𝑐𝐴

𝐸𝑐𝐼
,     𝐾𝑤 = 𝑘𝑤

𝐿4

𝐸𝑐𝐼
,     𝐾𝑠 = 𝑘𝑠

𝐿2

𝐸𝑐𝐼
 (32) 

 

Table 2 present a comparison of the nondimensional 

fundamental frequency “𝜔̂” of the simply supported P-FG 

nanobeam under linear thermal temperature rise with 

(𝐿/ℎ = 20; 𝐹𝑐
𝑠 = 5/6  and  𝐾𝑤 = 𝐾𝑠 = 0). From the table, 

it can be seen that the current results are in good agreement 

with those given by Timoshenko beam theory “𝑇𝐵𝑇” 
developed by Ebrahimi and Salari (2015) and the Classical 

beam theory “𝐶𝐵𝑇” overestimates slightly the fundamental 

frequency “𝜔̂” because of the neglect of shear deformation 

effect and this is insured for all values of the power law 

index “𝑝” and scale effect “𝜇”. 

The comparison of the adimensional fundamental 

frequency “𝜔̂” of the P-FG nanobeam without elastic 

foundation (𝐾𝑤 = 𝐾𝑠 = 0) under the three type proposed 

of the hygro-thermal loading (uniform, linear and 

sinusoidal) are presented in the Tables 3-5, respectively. 

Form the results shown in the tables, it is confirmed again 

that the current model gives almost the same values of the 

adimensional fundamental frequency “𝜔̂” with the “𝑇𝐵𝑇” 
model published by Ebrahimi and Salari (2015) and the 

 

 

 

Table 2 Comparison of the nondimensional fundamental frequency “𝜔̂” of the simply supported P-FG nanobeam under 

linear temperature rise without elastic foundation with various gradient indexes (𝐿 = 20ℎ) 

𝜇 
𝑝 = 0 𝑝 = 0.2 𝑝 = 1 𝑝 = 5 

CBT TBT Present CBT TBT Present CBT TBT Present CBT TBT Present 

0 9,1796 9,1475 9,1454 7,3681 7,342 7,3423 5,374 5,3537 5,3545 4,3059 4,2875 4,2878 

1 8,691 8,6601 8,6601 6,967 6,9419 6,9422 5,0676 5,048 5,0488 4,0496 4,0317 4,0320 

2 8,2608 8,231 8,2310 6,6135 6,5892 6,5895 4,7967 4,7777 4,7785 3,8223 3,8049 3,8052 

3 7,8777 7,8488 7,8488 6,2983 6,2747 6,2750 4,5545 4,536 4,5367 3,6185 3,6015 3,6018 

4 7,5334 7,5053 7,5053 6,0145 5,9916 5,9918 4,3357 4,3177 4,3184 3,4338 3,1472 3,4175 
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“𝐶𝐵𝑇” model give the biggest values of the frequency “𝜔̂” 
because of the omission of the shear deformation effect. It 

can be also seen from the tables that the fundamental 

frequency “𝜔̂” is in inverse relation with the power index 

“𝑝” for the various values of the scale effect “𝜇” and all 

 

 

 

 

type of the hygro-thermal loading (uniform, linear and 

sinusoidal loads) with (𝛥𝑇, 𝛥𝐶) = (0,0),  (20,1) and 
(40,2). It can be concluded that the increase in the values of 

the hygro-thermal load (𝛥𝑇, 𝛥𝐶)  lead to decrease the 

values of the frequency “𝜔̂”. 

