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1. Introduction 

 

Graphene is one of the special material, which has 

enough applications in engineering due to their attractive 

properties because of having atomic crystal of two-

dimension with remarkable mechanical and electronic 

properties. One of the highly used material in the field of 

nanotechnology is graphene. Graphene is formed out of 

carbon which has chemically stable two-dimensional one 

atom thick sheet. This feature from carbon allows graphene 

to be one of the strongest and thinnest material available. 

In research, now a day’s graphene is too applicable. 

Therefore, enormous number of nanostructures relying on 

carbons viz., carbon nanobeams, nanotubes, nanoplates, etc. 

called deformed carbon sheets (Ebrahimi and Salari 2015). 

To know the characteristics of nanomaterial, there is an only 

best-known way is the examination of graphene sheets, only 

for those nanostructures, which are relying on graphene 

material. Large amount of literature is available which 

carries the theory of examination of scale-free plates. But, 

there is a shortcoming in a theory to examine on scale free 

plates, which is they did not analyze on nanostructures of 
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small size. Due to that, nonlocal theory of elasticity by 

Eringen (Eringen and Edelen 1972, Eringen 1983) is 

created and useful for nanostructure of small size. 

Moreover, elasticity theory of nonlocal is broadly 

applicable in the nanoscale structure for the examination of 

their mechanical characteristics (Ebrahimi and Barati 

2016a-f). 

The nonlocal impact over buckling behavior of graphene 

solitary-plate subjected loading (uniform in-plane) is 

investigated by Pradhan and Murmu (2009). Some studies 

related to motions in the form of vibration had been 

explored by Pradhan and Kumar (2011) in orthotropic 

sheets assimilated to nonlocal influence. Application with 

importance of Levy type technique of stability along with 

trembling examination of nanosize thin plates that happen 

to experience nonlocal influence that is analyzed by 

Aksencer and Aydogdu (2011). The examination of shear 

buckling of an orthotropic graphene thin sheets resting on 

an elastic half-space which experiences the influence of 

thermal loading, has been inspected carefully by 

Mohammadi et al. (2014). Afterwards, Mohammadi et al. 

(2013) set-up an investigation to discover the behavior of 

nonlocal vibrations of graphene sheets (circular shape) 

which are influenced by in-plane loading. Ansari et al. 

(2011) beautifully examined the responses of vibrations of 

embedded multifold-layered sheets of graphene material, 

which accounts for varied boundary conditions. Moreover, 

some renowned work has been done on graphene sheets, i.e. 

vibrational study of mass sensor, static capacity of nonlocal 

thin sheets facing non-uniform edge-load, buckling 
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behavior (biaxial) of graphene single layer sheet that relies 

on the nonlocal elasticity theory by Shen et al. (2012), 

Farajpour et al. (2012) and Ansari and Sahmani (2013) 

respectively. Sobhy (2014) completed a study in regard to 

vibrational and static bending nature of graphene sheets 

(single layer) based on Winkler-Pasternak foundation which 

relies on a 2-variable higher order shear deformation theory. 

Afterwards, stability size-dependent examination of 

nanoscale orthotropic plates following the theory of 

nonlocal two-variable refined plates has been carried out by 

Narendar and Gopalakrishnan (2012). Murmu et al. (2013) 

precisely examined effects of unidirectional magnetic fields 

on vibrational characteristics of graphene sheets stick on 

elastic half-space. Moreover, Bessaim et al. (2015), 

Hashemi et al. (2015) and Ebrahimi and Shafiei (2016) 

studied the nonlocal quasi-3D trigonometric plate model, 

free vibrational nature of bi-viscielastic graphene thin 

sheets coupled with visco-Pasternak medium as well as 

effect of initial stress in graphene sheets by integrating 

Reddy’s higher order shear deformation theory. 

