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1. Introduction 

 

Within a FG material, all material properties may 

change from one side to another side by means of a 

prescribed distribution (Mahesh et al. 2018, 2019, Mahesh 

and Kattimani 2019, Vinyas and Kattimani 2017a, b, 2018, 

Vinyas et al. 2019a, b, 2020, Vinyas 2020a, b). These two 

sides may be ceramic or metal. Mechanical characteristics 

of a FG material can be described based on the percentages 

of ceramic and metal phases. The material distribution in 

FG materials may be characterized via a power-law 

function. FG materials are not always perfect because of 

porosity production in them. Existence of porosities in the 

FG materials may significantly change their mechanical 

characteristics. For example, the elastic moduli of porous 

FG material is smaller than that of perfect FG material. Up 

to now, many authors focused on wave propagation, 

vibration and buckling analyzes of FG structures having 

porosities (Şimşek and Kocatürk 2009, Hadji et al. 2016, 

Benadouda et al. 2017, Belabed et al. 2018, Ayache et al. 

2018, Mahmoudi et al. 2018, Safa et al. 2019, Zouatnia and 

Hadji 2019, Wattanasakulpong and Ungbhakorn 2014). 

Also, there are several investigations concerning with the 

analysis of FG structures in thermal environments. 

Recently, this kind of materials have found their 

applications in micro-scale structures. Vibration behavior of 

a micro-scale beam is not the same as a macro-scale beam. 

This is because small-size effects are not present at macro 

scale. So, mathematical modeling of a micro-beams can be 
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done with the use of nonlocal elasticity and modified couple 

stress theory (Yang et al. 2002) incorporating only one scale 

parameter. Due to the ignorance of strain gradient effect in 

nonlocal elasticity theory, a more general theory will be 

required. Strain gradients at nano-scale are observed by 

many researchers. While, couple stresses play a major role 

in mechanical analysis microsize structures. The scale 

parameters used in nonlocal and modified couple stress 

theories can be obtained by fitting obtained theoretical 

results with available experimental data and even molecular 

dynamic (MD) simulations (Lu et al. 2009, Şimşek and 

Reddy 2013, Wang and Wang 2011, Liu et al. 2013, Akgöz 

and Civalek 2014, Al-Basyouni et al. 2015, Fernández-Sáez 

et al. 2016, Civalek and Demir 2016, Ahmed et al. 2019, 

Attia and Rahman 2018, Barretta et al. 2018, Bensattalah et 

al. 2019). 

This paper uses a higher order shear deformation beam 

formulation having three variables without using of shear 

correction factor. Based upon differential quadrature (DQ) 

approach and modified couple stress elasticity formulation, 

mechanical-thermal vibrational analysis of shear 

deformable porous functionally graded (FG) microbeam has 

been performed. The presented formulation incorporates 

one scale factor for examining vibrational behaviors of 

micro-dimension beams more accurately. The material 

properties for FG beam are porosity-dependent and defined 

employing a modified power-law form. It is supposed that 

the micro-sized beam is exposed to thermal loading of 

uniform type. The governing equations achieved by 

Hamilton’s principle are solved implementing DQM. 

Presented results indicate the prominence of temperature 

variation, scale factor, material gradient index, and 

porosities on vibrational frequencies of FG micro-size 

beam. 
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2. Theoretical formulation 
 

For the micro-size beam shown in Fig. 1, the material 

distribution in FG materials may be characterized via a 

power-law function. FG materials are not always perfect 

because of porosity production in them. Existence of 

porosities in the FG materials may significantly change 

their mechanical characteristics. Porosities within the 

material structure can affect all material properties of 

FGMs. It is well-known that porosity volume fraction (α), 

can be incorporated in the rule of mixture to define the 

material properties of FGMs. Based on the rule of mixture, 

the effective material properties, 𝑃𝑓, can be expressed by 

(She et al. 2018) 
 

𝑃𝑓 = 𝑃𝑐(𝑉𝑐 −
𝛼

2
) + 𝑃𝑚(𝑉𝑚 −

𝛼

2
) (1) 

 

for which 𝑃𝑐 , 𝑃𝑚 , 𝑉𝑐  and 𝑉𝑚  define the material 

properties and the volume fractions of the metallic and 

ceramic ingredients, respectively which are related by (She 

et al. 2019) 
 

𝑉𝑐 + 𝑉𝑚 = 1 (2) 

 

By defining the location of neutral axis (𝑧𝑛𝑠) which is 

different from mid-axis location (zms), the volume fraction 

of ceramic ingredient may be introduced by 

 

𝑉𝑐 = (
𝑧𝑚𝑠

ℎ
+

1

2
)

𝑝

= (
𝑧𝑛𝑠 + 𝐶

ℎ
+

1

2
)

𝑝

 (3) 

 

in which based on Láme’s constants (λ and µ), one may 

define 
 

𝐶 =

∫ [𝜆(𝑧𝑚𝑠) + 2𝜇(𝑧𝑚𝑠)]𝑧𝑚𝑠𝑑𝑧𝑚𝑠

ℎ

2

−
ℎ

2

∫ [𝜆(𝑧𝑚𝑠) + 2𝜇(𝑧𝑚𝑠)]
ℎ

2

−
ℎ

2

𝑑𝑧𝑚𝑠

 (4) 

 

In this study, it is assumed that the porosities have even 

distribution. Also, due to the fact that the microbeam has 

planar deformation, porosity distribution will be symmetric. 

