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1. Introduction 

 

With the development of science and technology, the 

applications of nano engineering have found many areas.  

The using of nanostructures is increasing in the engineering 

applications such as electro-mechanical devices, actuators, 

atomic microscopes from day to day. 

In the mechanical solutions of the nano structures are 

major problems. The nonlocal continuum theories are 

preferred in the approximate solution of nano structures 

because of low computational cost. The nonlocal continuum 

theories consist of size effect in contrast with classical 

continuum theory. The main nonlocal elasticity theories are 

the couple stress theory, strain gradient theory, Eringen’s 

nonlocal elasticity theory. 

In the literature, the studies about forced vibration of 

nanorods are as follows; Adhikari et al. (2014) investigated 

dynamic analysis of nano rods resting on elastic medium by 

using finite element method within frequency domain. 

Akgöz and Civalek (2014) analyzed longitudinal vibration 

of microbars based on strain gradient elasticity theory based 

on strain gradient elasticity theory. Akbaş (2016a) 

investigated forced vibration responses of a viscoelastic 

nanobeam embedded elastic medium by using finite 

element method. Eltaher et al. (2016) investigated effects of 

the thermal load on the stability of nanobeams by using 

Nonlocal theory. Li et al. (2016) investigated longitudinal 

free vibration of the nanorods based on nonlocal strain 

gradient theory. Akbaş (2017d) examined forced vibration 

responses of functionally graded nanobeams. Xu et al. 

(2017) investigated vibration results of the nanorods with 

different boundary conditions based on nonlocal strain 

gradient theory. Hadji et al. (2017) investigated free 
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vibration of carbon nanotubes reinforced composite beams 

embedded elastic foundation with stretching effect. Akbaş 

(2016b, 2017a, b, 2018c) analyzed vibration and static 

analysis of cracked nano structures. Ebrahimi and Salari 

(2018) examined effects of the temperature on the vibration 

and buckling behavior of functionally graded nanobeams 

based on nonlocal elasticity theory. Ghayesh (2018) 

presented an investigation about nonlinear vibrations of 

axially functionally graded microbeams by using couple 

stress theory and Galerkin method. Jena and Chakraverty 

(2018) investigated nonlocal vibration of nanobeams by 

using differential transform method. Akbaş (2018a, b, 

2019a, b) analyzed the effects of cracks on the forced 

vibration responses of nano beams and rods. Kumar (2018) 

investigated vibration analysis of carbon nanotubes with 

considering Van der waals force by using differential 

transform method. Wu et al. (2018) examined nonlinear 

vibration of carbon nanotubes with Eringen’s nonlocal 

elasticity theory Timoshenko beam theory. Pavlović et al. 

(2019) investigated dynamic stability of nanobeams with 

nonlocal strain gradient theory. Martin (2019) examined 

fractional dynamic analysis of viscoleastic nanobeams with 

nonlocal elasticity theory. 

In the open literature, the modal analysis of nanorods 

under dynamic loads has not been investigated in broadly. 

This is a blank for nonlocal nanorods. The main goal of this 

study is to investigate damped forced vibration of the 

nanorods with modal analysis and present the modal 

expressions of the nanorods. In this study, longitudinal 

damped forced vibration of a viscoelastic cantilever 

nanorod subjected to a harmonic load is presented by the 

nonlocal Elasticity theory. The considered problem is 

solved within the frame of the modal analysis. In the 

damped effect of the nanorod, the Kelvin-Voigt viscoelastic 

model is used within the nonlocal elasticity theory. The 

modal expressions of the problem are obtained and solved 

by analytically. The effects of the nonlocal parameter, 
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Fig. 1 A cantilever circular viscoelastic nanorod subjected 

to dynamically point load 

 

 

damping coefficient, geometry and dynamic load 

parameters on the dynamic responses of the viscoelastic 

nanorod are investigated. Also, the difference between the 

nonlocal theory and classical theory is investigated within 

the dynamic responses of the nanorod. 