Throughout the course of the investigation that has been 

described above, it is clear that all the literature is carried 

out by using the elasticity theory of nonlocal in view of 

small scale effects. Furthermore, the nonlocal elasticity 

concept shows critical restrictions when nanostructures 

characteristics are going to be predicted. Keeping in view of 

these shortcomings in the theory of nonlocal elasticity, 

some researchers discovered how the nonlocal strain 

gradient theory may in fact assist to overcome or control the 

shortcomings viz., Lam et al. (2003), Tian et al. (2018), 

Stelson (2018), Henderson et al. (2018). 

Most recently, Ebrahimi and Barati (2016a-m) have also 

advanced the nonlocal strain gradient theory further, with 

the means of examining thin Nano plates of distinct plates. 

Therefore, it is significant to incorporate strain gradient and 

nonlocal influence in examination of graphene sheets priory 

as it can affect the examination of thin Nano plates of 

distinct plates. 

Relying on the new advanced nonlocal strain gradient 

theory, the vibrational characteristics of single-layered 

graphene thin sheets facing bending in-plane loadings stick 

on elastic material medium is sensibly investigated by 

theory i.e., refined two-variable plate theory. According to 

Hamiltons’s principle, fundamental expressions of the 

nonlocal strain gradient graphene sheet on elastic half-space 

are originated. A Galerkin’s technique is applied in order to 

resolve fundamental expressions for the distinct boundary 

conditions. Influence of distinct factors which can be in-

plane loading, length scale parameter, load factor, elastic 

foundation, boundary conditions, as well as nonlocal 

parameter on vibration properties of a graphene sheets are 

investigated. Self-consolidating concrete is a kind of 

concrete which fluidity and workability parameters have to 

be enhanced in it (Ebrahimi and Salari 2015), hence using 

graphene sprayed on the surface of aggregated could 

improve the SCC fluidity properties and further elevate how 

the material operates or functions. Furthermore, using 

graphene processed materials could be applied in numerous 

applications during construction, where the nano-scale 

properties of the graphene sheets or sprays are able to 

mitigate some micro-structural deficiencies as steel micro 

crack and stain in cold-formed steel uprights (Erigen and 

Edelen 1972, Eringen 1983, Ebrahimi and Barati 2016a-e) 

or cover the flexural and compressive strength loss during 

cyclic and motonic loading scenarios. It is important to note 

that there are different available techniques for data 

validations and predictions such as employing artificial 

neural networks (Ebrahimi and Barati 2016f, Pradhan and 

Murmu 2009, Pradhan and Kumar 2011, Aksencer and 

Aydogdu 2011, Mohammadi et al. 2013, 2014), Finite 

element method (Erigen and Edelen 1972, Eringen 1983, 

Ansari et al. 2011), Finite strip method (Shen et al. 2012, 

Farajpour et al. 2012, Ansari and Sahmani 2013). Finite 

element method which is generally carried out by FE 

programs as ABAQUS and ANSYS performed which are 

known for their reliable technique for empirical data 

validation and response analysis and prediction. 
 

 

2. Governing equations 
 

The following displacement field are given by using the 

higher-order advanced plate theory 
 

𝑢1(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤𝑏
𝜕𝑥

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

 (1) 

 

𝑢2(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤𝑏
𝜕𝑦

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑦

 (2) 

 

𝑢3(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) (3) 
 

Now, in the above equations there is a trigonometric 

function, which as 
 

𝑓(𝑧) = 𝑧 −
ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
) (4) 

 

where, 𝑤𝑏 represents the bending transverse displacement 

and subsequently 𝑤𝑠 , represents the shear transverse 

displacement. Now, strains (nonzero) of considered thin 

plate model is able to be expressed through 
 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = +𝑧{

𝜅𝑥
𝑏

𝜅𝑦
𝑏

𝜅𝑥𝑦
𝑏

} + 𝑓(𝑧) {

𝜅𝑥
𝑠

𝜅𝑦
𝑠

𝜅𝑥𝑦
𝑠
} , 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧) {

𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } 

(5) 

 