Depending on the type of porosity distribution, the elastic 

moduli E, density ρ, temperature expansion property γ and 

thermal coefficient k for porous FG material can be 

expressed in the following power-law form having material 

gradient index p as 

 

 

 

Fig. 1 Geometry of porous beam 

3 

𝐸(𝑧𝑛𝑠) = (𝐸𝑐 − 𝐸𝑚) (
𝑧𝑛𝑠 + 𝐶

ℎ
+

1

2
)

𝑝

 

                  +𝐸𝑚 − (𝐸𝑐 + 𝐸𝑚)
𝛼

2
 

(5) 

 

𝜌(𝑧𝑛𝑠) = (𝜌𝑐 − 𝜌𝑚) (
𝑧𝑛𝑠 + 𝐶

ℎ
+

1

2
)

𝑝

 

                  +𝜌𝑚 − (𝜌𝑐 + 𝜌𝑚)
𝛼

2
 

(6) 

 

𝜈(𝑧𝑛𝑠) = (𝜈𝑐 − 𝜈𝑚) (
𝑧𝑛𝑠 + 𝐶

ℎ
+

1

2
)

𝑝

 

                  +𝜈𝑚 − (𝜈𝑐 + 𝜈𝑚)
𝛼

2
 

(7) 

 

𝛾(𝑧𝑛𝑠) = (𝛾𝑐 − 𝛾𝑚) (
𝑧𝑛𝑠 + 𝐶

ℎ
+

1

2
)

𝑝

 

                 +𝛾𝑚 − (𝛾𝑐 + 𝛾𝑚)
𝛼

2
 

(8) 

 

𝑘(𝑧𝑛𝑠) = (𝑘𝑐 − 𝑘𝑚) (
𝑧𝑛𝑠 + 𝐶

ℎ
+

1

2
)

𝑝

 

                  +𝑘𝑚 − (𝑘𝑐 + 𝑘𝑚)
𝛼

2
 

(9) 

 

where m and c correspond to the metallic and ceramic sides, 

respectively; α defines the porosity volume fraction. 

Furthermore, the temperature-dependency of material 

coefficients might be introduced with usage of the below 

relation 
 

𝑃 = 𝑃0(𝑃−1𝑇−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇2 + 𝑃3𝑇3) (10) 
 

where 𝑃0, 𝑃1, 𝑃2 and 𝑃3 are material coefficients which 

can be seen in the Table 1 for SUS304 and Si3N4. The 

bottom surface of FGM beam is pure metal (SUS304), 

whereas the top surface is pure ceramic (Si3N4). 
 

 

3. The modified couple stress theory 
 

Based upon to the modified couple stress elasticity, the 

strain energy, U of an elastic material occupying region 

Ω is associated with the strain and curvature tensors as 
 

𝑈 =
1

2
∫ (𝜎𝑖𝑗휀𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉

Ω

 

(𝑖, 𝑗 = 1,2,3) 

(1) 

 

where 𝜎, 휀, 𝑚 and 𝜒 are Cauchy stress tensor, classical 

strain tensor, deviatoric part of the couple stress tensor and 

symmetric curvature tensor, respectively. The strain and 

curvature tensors can be defined by 
 

휀𝑖𝑗 =
1

2
(𝑢𝑖.𝑗 + 𝑢𝑗.𝑖) (12) 

 

𝜒𝑖𝑗 =
1

2
(𝜃𝑖.𝑗 + 𝜃𝑗.𝑖) (13) 

 

where 𝑢𝑖.𝑗  and 𝜃𝑖.𝑗  are the components of the 

displacement and rotation vectors written by 
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𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘.𝑗 (14) 

 

in which 𝑒𝑖𝑗𝑘 is the permutation symbol. The constitutive 

relations can be expressed as 

 

𝜎𝑖𝑗 = 𝜆(𝑧𝑛𝑠)𝜖𝑘𝑘𝛿𝑖𝑗 + 2𝜇(𝑧𝑛𝑠)𝜖𝑖𝑗 (15) 

 

𝑚𝑖𝑗 = 2𝜇(𝑧𝑛𝑠)[𝑙(𝑧𝑛𝑠)]2𝑋𝑖𝑗 (16) 

 

where 𝛿𝑖𝑗  is the Kronecker symbol, 𝑙  is the material 

length scale parameter which reflects the effect of couple 

stress. Also, the Láme’s constants can be defined by 

 

𝜆(𝑧𝑛𝑠) =
𝐸(𝑧𝑛𝑠)𝜈(𝑧𝑛𝑠)

[1 + 𝜈(𝑧𝑛𝑠)][1 − 2𝜈(𝑧𝑛𝑠)]
 (17) 

 

𝜇(𝑧𝑛𝑠) =
𝐸(𝑧𝑛𝑠)