Table 3 Variation of the fundamental nondimensional frequencies “𝜔̂” of the simply supported P-

FG nanobeam under uniform hygro-thermal loading (UH-TL) for various beam theories 

(𝐿 = 20 ℎ and 𝐾𝑤 = 𝐾𝑠 = 0) 

𝜇 
Beam 

theory 

(Δ𝑇,Δ𝐶) = (0, 0) (Δ𝑇,Δ𝐶) = (20, 1) (Δ𝑇,Δ𝐶) = (40, 2) 

𝑝 = 0.2 𝑝 = 1 𝑝 = 5 𝑝 = 0.2 𝑝 = 1 𝑝 = 5 𝑝 = 0.2 𝑝 = 1 𝑝 = 5 

0 

CBT 7,9923 5,9506 4,8629 7,4706 5,2423 4,0328 6,9006 4,4134 2,9692 

TBT 7,9683 5,9324 4,8466 7,4449 5,2216 4,0132 6,8728 4,3887 2,9423 

present 7.9687 5.9333 4.847 7.4452 5.2224 4.0134 6.8731 4.3894 2.9425 

1 

CBT 7,6249 5,677 4,6393 7,0759 4,9289 3,7594 6,471 4,0354 2,5845 

TBT 7,602 5,6597 4,6238 7,0512 4,9089 3,7402 6,4439 4,0108 2,5564 

Present 7.6023 5.6606 4.6242 7.0515 4.9097 3.7405 6.4442 4.0115 2.5566 

2 

CBT 7,3039 5,438 4,444 6,7285 4,6511 3,5148 6,0889 3,6902 2,2125 

TBT 7,2819 5,4214 4,4292 6,7047 4,6316 3,496 6,0625 3,6655 2,1824 

present 7.2823 5.4223 4.4295 6.705 4.6323 3.4962 6.0628 3.6661 2.1826 

3 

CBT 7,0203 5,2269 4,2714 6,4193 4,4018 3,2933 5,7452 3,37 1,8393 

TBT 6,9992 5,2109 4,2572 6,3963 4,3828 3,2747 6,7193 3,345 1,8057 

present 6.9995 5.2118 4.2575 6.3966 4.3835 3.2749 5.7196 3.3456 1.8058 

4 

CBT 6,7673 5,0385 4,1175 6,1415 4,176 3,0904 5,4328 3,0686 1,4438 

TBT 6,747 5,0231 4,1038 6,1191 4,1574 3,0721 5,4074 3,0431 1,4039 

present 6.7473 5.024 4.1041 6.1194 4.1581 3.0723 5.4077 3.0436 1.404 
 

Table 4 Variation of the fundamental nondimensional frequencies “𝜔̂” of the simply supported P-

FG nanobeam under linear hygro-thermal loading (LH-TL) for various beam theories (𝐿 =
20 ℎ and 𝐾𝑤 = 𝐾𝑠 = 0) 

𝜇 
Beam 

theory 

(Δ𝑇,Δ𝐶) = (0, 0) (Δ𝑇,Δ𝐶) = (20, 1) (Δ𝑇,Δ𝐶) = (40, 2) 