Where, the assuming function g(z) = 1 – df/dz, and 
 

{

𝜅𝑥
𝑏

𝜅𝑦
𝑏

𝜅𝑥𝑦
𝑏

} =

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑏
𝜕𝑦2

−2
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦}

  
 

  
 

,          {

𝜅𝑥
𝑠

𝜅𝑦
𝑠

𝜅𝑥𝑦
𝑠
} =

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑦2

−2
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

, 

{
𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } =

{
 

 
𝜕𝑤𝑠
𝜕𝑦
𝜕𝑤𝑠
𝜕𝑥 }

 

 
 

(6) 
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Now, from the Hamilton’s principle we have 

 

∫ 𝛿(𝑈 − 𝑇 + 𝑉)𝑑𝑡 = 0
𝑡

0

 (7) 

 

Where, 𝑈 symbolizes the strain energy in the equation, 

𝑇 then represents the kinetic energy of the structure and 

meanwhile 𝑉 symbolizes the work done, that is carried out 

by the external loads. Now, it is possible to express the 

variation of strain energy by 
 

𝛿𝑈 = ∫𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉
𝑣

 

= ∫(𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑦𝛿𝜀𝑦 + 𝜎𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜎𝑦𝑧𝛿𝛾𝑦𝑧
𝑣

 

+𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑉 

(8) 

 

Introducing Eqs. (5)-(6) into Eq. (8), which 

consequently produces 
 

𝛿𝑈 = ∫ ∫ [−𝑀𝑥
𝑏
𝜕2𝛿𝑤𝑏
𝜕𝑥2

−𝑀𝑥
𝑠
𝜕2𝛿𝑤𝑠
𝜕𝑥2

−𝑀𝑦
𝑏
𝜕2𝛿𝑤𝑏
𝜕𝑦2

𝑎

0

𝑏

0

 

−𝑀𝑦
𝑠
𝜕2𝛿𝑤𝑠
𝜕𝑦2

− 2𝑀𝑥𝑦
𝑏
𝜕2𝛿𝑤𝑏
𝜕𝑥𝜕𝑦

− 2𝑀𝑥𝑦
𝑠
𝜕2𝛿𝑤𝑠
𝜕𝑥𝜕𝑦

 

+𝑄𝑦𝑧
𝜕𝛿𝑤𝑠
𝜕𝑦

+ 𝑄𝑥𝑧
𝜕𝛿𝑤𝑠
𝜕𝑥

] 𝑑𝑥𝑑𝑦 

(9) 

 

In Eq. (9), the M is given as 
 

(𝑀𝑖
𝑏, 𝑀𝑖

𝑠) = ∫ (𝑧, 𝑓)𝜎𝑖

ℎ

2

−
ℎ

2

𝑑𝑧,         𝑖 = (𝑥, 𝑦, 𝑥𝑦) 

𝑄𝑖 = ∫ 𝑔𝜎𝑖

ℎ/2

−ℎ/2

𝑑𝑧,                          𝑖 = (𝑥𝑧, 𝑦𝑧) 

(10) 

 

The work done variation after applying all the loads is 

expressed through 
 

𝛿𝑉 = ∫ ∫ (
𝑎

0

𝑁𝑥
0
𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑥

𝜕𝛿(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥

𝑏

0

 

+𝑁𝑦
0
𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑦

𝜕𝛿(𝑤𝑏 + 𝑤𝑠)

𝜕𝑦
 

+2𝛿𝑁𝑥𝑦
0
𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑥

𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑦
 

−𝑘𝑤𝛿(𝑤𝑏 + 𝑤𝑠) + 𝑘𝑝𝛿(𝑤𝑏 + 𝑤𝑠))𝑑𝑥𝑑𝑦 

(11a) 

 

Here, 𝑁𝑥
0, 𝑁𝑦

0, 𝑁𝑥𝑦
0  represents the in-plane applied 

loads, also, Kw & Kp symbolizes the Winkler & Pasternak 

constants. 