2[1 + 𝜈(𝑧𝑛𝑠)]
 (18) 

 

 

4. The refined FGM beam model 
 
By defining exact location of neutral surface, the 

displacement components based on axial u, bending wb and 

shear ws displacements may be introduced as 

 

𝑢𝑥(𝑥, 𝑧𝑛𝑠, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧𝑛𝑠

𝜕𝑤𝑏

𝜕𝑥
− 𝑓(𝑧𝑛𝑠)

𝜕𝑤𝑠

𝜕𝑥
 (19) 

 

𝑢𝑦(𝑥, 𝑧𝑛𝑠, 𝑡) = 0 (20) 

 

𝑢𝑧(𝑥, 𝑧𝑛𝑠, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) (21) 
 

Also: 
 

● According to classical beam theory (CBT): 

 

𝑤𝑠(𝑥, 𝑡) = 0 (22) 

 

● According to first order beam theory (FBT): 

 

𝑓(𝑧𝑛𝑠) = 0 (23) 

 

 

● According to sinusoidal beam theory (SBT): 
 

𝑓(𝑧𝑛𝑠) = (𝑧𝑛𝑠 + 𝐶) −
ℎ

𝜋
sin (

𝜋(𝑧𝑛𝑠 + 𝐶)

ℎ
) (24) 

 

● According to third-order beam theory (TBT): 
 

𝑓(𝑧𝑛𝑠) = −
𝑧𝑛𝑠 + 𝐶

4
+

5(𝑧𝑛𝑠 + 𝐶)3

3ℎ2
 (25) 

 

Next, the strains based on the modified beam model 

have been obtained as 
 

𝜖𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧𝑛𝑠

𝜕2𝑤𝑏

𝜕𝑥2
− 𝑓(𝑧𝑛𝑠)

𝜕2𝑤𝑠

𝜕𝑥2
 (26) 

 

𝜖𝑦 = 𝜖𝑧 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0 (27) 

 

𝛾𝑥𝑧 = 2𝜖𝑥𝑧 = 𝑔(𝑧𝑛𝑠)
𝜕𝑤𝑠

𝜕𝑥
 (28) 

 

where 𝑔(𝑧𝑛𝑠) = 1 − 𝑓′(𝑧𝑛𝑠). In addition, Eqs. (12), (13) 

and (14) give 
 

𝜃𝑦 = −
𝜕𝑤𝑏

𝜕𝑥
−

1

2
𝜓(𝑧𝑛𝑠)

𝜕𝑤𝑠

𝜕𝑥
 

𝜃𝑥 = 𝜃𝑧 = 0 

(29) 

 

with 𝜓(𝑧𝑛𝑠) = 1 + 𝑓′(𝑧𝑛𝑠). Substitution of Eq. (29) into 

(13) leads to the following expression for the non-zero 

components of the symmetric curvature tensor 
 

𝑋𝑥𝑦 = −
1

2

𝜕2𝑤𝑏

𝜕𝑥2
−

1

4
𝜓(𝑧𝑛𝑠)

𝜕2𝑤𝑠

𝜕𝑥2
 

𝑋𝑦𝑧 = −
1

4
𝑓′′(𝑧𝑛𝑠)

𝜕𝑤𝑠

𝜕𝑥
 

(30) 

 

𝑋𝑥𝑥 = 𝑋𝑦𝑦 = 𝑋𝑧𝑧 = 𝑋𝑥𝑧 = 0 (31) 
 

 

5. The governing equations 
 

Next, one might express the Hamilton’s rule as follows 

based on strain energy (U) and kinetic energy (K) 

Table 1 Material factors of Si3𝑁4 and SUS304 

Material Properties 𝑃0 𝑃−1 𝑃1 𝑃2 𝑃3 

Si3𝑁4 

𝐸 (Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

𝛾 (𝐾-1) 5.8723e-6 0 9.095e-4 0 0 

𝜌 (Kg/m3) 2370 0 0 0 0 

𝜅 (W/mK) 13.723 0 -1.032e-3 5.466e-7 -7.876e-11 

𝜈 0.24 0 0 0 0 

SUS304 

𝐸 (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 

𝛾 (𝐾-1) 12.330e-6 0 8.086e-4 0 0 

𝜌 (Kg/m3) 8166 0 0 0 0 

𝜅 (W/mK) 15.379 0 -1.264e-3 2.092e-6 -7.223e-10 

𝜈 0.3262 0 -2.002e-4 3.797e-7 0 
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∫ 𝛿(𝑈 + 𝑉 − 𝐾)𝑑𝑡 = 0

𝑇

0

 (32) 

 

and 𝑉 is the work of non-conservative loads. Based on 

above relation we have 

 

𝛿𝑈 = ∫ ∫ (𝜎𝑖𝑗𝛿𝜖𝑖𝑗 + 𝑚𝑖𝑗𝛿𝑋𝑖𝑗)𝑑𝑧𝑛𝑠𝑑𝑥

ℎ

2
−𝐶

−
ℎ

2
−𝐶

𝐿

0

 