𝑝 = 0.2 𝑝 = 1 𝑝 = 5 𝑝 = 0.2 𝑝 = 1 𝑝 = 5 𝑝 = 0.2 𝑝 = 1 𝑝 = 5 

0 

CBT 7,9053 5,868 4,7844 7,688 5,5817 4,4153 7,46 5,2763 4,0085 

TBT 7,881 5,8496 4,7679 7,6631 5,5623 4,3974 7,4343 5,2557 3,9887 

present 7.8814 5.8505 4.7683 7.6634 5.5632 4.3977 7.4346 5.2565 3.989 

1 

CBT 7,5336 5,5904 4,557 7,3051 5,2885 4,167 7,0644 4,9645 3,7326 

TBT 7,5105 5,5728 4,5413 7,2812 5,2698 4,1498 7,0397 4,9445 3,7132 

Present 7.5108 5.5737 4.5416 7.2815 5.2707 4.1501 7.04 4.9453 3.7135 

2 

CBT 7,2086 5,3476 4,358 6,9691 5,0306 3,9478 6,7162 4,6882 3,4854 

TBT 7,1864 5,3307 4,3429 6,9461 5,0126 3,9311 6,6923 4,6688 3,4663 

present 7.1867 5.3316 4.3432 6.9464 5.0134 3.9314 6.6927 4.6695 3.4666 

3 

CBT 6,9211 5,1327 4,1819 6,6711 4,8011 3,7519 6,4063 4,4405 3,2612 

TBT 6,8997 5,1164 4,1674 6,6489 4,7836 3,7357 6,3831 4,4216 3,2424 

present 6.9 5.1173 4.1677 6.6492 4.7844 3.7359 6.3834 4.4223 3.2426 

4 

CBT 6,6644 4,9408 4,0246 6,4042 4,5949 3,5752 6,1277 4,2163 3,0556 

TBT 6,6437 4,9251 4,0105 6,3827 4,578 3,5593 6,1052 4,1978 3,037 

present 6.644 4.9259 4.0108 6.383 4.5788 3.5596 6.1055 4.1985 3.0372 
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Table 5 Variation of the fundamental nondimensional frequencies “𝜔̂” of the simply supported P-

FG nanobeam under sinusoidal hygro-thermal loading (SH-TL) for various beam theories 

(𝐿 = 20 ℎ and 𝐾𝑤 = 𝐾𝑠 = 0) 

𝜇 
Beam 

theory 

(Δ𝑇,Δ𝐶) = (0, 0) (Δ𝑇,Δ𝐶) = (20, 1) (Δ𝑇,Δ𝐶) = (40, 2) 

𝑝 = 0.2 𝑝 = 1 𝑝 = 5 𝑝 = 0.2 𝑝 = 1 𝑝 = 5 𝑝 = 0.2 𝑝 = 1 𝑝 = 5 

0 

CBT 7,9053 5,868 4,7844 7,7592 5,6833 4,5349 7,607 5,4897 4,2683 

TBT 7,881 5,8496 4,7679 7,7344 5,6642 4,5174 7,5818 5,4699 4,2497 

present 7,881 5,851 4,768 7.7348 5.6651 4.5178 7,582 5,471 4,25 

1 

CBT 7,5336 5,5904 4,557 7,3799 5,3956 4,2936 7,2194 5,1907 4,0102 

TBT 5,5105 5,5728 4,5413 7,3562 5,3773 4,2768 7,1953 5,1717 3,9922 

Present 7,511 5,574 4,542 7.3565 5.3782 4.2771 7.1955 5.1725 3.9925 

2 

CBT 7,2086 5,3476 4,358 7,0475 5,143 4,0811 6,8791 4,9272 3,7812 

TBT 7,1864 5,3307 4,3429 7,0248 5,1254 4,0649 6,8558 4,9087 3,7637 

present 7,187 5,332 4,343 7.0251 5.1263 4.0652 6.8561 4.9095 3.7640 

3 

CBT 6,9211 5,1327 4,1819 6,753 4,9188 3,892 6,5768 4,6921 3,5756 

TBT 6,8997 5,1164 4,1674 6,731 4,9018 3,8763 6,5543 4,6742 3,5585 

present 6,9 5,117 4,168 6.7313 4.9026 3.8766 6.5546 4.6750 3.5588 

4 

CBT 6,6644 4,9408 4,0246 6,4894 4,7178 3,7219 6,3058 4,4806 3,3892 

TBT 6,6437 4,9251 4,0105 6,4682 4,7013 3,7067 6,284 4,4631 3,3724 

present 6,644 4,926 4,011 6.4685 4.7021 3.7070 6.2842 4.4639 3.3727 
 

  
 

 

Fig. 4 Effect of moisture “Δ𝐶” and nonlocal parameter “𝜇” on the dimensionless frequency “𝜔̂” of the Symmetric S-

FG nanobeam under various hygro-thermal loadings “𝑝 = 0.1, 𝐿 = 10 ℎ and Δ𝑇 = 40𝐾” 
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5.2 Parametric studies 
 

5.2.1 Symmetric S-FG nanobeam without 
elastic foundation 

In this part present the analysis of the dynamic behavior 

of the symmetric S-FG nanobeam under hygro-thermal 

loads (HTL) without elastic foundation (𝐾𝑤 = 𝐾𝑠 = 0) 
with “𝑝 = 0.1  and  𝐿 = 10 ℎ”. 