Essentially, we need to take into account a few 

assumptions where graphene thin sheet when undergoing 

the linearly varying load (in-plane) while loading is zero 

𝑁𝑥𝑦
0  = 0 

 

𝑁𝑥
0 = 𝑁(1 − 𝜉

𝑦

𝑏
), 𝑁𝑦

0 = 𝜂𝑁(1 − 𝜉
𝑥

𝑎
) (11b) 

 

In above Eq. (11b), 𝜉 symbolizes the in-plane bending 

load factor. 

Now, kinetic energy variation is given as 

𝛿𝐾 = ∫ ∫ [𝐼0 (
𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑡

𝜕𝛿(𝑤𝑏 +𝑤𝑠)

𝜕𝑡
)

𝑎

0

𝑏

0

 

+𝐼2 (
𝜕𝑤𝑏
𝜕𝑥𝜕𝑡

𝜕𝛿𝑤𝑏
𝜕𝑥𝜕𝑡

+
𝜕𝑤𝑏
𝜕𝑦𝜕𝑡

𝜕𝛿𝑤𝑏
𝜕𝑦𝜕𝑡

) 

+𝐾2 (
𝜕𝑤𝑠
𝜕𝑥𝜕𝑡

𝜕𝛿𝑤𝑠
𝜕𝑥𝜕𝑡

+
𝜕𝑤𝑠
𝜕𝑦𝜕𝑡

𝜕𝛿𝑤𝑠
𝜕𝑦𝜕𝑡

) 

+𝐽2 (
𝜕𝑤𝑏
𝜕𝑥𝜕𝑡

𝜕𝛿𝑤𝑠
𝜕𝑥𝜕𝑡

+
𝜕𝑤𝑠
𝜕𝑥𝜕𝑡

𝜕𝛿𝑤𝑏
𝜕𝑥𝜕𝑡

+
𝜕𝑤𝑏
𝜕𝑦𝜕𝑡

𝜕𝛿𝑤𝑠
𝜕𝑦𝜕𝑡

 

+
𝜕𝑤𝑠
𝜕𝑦𝜕𝑡

𝜕𝛿𝑤𝑏
𝜕𝑦𝜕𝑡

)] 𝑑𝑥𝑑𝑦 

(12) 

 

Where 
 

(𝐼0 , 𝐼2 , 𝐽2 , 𝐾2 ) = ∫ (1, 𝑧2, 𝑧𝑓, 𝑓2)𝜌𝑑𝑧
ℎ/2

−ℎ/2

 (13) 

 

Through introducing the Eqs. (9)-(12) in Eq. (7) along 

with collecting coefficients of 𝛿𝑤𝑏  & 𝛿𝑤𝑠  as well as 

putting them equals to zero as by the necessary condition, 

then we reached upto the following equations 
 

𝜕2𝑀𝑥
𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
 

−𝑁𝑥
0(𝑦)

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
− 𝑁𝑦

0(𝑥)
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑦2
 

+𝑘𝑝 [
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑦2
] − 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) 

= 𝐼0
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑡2
− 𝐼2𝛻

2 (
𝜕2𝑤𝑏
𝜕𝑡2

) − 𝐽2𝛻
2 (
𝜕2𝑤𝑠
𝜕𝑡2

) 

(14) 

 

𝜕2𝑀𝑥
𝑠

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
+
𝜕𝑄𝑥𝑧
𝜕𝑥

+
𝜕𝑄𝑦𝑧
𝜕𝑦

 

−𝑁𝑥
0(𝑦)

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
− 𝑁𝑦

0(𝑥)
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑦2
 

+𝑘𝑝 [
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑦2
] − 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) 

= 𝐼0
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑡2
− 𝐽2𝛻

2 (
𝜕2𝑤𝑏
𝜕𝑡2

) − 𝐾2𝛻
2 (
𝜕2𝑤𝑠
𝜕𝑡2

) 

(15) 

 

Hence, the Eq. (15) is derived. 
 