       = ∫ ∫ (𝜎𝑥𝛿𝜖𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 2𝑚𝛿𝑋𝑥𝑦

ℎ

2
−𝐶

−
ℎ

2
−𝐶

𝐿

0

 

                         +2𝑚𝑦𝑧𝛿𝑋𝑦𝑧)𝑑𝑍𝑛𝑠𝑑𝑥 

= ∫ (𝑁
𝑑𝛿𝑢0

𝑑𝑥
− (𝑀𝑏 + 𝑌1)

𝑑2𝛿𝑤𝑏

𝑑𝑥2

𝐿

0

 

         − (𝑀𝑠 +
1

2
𝑌1 +

1

2
𝑌2)

𝑑2𝛿𝑤𝑠

𝑑𝑥2
 

         + (𝑄 −
1

2
𝑌3)

𝑑𝛿𝑤𝑠

𝑑𝑥
) 𝑑𝑥 

(33) 

 

in which 
 

(𝑁, 𝑀𝑏, 𝑀𝑠) = ∫ (1, 𝑧𝑛𝑠, 𝑓)𝜎𝑥𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 

𝑄 = ∫ 𝑔𝜏𝑥𝑧𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 

(34) 

 

(𝑌1, 𝑌2) = ∫ (1, 𝑓′)𝑚𝑥𝑦𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 

𝑌3 = ∫ 𝑓′′𝑚𝑦𝑧𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 

(35) 

 

The variation for the work of non-conservative force is 

expressed by 
 

𝛿𝑉 = − ∫ 𝑁𝑇

𝐿

0

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥
𝛿 (

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥
) 𝑑𝑥 (36) 

 

Herein, 𝑁𝑇  defines thermal loading and may be defined 

by 
 

𝑁𝑇 = ∫ 𝜆(𝑧𝑛𝑠, 𝑇)
1 − 𝜈(𝑧𝑛𝑠, 𝑇)

𝜈(𝑧𝑛𝑠, 𝑇)

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 

                     𝛾(𝑧𝑛𝑠, 𝑇)(𝑇 − 𝑇0)𝑑𝑧 

(37) 

in such a way that T0 is a specific temperature and T = ΔT + 

T0. Also, the kinetic energy is obtained as 
 

𝐾 =
1

2
∫ ∫ 𝜌(𝑧𝑛𝑠, 𝑇) ((

𝜕𝑢𝑥

𝜕𝑡
)

2

+ (
𝜕𝑢𝑦

𝜕𝑡
)

2

𝐴

𝐿

0

+ (
𝜕𝑢𝑧

𝜕𝑡
)

2

) 𝑑𝐴𝑑𝑥 

(38) 

 

And its variation becomes 
 

𝛿𝐾 = ∫ ∫ 𝜌(𝑧𝑛𝑠, 𝑇)[�̇�𝑥𝛿�̇�𝑥 + �̇�𝑦𝛿�̇�𝑦]

ℎ

2
−𝐶

−
ℎ

2
−𝐶

𝐿

0

𝑑𝑧𝑛𝑠𝑑𝑥 

       = ∫{𝐼0[�̇�0𝛿�̇�0 + (�̇�𝑏 + �̇�𝑠)(𝛿�̇�𝑏 + 𝛿�̇�𝑠)]

𝐿

0

 

                −𝐼1 (�̇�0

𝑑𝛿�̇�𝑏

𝑑𝑥
+

𝑑�̇�𝑏

𝑑𝑥
𝛿�̇�0) + 𝐼2 (

𝑑�̇�𝑏

𝑑𝑥

𝑑𝛿�̇�𝑏

𝑑𝑥
) 

                −𝐽1 (�̇�0

𝑑𝛿�̇�𝑠

𝑑𝑥
+

𝑑�̇�𝑠

𝑑𝑥
𝛿�̇�0) + 𝐾2 (

𝑑�̇�𝑠

𝑑𝑥

𝑑𝛿�̇�𝑠

𝑑𝑥
) 

                +𝐽2 (
𝑑�̇�𝑏

𝑑𝑥

𝑑𝛿�̇�𝑠

𝑑𝑥
+

𝑑�̇�𝑠

𝑑𝑥

𝑑𝛿�̇�𝑏

𝑑𝑥
)} 𝑑𝑥 

(39) 

 

where 
 

(𝐼0, 𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐾2)

= ∫ (1, 𝑧𝑛𝑠, 𝑓, 𝑧𝑛𝑠
2, 𝑧𝑛𝑠𝑓, 𝑓2)𝜌(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 
(40) 

 

Substituting Eqs. (33)-(39) into Eq. (32) then collecting 

the coefficients for field variables results in three equations 

of motion 
 

𝛿𝑢0 ∶  
𝑑𝑁

𝑑𝑥
= 𝐼0�̈�0 − 𝐼1

𝑑�̈�𝑏

𝑑𝑥
− 𝐽1

𝑑�̈�𝑠

𝑑𝑥
 (41) 

 

𝛿𝑤𝑏 ∶  
𝑑2𝑀𝑏

𝑑𝑥2
+

𝑑2𝑌1

𝑑𝑥2
− 𝑁𝑇

𝑑2(𝑤𝑏+𝑤𝑠)