 

 

2. Theory and formulation 
 

Fig. 1 shows a cantilever viscoelastic nanorod with 

circular cross-section subjected to dynamically point force 

(P(t)). The load is subjected at the free endnjd d of nanorod. 

In Fig. 1, L and D indicate the length and the diameter of 

the nanarod, respectively. 

Based on the nonlocal elasticity theory, constitutive 

equation of the problem is given (Eringen 1972, 1983) 
 

𝜎𝑥𝑥 − 𝜇
𝑑2𝜎𝑥𝑥

𝑑𝑥2
= 𝐸 𝜖𝑥𝑥 (1) 

 

By adding the Kelvin-Voight viscoelastic model into the 

nonlocal constitutive relation in Eq. (1), the viscoelastic 

nonlocal constitutive equation is obtained as follows 
 

𝜎𝑥𝑥 − 𝜇
𝑑2𝜎𝑥𝑥

𝑑𝑥2
= 𝐸 (𝜖𝑥𝑥 + 𝛾

𝑑𝜖𝑥𝑥

𝑑𝑡
) (2) 

 

where, 𝜎𝑥𝑥 and 𝜖𝑥𝑥 are nonlocal normal stress and strain, 

respectively. E, 𝛾  and 𝜇  are Young’s modulus, viscous 

damping coefficient and nonlocal parameter, respectively. 

where 𝜇 = (𝑒0𝑎)2, 𝑒0 indicates length scale parameter. t 

indicates the time. It is noted that, the Eq. (2) is induced to 

classical continuum theory when 𝜇 = 0 . By using 

equilibrium of forces in axially direction, the equation of 

motion is expressed as follows 

 

𝜌𝐴
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝐸𝐴

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
− 𝐸𝐴𝛾

𝜕2

𝜕𝑥2
(

∂𝑢(𝑥, 𝑡)

∂𝑡
) 

−𝜌𝐴𝜇
𝜕2

𝜕𝑥2
(

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
) = 𝑓(𝑥, 𝑡) 

(3) 

 

where, 𝜌 and u are mass density and axial displacement 

function, respectively. 𝑓(𝑥, 𝑡)  indicates the distributed 

axial load though the x direction. 

For the free vibration solution, the Eq. (3) is reduced as 

following equation 

𝜌𝐴
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝐸𝐴

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
− 𝜌𝐴𝜇

𝜕2

𝜕𝑥2
(

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
) 

= 0 

(4) 

 

In the solution of the free vibration problem, the 

separation of variable technique is used in Eq. (4) 

 

𝑢ℎ(𝑥, 𝑡) = 𝑈ℎ(𝑥)𝑒𝑖𝜔𝑡 (5) 

 

where 𝑈ℎ(𝑥)  is spatially function. 𝜔  is the natural 

frequency and i indicates imaginary number. 

The boundary conditions of the cantilever (clamped-

free) the nanorod are presented as follows 
 

𝑢ℎ(0, 𝑡) = 0,     
d𝑢ℎ(𝐿, 𝑡)

dx
= 0 (6) 

 

Substituting Eq. (5) into Eq. (4) gives following 

equations of motion 
 

(
𝑑2𝑈ℎ(𝑥)

𝑑𝑥2
+ 𝛽2𝑈ℎ(𝑥)) 𝑒𝑖𝜔𝑡 = 0 (7) 

 

where 
 

𝛽2 =
𝜌𝜔2

𝐸 − 𝜌 𝜇 𝜔2
 (8) 

 

With implementing the boundary conditions, the 

solution of the Eq. (7) gives the following frequency 

equation and mode function 
 

𝑐𝑜𝑠𝛽𝐿 = 0 (9a) 

 

𝛽𝑘𝐿 = (𝑘 − 0.5)𝜋,     𝑘 = 1,2,3 … (9b) 

 

𝑈𝑘(𝑥) = 𝑠𝑖𝑛 (
(𝑘 − 0.5)𝜋𝑥

𝐿
) (9c) 

 

where 𝑈𝑘(𝑥) is the mode shape functions of the problem. 