2.1 An analysis of the nonlocal strain gradient 
nanoplate structure 

 

A recently advanced nonlocal strain gradient theory 

(Ebrahimi and Barati 2016a) happens to include a factor 

that has been developed specifically for strain gradients and 

nonlocal stress field effects with the help of two scale 

parameters. The newly considered theory delineate the 

stress field as 
 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
(0)
−
𝑑𝜎𝑖𝑗

(1)

𝑑𝑥
 (16) 

 

Where, the stresses 𝜎𝑥𝑥
(0)

 & 𝜎𝑥𝑥
(1)

 in relation with strain 

𝜀𝑥𝑥 & strain gradient 𝜀𝑥𝑥,𝑥, correspondingly as 
 

𝜎𝑖𝑗
(0)
= ∫ 𝐶𝑖𝑗𝑘𝑙

𝐿

0

𝛼0(𝑥, 𝑥
′, 𝑒0𝑎)𝜀𝑘𝑙

′ (𝑥 ′)𝑑𝑥 ′ (17a) 
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𝜎𝑖𝑗
(1)
= 𝑙2∫ 𝐶𝑖𝑗𝑘𝑙

𝐿

0

𝛼1(𝑥, 𝑥
′, 𝑒1𝑎)𝜀𝑘𝑙,𝑥

′ (𝑥 ′)𝑑𝑥 ′ (17b) 

 

Where, 𝐶𝑖𝑗𝑘𝑙  represents two elastic coefficients, 

namely, e0a & e1a holds the nonlocal influence, while l 

represents the strain gradient influence. In addition to that, 

the functions, which are nonlocal, i.e., 𝛼0(𝑥, 𝑥
′, 𝑒0𝑎) 

&𝛼1(𝑥, 𝑥
′, 𝑒1𝑎) assures that conditions that are established 

from (Eringen 1983) demonstrate all the necessary or 

essential correlations for the nonlocal strain gradient theory 

subsequently through 

 

[1 − (𝑒1𝑎)
2𝛻2][1 − (𝑒0𝑎)

2𝛻2]𝜎𝑖𝑗 

= 𝐶𝑖𝑗𝑘𝑙[1 − (𝑒1𝑎)
2𝛻2]𝜀𝑘𝑙 

−𝐶𝑖𝑗𝑘𝑙𝑙
2[1 − (𝑒0𝑎)

2𝛻2]𝛻2𝜀𝑘𝑙 
(18) 

 

Whereby, 𝛻2  happens to be a representation of the 

Laplacian operator. 

Taking into an account 𝑒1 = 𝑒0 = 𝑒 , the essential 

correlation in Eq. (22a) set off 

 

[1 − (𝑒𝑎)2𝛻2]𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙[1 − 𝑙
2𝛻2]𝜀𝑘𝑙 (19) 

 

At last, the essential correlation of the nonlocal strain 

gradient theory may be demonstrated with 
 

(1 − 𝜇𝛻2)

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧}

 
 

 
 

= (1 − 𝜆𝛻2)

(

 
 

𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄44 0
0 0 0 0 𝑄55)

 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}
 
 

 
 

 

(20) 

 

where 
 

𝑄11 = 𝑄22 =
𝐸

1 − 𝜐2
,     𝑄12 = 𝜐𝑄11, 

𝑄44 = 𝑄55 = 𝑄66 =
𝐸

2(1 + 𝜐)
 

(21) 

 

where 𝜇 = (𝑒𝑎)2 & 𝜆 = 𝑙2. Introducing Eq. (10) in Eq. 