The Fig. 4 presents the variation of the nondimensional 

frequencies “𝜔̂” of the simply supported symmetric S-FG 
 

 

 

 

nanobeam under uniform (UHTL), linear (LHTL) and 

sinusoidal (SHTL) hygro-thermal loads versus the moisture 

concentration “𝛥𝐶”  and small scale effect “𝜇”  with 

“𝛥𝑇 = 40𝐾”. From the plotted graphs, it can be observed 

that the dimensionless frequencies “𝜔̂”  decrease with 

increasing of both moisture concentration “𝛥𝐶” and small 

scale effect “𝜇”. 

The effect of the temperature rises “𝛥𝑇” and moisture 

“𝛥𝐶” on the dimensionless frequency “𝜔̂”  of the 

Symmetric S-FG nanobeam under various hygro-thermal 
 

 

 

  
 

 

Fig. 5 Effect of moisture concentration “Δ𝐶” on the dimensionless frequency “𝜔̂” of the Symmetric S-FG nanobeam 

with respect to various temperature rises “Δ𝑇” with “𝑝 = 0.1  and  𝐿 = 10 ℎ” 

  

Fig. 6 Influence of elastic foundation on the dimensionless frequency “𝜔̂” of the symmetric S-FG nanobeam versus the 

temperature change “Δ𝑇” for thermal, “Δ𝐶 = 0” and hygro-thermal, “Δ𝐶 = 1” environments with “𝑝 =
0.1, 𝐿 = 10 ℎ and 𝜇 = 1.5 𝑛𝑚” 
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loadings are drawn in Fig. 5. It is remarkable from the 

obtained results that the increasing in the temperature “𝛥𝑇” 
and moisture “𝛥𝐶” leads to the decrease in the values of 

the frequency “𝜔̂” and this is valid to the three types of the 

hygro-thermal loads (UHTL, LHTL and SHTL). The lower 

values of the dimensionless frequencies “𝜔̂” are obtained 

by UHTL model (uniform). 

 

5.2.2 Symmetric S-FG nanobeam on 
elastic foundation 

The Fig. 6 illustrate the variation of the values of the 

dimensionless frequency “𝜔̂” of the symmetric S-FG 

 

 

 

 

nanobeam under uniform, linear and sinusoidal thermal and 

hygro-thermal loads versus the elastic foundation 

parameters “𝐾𝑤  and  𝐾𝑠” and the temperature rise “𝛥𝑇” 
with “𝑝 = 0.1, 𝐿 = 10 ℎ  and  𝜇 = 1.5 𝑛𝑚”. It can be seen 

from the figures that the dimensionless frequency “𝜔̂” is in 

inverse relation with the elastic foundation parameters and 

temperature “𝛥𝑇”. The frequencies of the FG nanobeam 

under only thermal load “𝛥𝐶 = 0” gives higher values of 

frequency relative to the FG nanobeam under hygro-thermal 

load with “Δ𝐶 = 1”. 

The variation of the values of the dimensionless 

frequency “𝜔̂” of the symmetric S-FG nanobeam under 

 

 

Fig. 6 Continued 

  
 

 

Fig. 7 Influence of power index “𝑝” on the dimensionless frequency “𝜔̂” of the symmetric S-FG nanobeam for 

thermal, “Δ𝐶 = 0” and hygro-thermal, “Δ𝐶 = 1” environments with “𝐿 = 10 ℎ,Δ𝑇 = 40 𝐾 and 𝜇 = 1.5 𝑛𝑚” 
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thermal “𝛥𝐶 = 0”  and hygro-thermal “𝛥𝐶 = 1”  loads 

versus the power index “𝑝”  and elastic foundation 

parameter “𝐾𝑤  and  𝐾𝑠” is presented in Fig. 7. It can be 

noted from the plotted curves that the dimensionless 

frequency “𝜔̂” is in direct correlation relation with the 

material index “𝑝” and elastic foundation and this is valid 

for all type of distributions (uniform, linear and sinusoidal). 