𝑑𝑥2
 

            = 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐼1

𝑑�̈�0

𝑑𝑥
− 𝐼2

𝑑2�̈�𝑏

𝑑𝑥2
− 𝐽2

𝑑2�̈�𝑠

𝑑𝑥2
 

(42) 

 

𝛿𝑤𝑠 ∶  
𝑑2𝑀𝑠

𝑑𝑥2
+

1

2

𝑑2𝑌1

𝑑𝑥2
+

1

2

𝑑2𝑌2

𝑑𝑥2
−

1

2

𝑑𝑌3

𝑑𝑥
+

𝑑𝑄

𝑑𝑥
 

            −𝑁𝑇
𝑑2(𝑤𝑏+𝑤𝑠)

𝑑𝑥2
= 𝐼0(�̈�𝑏 + �̈�𝑠) 

            +𝐽1

𝑑�̈�0

𝑑𝑥
− 𝐽2

𝑑2�̈�𝑏

𝑑𝑥2
− 𝐾2

𝑑2�̈�𝑠

𝑑𝑥2
 

(43) 

 

Next, all edge conditions for x = 0, L may be expressed 

by 

Specify 
𝑢𝑜     𝑜𝑟     𝑁 

(44) 

 

Specify 

𝑤𝑏 or  𝑉𝑏 =
𝑑𝑀𝑏

𝑑𝑥
+

𝑑𝑌1

𝑑𝑥
− 𝐼1�̈�0 + 𝐼2

𝑑�̈�𝑏

𝑑𝑥
 

(45) 
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                      +𝐽2

𝑑�̈�𝑠

𝑑𝑥
− 𝑁𝑇

𝑑(𝑤𝑏 + 𝑤𝑠)

𝑑𝑥
 (45) 

 

Specify 

𝑤𝑠 or  𝑉𝑠 =
𝑑𝑀𝑠

𝑑𝑥
+

1

2

𝑑𝑌1

𝑑𝑥
+

1

2

𝑑𝑌2

𝑑𝑥
−

1

2
𝑌3 + 𝑄 − 𝐽1�̈�0 

                     +𝐽2

𝑑�̈�𝑏

𝑑𝑥
+ 𝐾2

𝑑�̈�𝑠

𝑑𝑥
− 𝑁𝑇

𝑑(𝑤𝑏 + 𝑤𝑠)

𝑑𝑥
 

(46) 

 

Specify   
𝑑𝑤𝑏

𝑑𝑥
  or  𝑀𝑏 + 𝑌1 − 𝑁𝑇 (47) 

 

Specify  
𝑑𝑤𝑠

𝑑𝑥
  or  𝑀𝑠 +

1

2
𝑌1 +

1

2
𝑌2 − 𝑁𝑇 (48) 

 

Three equations of motion based on neutral surface 

location and microbeam assumptions will be achieved by 

placing Eqs. (34)-(35) in Eqs. (41)-(43) by 
 

𝐴11

𝑑2𝑢0

𝑑𝑥2
− 𝐵11

𝑑3𝑤𝑏

𝑑𝑥3
− 𝐵11

𝑠
𝑑3𝑤𝑠

𝑑𝑥3
 

= 𝐼0�̈�0 − 𝐼1

𝑑�̈�𝑏

𝑑𝑥
− 𝐽1

𝑑�̈�𝑠

𝑑𝑥
 

(49) 

 

−(𝐷11 + 𝐴13)
𝑑4𝑤𝑏

𝑑𝑥4
+ 𝐵11

𝑑3𝑢0

𝑑𝑥3
 

− (𝐷11
𝑠 +

1

2
(𝐴13 + 𝐵13))

𝑑4𝑤𝑠

𝑑𝑥4
− 𝑁𝑇

𝑑2(𝑤𝑏+𝑤𝑠)

𝑑𝑥2
 

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐼1

𝑑�̈�0

𝑑𝑥
− 𝐼2

𝑑2�̈�𝑏

𝑑𝑥2
− 𝐽2

𝑑2�̈�𝑠

𝑑𝑥2
 

(50) 

 

𝐵11
𝑠

𝑑3𝑢0

𝑑𝑥3
− (𝐷11

𝑠 +
1

2
(𝐴13 + 𝐵13))

𝑑4𝑤𝑏

𝑑𝑥4
 

− (𝐻11
𝑠 +

1

4
(𝐴13 + 2𝐵13 + 𝐷13))

𝑑4𝑤𝑠

𝑑𝑥4
 

+ (𝐴55
𝑠 +

1

4
𝐸13)

𝑑2𝑤𝑠

𝑑𝑥2
− 𝑁𝑇

𝑑2(𝑤𝑏+𝑤𝑠)

𝑑𝑥2
 

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐽1

𝑑�̈�0

𝑑𝑥
− 𝐽2

𝑑2�̈�𝑏

𝑑𝑥2
− 𝐾2

𝑑2�̈�𝑠

𝑑𝑥2
 

(51) 