By substitute Eq. (8) into Eq. (9b) gives following 

equations of frequency 
 

𝜔𝑘 = √
𝐸

𝜌

(k − 0.5)π

√L2 +  μ (k − 0.5)2 π2
,      𝑘 = 1,2,3 … (10) 

 

In the solution of the damped forced vibration problem, 

the modal analysis technique is used. In the solution of Eq. 

(3) in the modal analysis, the solution function 𝑢(𝑥, 𝑡) is 

defined by mode superposition method in the modal space 

as follows 
 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑇𝑘(𝑡)

k

 (11) 

 

where 𝑇𝑘(𝑡) is modal coordinate functions. Substituting 

Eq. (11) into Eq. (3) gives following equation 
 

𝜌𝐴 ∑ 𝑈𝑘

𝑘

𝜕2𝑇𝑘(𝑡)

𝜕𝑡2
− 𝐸𝐴 ∑

𝜕2𝑈𝑘(𝑥)

𝜕𝑥2
𝑇𝑘(𝑡)

𝑘

 (12) 
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−𝐸𝐴𝛾 ∑
𝜕2𝑈𝑘(𝑥)

𝜕𝑥2

𝑘

∂𝑇𝑘(𝑡)

∂𝑡
 

−𝜌𝐴𝜇 ∑
𝜕2𝑈𝑘(𝑥)

𝜕𝑥2

𝑘

𝜕2𝑇𝑘(𝑡)

𝜕𝑥2
= 𝑓(𝑥, 𝑡) 

(12) 

 

With using the orthogonality properties of modal 

coordinate functions, the following modal equations can be 

obtained 

 

𝑀̂k

𝑑2𝑇𝑘(𝑡)

𝑑𝑡2
+ 𝐶̂k

d𝑇𝑘(𝑡)

d𝑡
+ 𝐾̂k𝑇𝑘(𝑡) = 𝑓𝑘(𝑡) (13) 

 

where M̂k is the modal mass, Ĉk is the modal damping, 

K̂k is the modal rigidity and f̂k is the modal load. The 

detail of these expressions are given as follows 

 

𝑀̂k

= ∫ 𝜌𝐴 (𝑠𝑖𝑛 (
(𝑘 − 0.5)𝜋𝑥

𝐿
)

2L

0

+ 𝜇 (𝑐𝑜𝑠 (
(𝑘 − 0.5)𝜋𝑥

𝐿
)

(𝑘 − 0.5)𝜋𝑥

𝐿
)

2

) 𝑑𝑋 

(14) 

 

𝐶̂k = ∫ 𝐸𝐴𝛾 (𝑐𝑜𝑠 (
(𝑘 − 0.5)𝜋𝑥

𝐿
)

(𝑘 − 0.5)𝜋𝑥

𝐿
)

2

𝑑𝑋
L

0

 (15) 

 

𝐾̂k = ∫ 𝐸𝐴 (𝑐𝑜𝑠 (
(𝑘 − 0.5)𝜋𝑥

𝐿
)

(𝑘 − 0.5)𝜋𝑥

𝐿
)

2

𝑑𝑋
L

0

 (16) 

 

𝑓𝑘(𝑡) = ∫ 𝑓(𝑥, 𝑡)𝑈𝑘(𝑥) 𝑑𝑋
𝐿

0

 (17a) 

 

𝑓(𝑥, 𝑡) = { 
𝑃(𝑡)      𝑥 = 𝐿
0            𝑜𝑡ℎ𝑒𝑟

} (17b) 

 

After integration process of the Eqs. (14)-(17), the 

modal expressions can be obtained as follows 

 

𝑀̂k =
𝜌𝐴𝐿

2
+

𝜌 𝐴 𝜇 𝜋2

8𝐿
(2𝑘 − 1)2 (18) 