(23) yields 
 

(1 − 𝜇𝛻2) {

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥𝑦
𝑏

} 

= (1 − 𝜆𝛻2)

[
 
 
 
 
 
 

(

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

)

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑏
𝜕𝑦2

−2
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦}

  
 

  
 

 

 

(22) 

+(

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
)

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑦2

−2
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

]
 
 
 
 
 
 

                      (22) 

 

(1 − 𝜇𝛻2) {

𝑀𝑥
𝑠

𝑀𝑦
𝑠

𝑀𝑥𝑦
𝑠
} 

= (1 − 𝜆𝛻2)

[
 
 
 
 
 
 

(

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
)

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑏
𝜕𝑦2

−2
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦}

  
 

  
 

 

+(

𝐻11
𝑠 𝐻12

𝑠 0

𝐻12
𝑠 𝐻22

𝑠 0

0 0 𝐻66
𝑠
)

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑦2

−2
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

]
 
 
 
 
 
 

 

(23) 

 

(1 − 𝜇𝛻2) {
𝑄𝑥
𝑄𝑦
} = (1 − 𝜆𝛻2)

[
 
 
 

(
𝐴44
𝑠 0

0 𝐴55
𝑠 )

{
 

 
𝜕𝑤𝑠
𝜕𝑥
𝜕𝑤𝑠
𝜕𝑦 }

 

 

]
 
 
 

 (24) 

 

Where, circular thin slice rigidities are as follows 

. 

{

𝐷11, 𝐷11
𝑠 , 𝐻11

𝑠

𝐷12, 𝐷12
𝑠 , 𝐻12

𝑠

𝐷66, 𝐷66
𝑠 , 𝐻66

𝑠
} = ∫ 𝑄11(𝑧

2, 𝑧𝑓, 𝑓2) {

1
𝜈

1 − 𝜈

2

}
ℎ/2

−ℎ/2

𝑑𝑧 (25) 

 

𝐴44
𝑠 = 𝐴55

𝑠 = ∫ 𝑔2
𝐸

2(1 + 𝑣)

ℎ/2

−ℎ/2

𝑑𝑧 (26) 

 

The fundamental expressions of nonlocal strain gradient 

graphene thin sheet in words of the displacement have been 

achieved through introducing Eqs. (25)-(27), into Eqs. (14)-

(15) as shown further below 

 

−𝐷11 [
𝜕4𝑤𝑏
𝜕𝑥4

− 𝜆 (
𝜕6𝑤𝑏
𝜕𝑥6

+
𝜕6𝑤𝑏
𝜕𝑥4𝜕𝑦2

)] 

−2(𝐷12 + 2𝐷66) [
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝜆 (
𝜕6𝑤𝑏
𝜕𝑥4𝜕𝑦2

+
𝜕6𝑤𝑏
𝜕𝑥2𝜕𝑦4

)] 

−𝐷22[
𝜕4𝑤𝑏
𝜕𝑦4

− 𝜆(
𝜕6𝑤𝑏
𝜕𝑦6

+
𝜕6𝑤𝑏
𝜕𝑦4𝜕𝑥2

)] − 𝐷11
𝑠 [
𝜕4𝑤𝑠
𝜕𝑥4

 

−𝜆(
𝜕6𝑤𝑠
𝜕𝑥6

+
𝜕6𝑤𝑠
𝜕𝑥4𝜕𝑦2

)] − 2(𝐷12
𝑠 + 2𝐷66

𝑠 )[
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

 

−𝜆(
𝜕6𝑤𝑠
𝜕𝑥4𝜕𝑦2

+
𝜕6𝑤𝑠
𝜕𝑥2𝜕𝑦4

)] 

−𝐷22
𝑠 [
𝜕4𝑤𝑠
𝜕𝑦4

− 𝜆(
𝜕6𝑤𝑠
𝜕𝑦6

+
𝜕6𝑤𝑠
𝜕𝑦4𝜕𝑥2

)] − 𝐼0[
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑡2
 

(27) 
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−𝜇(
𝜕4(𝑤𝑏 +𝑤𝑠)

𝜕𝑡2𝜕𝑥2
+
𝜕4(𝑤𝑏 +𝑤𝑠)

𝜕𝑡2𝜕𝑦2
)] + 𝐼2[

𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

 

+
𝜕4𝑤𝑏
𝜕𝑦2𝜕𝑡2

− 𝜇(
𝜕6𝑤𝑏
𝜕𝑡2𝜕𝑥4

+ 2
𝜕6𝑤𝑏

𝜕𝑡2𝜕𝑥2𝜕𝑦2
+

𝜕6𝑤𝑏
𝜕𝑡2𝜕𝑦4

)] 