 

so that 𝐴11 , 𝐵11
𝑠 , etc., define the microbeam stiffness, 

introduced by 
 

(𝐴11, 𝐵11, 𝐷11, 𝐵11
𝑠 , 𝐷11

𝑠 , 𝐻11
𝑠 )

= ∫ 𝜆(𝑧𝑛𝑠)
1 − 𝜈(𝑍𝑛𝑠)

𝜈(𝑍𝑛𝑠)
(1, 𝑧, 𝑧𝑛𝑠

2 , 𝑓, 𝑧𝑛𝑠𝑓, 𝑓2)𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 
(52) 

 

(𝐴13, 𝐵13, 𝐷13, 𝐸13)

= ∫ 𝜇(𝑧𝑛𝑠)[𝑙(𝑧𝑛𝑠)]2[1, 𝑓′, (𝑓′)2, (𝑓′′)2]𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 
(53) 

 

𝐴55
𝑠 = ∫ 𝜇(𝑧𝑛𝑠)𝑔2𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 (54) 

6. Solution by differential quadrature method 
(DQM) 
 

In the present chapter, differential quadrature method 

(DQM) has been utilized for solving the governing 

equations for microbeam. According to DQM, at an 

assumed grid point (𝑥𝑖 , 𝑦𝑗) the derivatives for function F 

are supposed as weighted linear summation of all functional 

values within the computation domains as 
 

𝑑𝑛𝐹

𝑑𝑥𝑛
| 𝑥=𝑥𝑖

= ∑ 𝐶𝑖𝑗
(𝑛)

𝐹(𝑥𝑗)

𝑁

𝑗=1

 (55) 

 

where 
 

𝐶𝑖𝑗
(1)

=
𝜋(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗) 𝜋(𝑥𝑗)
 

𝑖, 𝑗 = 1,2, … , 𝑁,     𝑖 ≠ 𝑗 

(56) 

 

in which 𝜋(𝑥𝑖) is defined by 
 

𝜋(𝑥𝑖) = ∏(𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1

,      𝑖 ≠ 𝑗 (57) 

 

And when 𝑖 = 𝑗 
 

𝐶𝑖𝑗
(1)

= 𝐶𝑖𝑖
(1)

= − ∑ 𝐶𝑖𝑘
(1)

𝑁

𝑘=1

, 

𝑖 = 1,2, … , 𝑁,     𝑖 ≠ 𝑘,      𝑖 = 𝑗 

(58) 

 

Then, weighting coefficients for high orders derivatives 

may be expressed by 
 

𝐶𝑖𝑗
(2)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

                            

𝐶𝑖𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(2)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(2)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(3)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(3)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝑖, 𝑗 = 1, 2, … , 𝑁.                                   

(59) 

 

According to presented approach, the dispersions of grid 

points based upon Gauss-Chebyshev-Lobatto assumption 

are expressed as 
 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖 − 1

𝑁 − 1
𝜋)]      𝑖 = 1, 2, … , 𝑁, (60) 

 

Next, the time derivative for displacement components 

may be determined by 
 

𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝜔𝑡 (61) 

 

𝑤𝑏(𝑥, 𝑡) = 𝑊𝑏(𝑥)𝑒𝑖𝜔𝑡 (62) 
 

𝑤𝑠(𝑥, 𝑡) = 𝑊𝑠(𝑥)𝑒𝑖𝜔𝑡 (63) 
 

where U and W denote vibration amplitudes and 𝜔 defines 

the vibrational frequency. Then, it is possible to express 
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obtained boundary conditions as: 

 

• Simply supported- simply supported (S-S): 

 

𝑤𝑏 = 𝑤𝑠 = 0, 𝑁𝑥𝑥 = 0, 𝑀𝑥𝑥
𝑏 = 0 

at     𝑥 = 0, 𝐿 
(64) 

 

• Clamped-clamped (C-C): 

 

𝑤𝑏 = 𝑤𝑠 = 0,      
𝜕𝑤𝑏

𝜕𝑥
=

𝜕𝑤𝑠

𝜕𝑥
= 0 

at     𝑥 = 0, 𝐿 

(65) 

 

Now, one can express the modified weighting 

coefficients for all edges simply-supported as 
 

�̅�1,𝑗
(2)

= �̅�𝑁,𝑗
(2)

= 0,       𝑖 = 1, 2, … , 𝑀, 

�̅�𝑖,1
(2)

= �̅�1,𝑀
(2)

= 0,       𝑖 = 1, 2, … , 𝑁. 
(66) 

 

and 
 

�̅�𝑖𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

�̅�𝑘𝑗
(2)

𝑁

𝑘=1

        �̅�𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

�̅�𝑘𝑗
(3)

𝑁

𝑘=1

 (67) 

 

By placing Eqs. (61)-(63) into Eqs. (49)-(51) and 

performing some simplifications for collecting the 

coefficients of displacements (U, Wb, Ws) leads to the 

following system based on mass matrix[M] and stiffness 

matrix [K] as 
 

{[𝐾] + 𝜔2[𝑀]} {
𝑈
𝑊𝑏

𝑊𝑠

} = 0 (68) 