 

𝐾̂k =
𝐸 𝐴 𝜋2

8𝐿
(2𝑘 − 1)2 (19) 

 

𝐶̂k =
𝐸 𝐴 𝛾 𝜋2

8𝐿
(2𝑘 − 1)2 (20) 

 

𝑓𝑘(𝑡) = 𝑃(𝑡) 𝑠𝑖𝑛((𝑘 − 0.5)𝜋) (21) 

 

After the simplifying expression (13), the following 

modal equation for kth mod is obtained as follows 

 

𝑑2𝑇𝑘(𝑡)

𝑑𝑡2
+ 2 𝜉𝑘 𝜔𝑘

d𝑇𝑘(𝑡)

d𝑡
+ 𝜔2

𝑘 𝑇𝑘(𝑡) =
𝑓𝑘(𝑡)

𝑀̂k

 (22) 

 

where 𝜉𝑘  is modal damping ratio which expressed as 

follows 
 

𝜉𝑘 =
𝐶̂k

2 𝜔𝑘 𝑀̂k 
 (23) 

 

The external dynamically load (P(t)) is considered a 

harmonic function as follows 

 

𝑃(𝑡) = 𝑃0 𝑐𝑜𝑠 (𝛺𝑡) (24) 

 

where 𝑃0 and 𝛺 are the amplitude and frequency of load, 

respectively. Substituting Eq. (24) into Eq. (22) gives 

following equation 

 

𝑑2𝑇𝑘(𝑡)

𝑑𝑡2
+ 2 𝜉𝑘 𝜔𝑘

d𝑇𝑘(𝑡)

d𝑡
+ 𝜔2

𝑘 𝑇𝑘(𝑡) 

=
𝑃0 𝑠𝑖𝑛((𝑘 − 0.5)𝜋)𝑐𝑜𝑠 (𝛺𝑡)

𝑀̂k

 

(25) 

 

The solution form of the differential Eq. (25) is given as 

follows 
 

 𝑇𝑘(𝑡) = 𝑄𝑘 𝑐𝑜𝑠 (𝛺𝑡 − ∅𝑘) (26) 

 

where 𝑄𝑘 and ∅𝑘 indicate the modal amplitude and phase 

angle for kth mod, respectively. Substituting Eq. (26) into 

Eq. (25) and solving the differential equation, the 

expressions of 𝑄𝑘 and ∅𝑘 are obtained as follows 

 

𝑄𝑘 =
𝑃0 𝑠𝑖𝑛((𝑘 − 0.5)𝜋)

𝐾̂𝑘

 
1

√(1 − 𝛽𝑘
2)2 + (2 𝜉𝑘 𝛽𝑘)2

 (27) 

 

∅𝑘 = arctg (
2 𝜉𝑘 𝛽𝑘

1 − 𝛽𝑘
2 ) (28) 

 

where 𝛽𝑘 is the frequency ratio 
 

𝛽𝑘 =
𝛺

𝜔𝑘
 (29) 

 

For kth mod, the static displacement function (𝑞𝑘
𝑠𝑡) can 

expressed as follows 

 

𝑞𝑘
𝑠𝑡 =

𝑃0 𝑠𝑖𝑛((𝑘 − 0.5)𝜋)

𝐾̂𝑘

 (30) 

 

The modal magnification ratio () for kth mod is 

expressed as follows 

 

(𝛽𝑘) =
𝑄𝑘

𝑞𝑘
𝑠𝑡 =

1

√(1 − 𝛽𝑘
2)2 + (2 𝜉𝑘 𝛽𝑘)2

 (31) 

 

The modal magnification ratio ( ) depends on the 

frequency ratio (βk) and the modal damping ratio. The 

dimensionless quantities are expressed as follows 

 

𝜂 =
𝑒0𝑎

𝐷
,     𝛺̅ = √

𝜌 𝐷2

𝐸
𝛺,     𝜆 =

𝐿

𝐷
,     𝑈̅ =

𝑈𝑝

𝐿
 (32) 