+𝐽2[
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑠
𝜕𝑦2𝜕𝑡2

 

−𝜇(
𝜕6𝑤𝑠
𝜕𝑡2𝜕𝑥4

+ 2
𝜕6𝑤𝑠

𝜕𝑡2𝜕𝑥2𝜕𝑦2
+

𝜕6𝑤𝑠
𝜕𝑡2𝜕𝑦4

)] 

−𝑁𝑥
0(𝑦) [1 − 𝜇 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)]
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2
 

−𝑁𝑦
0(𝑥) [1 − 𝜇 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)]
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑦2
 

+𝑘𝑝[1 − 𝜇(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)][
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
 

+
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑦2
] − 𝑘𝑤[(𝑤𝑏 + 𝑤𝑠) 

−𝜇(
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2
+
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑦2
)] = 0 

(27) 

 

−𝐷11
𝑠 [
𝜕4𝑤𝑏
𝜕𝑥4

− 𝜆 (
𝜕6𝑤𝑏
𝜕𝑥6

+
𝜕6𝑤𝑏
𝜕𝑥4𝜕𝑦2

)] 

+𝐴55
𝑠 [

𝜕2𝑤𝑠
𝜕𝑥2

− 𝜆 (
𝜕4𝑤𝑠
𝜕𝑥4

+
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

)] 

+𝐴44
𝑠 [

𝜕2𝑤𝑠
𝜕𝑦2

− 𝜆 (
𝜕4𝑤𝑠
𝜕𝑦4

+
𝜕4𝑤𝑠
𝜕𝑦2𝜕𝑥2

)] 

−2(𝐷12
𝑠 + 2𝐷66

𝑠 ) [
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

− 𝜆 (
𝜕6𝑤𝑏
𝜕𝑥4𝜕𝑦2

+
𝜕6𝑤𝑏
𝜕𝑥2𝜕𝑦4

)] 

−𝐷22
𝑠 [
𝜕4𝑤𝑏
𝜕𝑦4

− 𝜆 (
𝜕6𝑤𝑏
𝜕𝑦6

+
𝜕6𝑤𝑏
𝜕𝑦4𝜕𝑥2

)] 

−𝐻11
𝑠 [
𝜕4𝑤𝑠
𝜕𝑥4

− 𝜆 (
𝜕6𝑤𝑠
𝜕𝑥6

+
𝜕6𝑤𝑠
𝜕𝑥4𝜕𝑦2

)] 

−2(𝐻12
𝑠 + 2𝐻66

𝑠 ) [
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

− 𝜆 (
𝜕6𝑤𝑠
𝜕𝑥4𝜕𝑦2

+
𝜕6𝑤𝑠
𝜕𝑥2𝜕𝑦4

)] 

−𝐻22
𝑠 [
𝜕4𝑤𝑠
𝜕𝑦4

− 𝜆 (
𝜕6𝑤𝑠
𝜕𝑦6

+
𝜕6𝑤𝑠
𝜕𝑦4𝜕𝑥2

)] 

−𝐼0 [
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑡2
−𝜇 (

𝜕4(𝑤𝑏 +𝑤𝑠)

𝜕𝑡2𝜕𝑥2
+
𝜕4(𝑤𝑏 +𝑤𝑠)

𝜕𝑡2𝜕𝑦2
)] 

+𝐽2[
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑏
𝜕𝑦2𝜕𝑡2

− 𝜇(
𝜕6𝑤𝑏
𝜕𝑡2𝜕𝑥4

 

+2
𝜕6𝑤𝑏

𝜕𝑡2𝜕𝑥2𝜕𝑦2
+

𝜕6𝑤𝑏
𝜕𝑡2𝜕𝑦4

)] + 𝐾2[
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑠
𝜕𝑦2𝜕𝑡2

 