Effect of the geometry ratio “𝐿/ℎ” on the adimensional 

frequency “𝜔̂” of the symmetric S-FG nanobeam under 

uniform and linear moisture rises “𝛥𝐶” with “𝑝 = 0.1, 𝐿 =
10 ℎ, 𝛥𝑇 = 40 𝐾  and  𝜇 = 1.5 𝑛𝑚” is illustrated in the 

 

 

 

 

plotted curves in the Fig. 8. 

We can observe that the the increase of the slenderness 

ratio lead to the slight increase in the adimensional 

frequency “𝜔̂” to a maximum value for “𝐿/ℎ = 7.5” than 

the frequency “𝜔̂”  decreases because the nanobeam 

becomes slender. 

Fig. 9 shows the variations of the dimensionless 

frequency “𝜔̂” of the symmetric S-FG nanobeam under 

uniform and linear moisture rises “𝛥𝐶” with ”𝑝 = 0.1,
and  𝜇 = 1.5 𝑛𝑚” versus the effects of the Winkler and 

Pasternak parameter “𝐾𝑤, 𝐾𝑠”. From the obtained results, it 

  

Fig. 8 Effect of slenderness ratio “𝐿/ℎ” on the dimensionless frequency “𝜔̂” of the symmetric S-FG nanobeam under 

uniform and linear moisture rises “𝑝 = 0.1, 𝐿 = 10 ℎ,Δ𝑇 = 40 𝐾 and 𝜇 = 1.5 𝑛𝑚” 

  
 

  

Fig. 9 Influence of the elastic foundation parameters “𝐾𝑤 , 𝐾𝑠” on the dimensionless frequency “𝜔̂” of the FG 

nanobeam under uniform and linear moisture rises “𝑝 = 0.1, 𝐿 = 10 ℎ,Δ𝑇 = 40 𝐾 and 𝜇 = 1.5 𝑛𝑚” 
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can be concluded that the presence of the elastic foundation 

leads to increase the nondimensional frequency “𝜔̂” 
because the symmetric S-FG becomes stiffer. It is also 

remarkable that the increasing in the value of the moisture 

rises decreases the values of the frequency “𝜔̂” and this is 

valid for the uniform and linear hygro-thermal loading. 

 

 

6. Conclusions 
 

In the current paper, the nonlocal integral Timoshenko 

beam theory is developed for the free vibration analysis of 

P-FG and symmetric S-FG nanobeam seated on Winkler-

Pasternak foundation subjected to the thermal and hygro-

thermal loading. The thermo-elastic materials propertiesare 

considered nonlinearly distributed. The analytical solution 

of the present investigation is obtained based on the 

Hamilton and Navier model. The several numerical 

comparisons and parametric studies has been presented and 

discussed in detail to show the validity of the present model 

and determining the various parameters influencing the 

fundamental frequency of the FG nanobeam.An improve-

ment of the present formulation will be considered in the 

future work to consider other type of materials (Sharma et 

al. 2009, Kolahchi et al. 2016, Bozyigit and Yesilce 2016, 

Daouadji 2017, Lal et al. 2017, Salamat and Sedighi 2017, 

Kar et al. 2017, Panjehpour et al. 2018, Selmi and Bisharat 

2018, Shahadat et al. 2018, Ayat et al. 2018, Li et al. 2018, 

Behera and Kumari 2018, Narwariya et al. 2018, Akbas 

2019b, Katariya et al. 2019, Safa et al. 2019, Othman et al. 

2019, Yüksela and Akbaş 2019, Abdou et al. 2019, Rajabi 

and Mohammadimehr 2019, Avcar 2019, Selmi 2019, 

Esmaeili and Beni 2019, Hadji et al. 2019, Sahouane et al. 

2019). 
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