 

where 𝜂 and 𝛺̅ indicate the dimensionless nonlocal 
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Table 1 Comparison study: Dimensionless longitudinal 

frequencies of the clamped-free nanorod 

𝑒0𝑎

𝐿
  𝜔̅1 𝜔̅2 𝜔̅3 𝜔̅4 

0 

Xu et al. (2017) 1.57080 4.71239 7.85398 10.99557 

Li et al. (2016) 1.57080 4.71239 7.85398 10.99557 

Present 1.57080 4.71239 7.85398 10.99557 

0.1 

Xu et al. (2017) 1.55177 4.26279 6.17668 7.39805 

Li et al. (2016) 1.55177 4.26279 6.17668 7.39805 

Present 1.55177 4.26279 6.17668 7.39805 

0.2 

Xu et al. (2017) 1.49858 3.42933 4.21782 4.55152 

Li et al. (2016) 1.49858 3.42933 4.21782 4.55152 

Present 1.49858 3.42933 4.21782 4.55152 
 

 

 

parameter and the dimensionless the frequency of the 

dynamic load, respectively. 𝜆 is the aspect ratio and 𝑈̅ is 

dimensionless the longitudinal displacement. When 𝜂 = 0, 

the problem is induced to classical continuum theory. 

 

 

3. Numerical results 
 

In numerical examples, effects of the damping 

coefficient, dimensionless nonlocal parameter and 

dimensionless the frequency of the dynamic load on the 

forced vibration responses of the viscoelastic nanorod are 

presented. The material of the nanorod is considered as 

epoxy (E = 1,44 GPa, ρ = 1600 kg/m3). The diameter of 

the nanorod is taken as D = 1 nm. The amplitude of 

dynamic load is taken as P0 = 1 nN. The length of the 

nanorod is selected according to the aspect ratio (λ). 

In Table 1, dimensionless longitudinal frequencies of the 

clamped-free nanorod are presented for different values of 

nonlocal parameters on the purpose of the accuracy of the 

present study. In the comparison study of the Table 1, the 

results of the Xu et al. (2017) and Li et al. (2016) are 

compared with the results of this study. It is seen from table 

1, the results of this study are in good agreement with the 

results of the Xu et al. (2017) and Li et al. (2016). 

 

 

Fig. 2 shows the relationship between the modal 

magnification ratio () and the dimensionless frequency of 

the dynamic load (Ω̅) is presented in first three modes for 

different values of damping ratio (ξ) and the dimensionless 

nonlocal parameter (η) for λ = 10. 

It is seen from in the Fig. 2, increasing dimensionless 

nonlocal parameter (η) yields to increase the resonance 

frequency. The resonance phenomenon can be observed in 

the vertical asymptote regions in Fig. 2. With increase of the 

dimensionless nonlocal parameter, the damping effect 

increases considerably in all modes. The difference among 

the results of the damping ratios increases while the 

dimensionless nonlocal parameter increases. In the higher 

value of the dimensionless nonlocal parameter, the damping 

effect becomes even more important on the forced vibration 

responses of the nanorods. 

Another result of the Fig. 2 that effects of the damping 

ratio on the magnification ratio are highest level in higher 

value of modes. With increase of the number of modes, the 

damping effects increases significantly. Also, the difference 

among the results of the damping ratios increase 

significantly with increase of modes. 

In Fig. 3, effects of the aspect ratio (λ) on the forced 

vibration responses of the nanorod are investigated. For this 

purpose, the modal magnification ratios are calculated for 

different the dimensionless nonlocal parameters in first 

three modes for Ω̅ = 0.4  and ξ = 0.01. Also, the 

difference between the nonlocal theory and classical 

continuum theory is studied. The dimensionless nonlocal 

parameters are selected as η = 0 and η = 1. It is stated 

before that the results of classical theory can be obtained 

when η = 0. So, the results of the η = 0 represents the 

classical theory. Whereas, the results of the η = 1 

represents the nonlocal theory in Fig. 3. 