 

where the components of [K] and [M] are 
 

𝐾11 = ∑(𝐴11𝐶𝑖𝑗
(2)

)

𝑁

𝑗=1

,     𝐾12 = ∑(𝐵11𝐶𝑖𝑗
(3)

)

𝑁

𝑗=1

 

𝐾13 = ∑(𝐵11
𝑠 𝐶𝑖𝑗

(3)
)

𝑁

𝑗=1

,     𝐾21 = ∑(−𝐵11𝐶𝑖𝑗
(3)

)

𝑁

𝑗=1

 

𝐾22 = ∑(−(𝐷11 + 𝐴13)𝐶𝑖𝑗
(4)

− 𝑁𝑇𝐶𝑖𝑗
(2)

)

𝑁

𝑗=1

 

𝐾23 = 𝐾32 

        = ∑ (− (𝐷11
𝑠 +

1

2
(𝐴13 + 𝐵13)) 𝐶𝑖𝑗

(4)
− 𝑁𝑇𝐶𝑖𝑗

(2)
)

𝑁

𝑗=1

 

𝐾31 = ∑(−𝐵11
𝑠 𝐶𝑖𝑗

(3)
)

𝑁

𝑗=1

 

𝐾33 = ∑ (− (𝐻11
𝑠 +

1

4
(𝐴13 + 2𝐵13 + 𝐷13)) 𝐶𝑖𝑗

(4)

𝑁

𝑗=1

 

            − (𝑁𝑇 − 𝐴55
𝑠 +

1

4
𝐸13) 𝐶𝑖𝑗

(2)
) 

(69) 

 

𝑀11 = ∑(𝐼0𝐶𝑖𝑗
(0)

)

𝑁

𝑗=1

,     𝑀12 = ∑(𝐼1𝐶𝑖𝑗
(1)

)

𝑁

𝑗=1

                       (70) 

𝑀13 = ∑(𝐽1𝐶𝑖𝑗
(3)

)

𝑁

𝑗=1

,     𝑀21 = ∑(−𝐼1𝐶𝑖𝑗
(1)

)

𝑁

𝑗=1

 

𝑀22 = ∑(𝐼0𝐶𝑖𝑗
(0)

− 𝐼2𝐶𝑖𝑗
(2)

)

𝑁

𝑗=1

 

𝑀23 = 𝑀32 = ∑(𝐼0𝐶𝑖𝑗
(0)

− 𝐽2𝐶𝑖𝑗
(2)

)

𝑁

𝑗=1

 

𝑀31 = ∑(−𝐽1𝐶𝑖𝑗
(1)

)

𝑁

𝑗=1

,     𝑀33 = ∑(𝐼0𝐶𝑖𝑗
(0)

− 𝐾2𝐶𝑖𝑗
(2)

)

𝑁

𝑗=1

 

(70) 

 

 

7. Numerical results and discussions 
 

The presented research examines vibration behaviors of 

thermally loaded porous FG micro-dimension beams based 

on refined beam model and DQ method. Modified couple 

stress coefficient is used in order to define the size-

dependent behavior of micro-size beam. Presented results 

indicate the prominence of temperature variation, material 

gradient index, couple stress coefficient, and porosities on 

vibrational frequencies of FG micro-size beam. A 

verification study is presented in Table 2 for FG microbeam 

with comparing the vibrational frequency presented by 

DQM and those obtained by Al-Basyouni et al. (2015) 

based on diverse beam theories. The following relation is 

accomplished in order to compute the non-dimensional 

natural frequencies 
 

�̅� =
𝜔𝐿2

ℎ
√

𝜌𝑐

𝐸𝑐
 (71) 

 

In Fig. 2, the variation of normalized frequencies of an 

FG micro-dimension beam versus power-law exponent (p) 

is represented for several porosity coefficients when L/h = 

20. By selecting α = 0, the vibrational frequencies based 

upon classic and perfect beam assumption will be derived. 

Actually, selecting p = 0 gives the frequency in the context 

of isotropic material modeling and discarding 

inhomogeneity impacts. It can be understood from Fig. 2 

that vibration frequency of system may decline or rise with 

porosity coefficient and will reduce with material index (p). 

This observation is valid for all values of porosity 

coefficient. So, vibration behavior of the microbeam system 

is dependent on porosity effects. 

Figs. 3 and 4 indicate the impact of pore parameter on 

vibration frequency curves of porosity-dependent micro-

sized beams when L = 30h based on even pore dispersion. 

Different amounts of pore parameter have been selected (α 

= 0, 0.1 and 0.2). The result based on α = 0 is related to 

perfect micro-size beams. For both porous and perfect 

micro-size beams, the zero value of vibration frequency 

denotes the thermal buckling. One can find that the 

vibration frequencies become smaller by increasing in 

temperature value highlighting the intrinsic softening 

influence related to thermal loading. Then, one can find that 

increasing in pore parameter yields a lower vibration 

frequency at small values of temperature rise. The reason 
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comes from the reduction of micro-sized beams stiffness 

with the incorporation of porosities. However, at larger 

values of temperature rise, both porosity and thermal 

loading have notable influences on structural stiffness of the 

microbeam. 