As seen from Fig. 3 that increasing the aspect ratio (λ) 

yields to decrease the difference between results of the 

nonlocal theory and classical theory significantly. In higher 

values of the aspect ratios, the results of the two theories 

coincide completely. It shows that the classical continuum 

theory can be used instead of nonlocal theory for higher 

values of the aspect ratio. Another result of Fig. 3 that with 

increase of the number of modes, the difference between 

results of the nonlocal theory and classical theory increases. 

 

 

 

   

(a) For first vibration mod (b) For second vibration mod (c) For third vibration mod 

Fig. 2 The modal magnification ratio () versus the dimensionless frequency of the dynamic load (𝛺̅) rising different values 

of damping ratio (𝜉) and the dimensionless nonlocal parameter (𝜂) 
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Although, this difference completely closes after values of 

λ = 12 in first mode, the difference closes after values of 

λ = 30  in third mode. So, the mode numbers have 

important role on the difference between results of the 

nonlocal theory and classical theory. 

Fig. 4 displays the relationship between the modal 

magnification ratio () and the damping ratio (ξ) in first 

three modes for different values of dimensionless nonlocal 

parameters for 𝜂 = 0 and 𝜂 = 1. In these figures, 𝜂 = 0 

represents the classical theory. In addition, the difference 

between results of the nonlocal theory and classical 

continuum theory for different the damping ratios can be 

observed in Fig. 4. 

It is observed from Fig. 4 that the increasing in the 

damping ratio causes a decreasing in magnification ratio 

and the difference between results of the nonlocal theory 

and classical continuum theory significantly. Also, the 

damping effect is more effect in the first vibration mode in 

contrast with the second and third modes. In first mode, the 

difference between results of the nonlocal theory and 

classical continuum theory is very small in smaller values 

of damping ratio. However, this difference is not small in 

smaller values of damping ratio. This difference closes in 

higher values of damping ratio with increase of mode 

number. It shows that the damping ratio play important role 

on forced vibration responses of nonlocal rods. Also, the 

damping effect change with different modes, significiantly. 

 

 

 

 

 

 

4. Conclusions 
 

Damped forced vibration results of viscoelastic 

nanorods under axially harmonic load are studied based on 

the nonlocal elasticity theory. The Kelvin-Voight 

viscoelastic model is used within the nonlocal elasticity 

theory. The modal analysis technique is used in the solution 

of the dynamic problem and modal expressions are 

developed for the nonlocal nanorods. In the numerical 

examples, effects of the damping coefficient, dimensionless 

nonlocal parameter and dimensionless the frequency of the 

dynamic load on the forced vibration responses of the 

viscoelastic nanorod are presented and discussed. In the 

obtained the results, the major findings are as follows: 
 

● By increasing the nonlocal parameter and the 

number of modes, effects of damping on the nanorod 

increases significantly. 

● By increasing the aspect ratios, the results of the 

nonlocal and classical theory coincide completely. 

● The damping ratio is very effective in the nonlocal 

results and the difference between results of the 

nonlocal and classical theories. 

● By increasing the mode numbers, the effects of the 

nonlocal parameters and damping ratio on the 

dynamic responses of the nanorods change 

considerably. 

● The classical continuum theory can be used instead 

of nonlocal theory for higher values of the aspect 

ratios. 

   

(a) For first vibration mod (b) For second vibration mod (c) For third vibration mod 

Fig. 3 The relationship between modal magnification ratio and aspect ratio (𝜆) for nonlocal and classical theories 

   

(a) For first vibration mod for Ω̅ = 0.2 (b) For second vibration mod for Ω̅ = 0.6 (c) For third vibration mod for Ω̅ = 01 

Fig. 4 The relationship between modal magnification ratio and damping ratio (𝜉) for nonlocal and classical theories 
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