 

 

 

Fig. 2 Changing of non-dimension frequency of S-S FG 

microbeam against material index and porosity 

(𝐿 ℎ⁄ = 20 , ℎ 𝑙⁄ = 2 ) 

 

 

 

Fig. 3 Changing of non-dimension frequency of S–S 

porous FG microbeam against temperature change 

based on diverse values of porosity factor 

(𝐿/ℎ =  30, ℎ/𝑙 = 2,  𝑝 = 1) 

 

 

In Fig. 5, the variation of normalized frequencies of an 

FG micro-dimension beam versus porosity factor is 

represented for several couple stress (h/l) coefficients when 

L/h = 20 and p = 1. By selecting h/l = 0, the vibrational 

 

 

 

Fig. 4 Changing of non-dimension frequency of C-C 

porous FG microbeam against temperature change 

based on diverse values of porosity factor 

(𝐿/ℎ = 30, ℎ/𝑙 = 2, 𝑝 = 1) 

 

 

 

Fig. 5 Changing of non-dimension frequency of S-S FG 

porous microbeam against porosity factor based on 

diverse couple stress parameters 

(Δ𝑇 = 200, 𝐿/ℎ = 20, 𝑝 = 1) 

Table 2 Verification of the non-dimension natural frequency for a S–S FG micro-beam with various 

gradient exponents at ℎ 𝑙⁄ = 2 

L/h  Beam theory 
Gradient index 

p = 0.3 p = 1 p = 3 p = 10 

10 

Al-Basyouni et al. 

(2015) 

Classic theory 7.9307 6.6159 5.7362 5.1231 

First order theory 7.8233 6.5211 5.6383 5.0237 

Sinusoidal theory 7.8722 6.5670 5.6876 5.0731 

Present  7.8721 6.5667 5.6877 5.0717 

100 

Al-Basyouni et al. 

(2015) 

Classic theory 7.9651 6.6471 5.7633 5.1453 

First order theory 7.9640 6.6461 5.7623 5.1442 

Sinusoidal theory 7.9645 6.6466 5.7628 5.1448 

Present  7.9642 6.6467 5.7629 5.1451 
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Fig. 6 Changing of non-dimension frequency of S-S 

porous FG microbeam against porosity factor based 

on diverse edge conditions 

(Δ𝑇 = 200, 𝐿/ℎ = 20, 𝑝 = 1) 

 

 

 

Fig. 7 Changing of non-dimension frequency of S-S 

porous FG microbeam against slenderness ratio 

based on diverse porosity factors 

(Δ𝑇 = 100, ℎ/𝑙 =  2, 𝑝 = 1) 

 

 

frequencies based upon classic beam assumption will be 

derived. Actually, selecting h/l = 0 gives the frequency 

macro scale beams with discarding couple stress impacts. It 

can be understood from Fig. 5 that vibration frequency of 

system will change with couple stress coefficient. This 

observation is valid for all values of pore factor. So, 

vibration behavior of the microbeam system is dependent 

on scale effects. Another finding is that increasing of pore 

factor is corresponding to higher ratio of structural stiffness 

to mass density of the micro-dimension beam as well as 

larger vibration frequency. 

The impact of pore factor and boundary conditions on 

non-dimension frequency of an FG microbeam subjected to 

uniform temperature changes at Δ𝑇 = 200, 𝐿/ℎ = 20, ℎ/𝑙 =
2, 𝑝 = 1 has been illustrated in Fig. 6. According to our 

findings, increase of the number of constraints at edges 

makes the micro-size beam stiffer and vibrational frequency 

increases. Furthermore, at a prescribed temperature value 

and pore factor, the results for porous FG micro-size beam 

follows this relation: C-C > C-S > S-S. Accordingly, 

vibrational behaviors of porous FG micro-size beams 

depend on the kind of edge condition. 

In Fig. 7, the variation of the dimensionless frequency of 

S-S FG porous microbeam with respect to slenderness ratio 

according to different porosity volume fractions is shown at 

Δ𝑇 = 100, ℎ/𝑙 =  2, 𝑝 = 1. It can be understood that 

dimensionless frequency decreases when slenderness ratio 

increases at a prescribed porosity volume fraction. So, 

thinner porous FG microbeams have lower frequencies 

compared to thicker one. Moreover, effect of porosity 

volume fraction on vibration frequencies becomes more 

significant at larger slenderness ratios. 
 

 

8. Conclusions 
 

Presented research examined vibration behaviors of 

thermally loaded porous FG micro-size beams based on 

three-variable beam model and DQ method. Modified 

couple stress coefficient was used in order to define the 

size-dependent behavior of micro-size beam. It was seen 

that vibration frequency raised with couple stress 

coefficient. Another finding was that increasing of 

temperature or in-plane mechanical load was corresponding 

to lower structural stiffness of the micro-dimension beam as 

well as smaller vibration frequency. Also, increase of 

porosity factor may reduce the value of vibrational 

frequency. It was stated that increasing in temperature 

diminished the structural stiffness and vibrational 

frequencies decreased until a critical temperature in which 

frequency magnitude became zero. 
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