−𝜇(
𝜕6𝑤𝑠
𝜕𝑡2𝜕𝑥4

+ 2
𝜕6𝑤𝑠

𝜕𝑡2𝜕𝑥2𝜕𝑦2
+

𝜕6𝑤𝑠
𝜕𝑡2𝜕𝑦4

)] 

−𝑁𝑥
0(𝑦) [1 − 𝜇 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)]
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
− 𝑁𝑦

0(𝑥) 

[1 − 𝜇 (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)]
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑦2
 

+𝑘𝑝 [1 − 𝜇 (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)] 

[
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑦2
] 

 

(28) 

−𝑘𝑤 [(𝑤𝑏 + 𝑤𝑠) − 𝜇 (
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2
+
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑦2
)] 

= 0 

(28) 

 

 

3. Solution by Galerkin’s method 
 

One of the numerical approaches to investigate behavior 

of graphene sheets is to use Gelarkin’s technique. 

Galerkin’s Technique has been employed with the purpose 

of resolving the fundamental expressions of nonlocal strain 

gradient graphene thin sheets. Therefore, the displacement 

field is able to be solved through 

 

𝑤𝑏 = ∑∑𝑊𝑏𝑚𝑛𝛷𝑏𝑚(𝑥)

∞

𝑛=1

𝛹𝑏𝑛(𝑦)𝑒
𝑖𝜔𝑛𝑡

∞

𝑚=1

 (29) 

 

𝑤𝑠 = ∑∑𝑊𝑠𝑚𝑛𝛷𝑠𝑚(𝑥)

∞

𝑛=1

𝛹𝑠𝑛(𝑦)𝑒
𝑖𝜔𝑛𝑡

∞

𝑚=1

 (30) 

 

In the above equations (𝑊𝑏𝑚𝑛, 𝑊𝑠𝑚𝑛) represents the 

untold coefficients along with the functions viz., 𝛷𝑚 & 𝛹𝑛 

are satisfy the boundary conditions. 

Boundary conditions must rely on and consider thin 

plate model that are essentially given as 

 

𝑤𝑏 = 𝑤𝑠 = 0, 
𝜕2𝑤𝑏
𝜕𝑥2

=
𝜕2𝑤𝑠
𝜕𝑥2

=
𝜕2𝑤𝑏
𝜕𝑦2

=
𝜕2𝑤𝑠
𝜕𝑦2

= 0 

simply-supported edge 

(31) 

 

𝑤𝑏 = 𝑤𝑠 = 0, 
𝜕𝑤𝑏
𝜕𝑥

=
𝜕𝑤𝑠
𝜕𝑥

=
𝜕𝑤𝑏
𝜕𝑦

=
𝜕𝑤𝑠
𝜕𝑦

= 0 

clamped edge 

(32) 

 

Introducing the Eqs. (29)-(30) in Eqs. (27)-(28) and 

multiplying all the obtained expressions with 𝛷𝑖𝑚𝛹𝑖𝑛  (𝑖 =
𝑏, 𝑠) and then integrate the equations, which results in 

achieveing the expressions shown below. 

 

∫ ∫ 𝛷𝑏𝑚𝛹𝑏𝑛[−
𝑎

0

𝑏

0

𝐷11[
𝜕4𝛷𝑏𝑚
𝜕𝑥4

𝛹𝑏𝑛 

−𝜆(
𝜕6𝛷𝑏𝑚
𝜕𝑥6

𝛹𝑏𝑛 +
𝜕4𝛷𝑏𝑚
𝜕𝑥4

𝜕2𝛹𝑏𝑛
𝜕𝑦2

)] 

−2(𝐷12 + 2𝐷66)[
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝜕2𝛹𝑏𝑛
𝜕𝑦2

− 𝜆(
𝜕4𝛷𝑏𝑚
𝜕𝑥4

𝜕2𝛹𝑏𝑛
𝜕𝑦2

 

+
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝜕4𝛹𝑏𝑛
𝜕𝑦4

)] − 𝐷22[
𝜕4𝛹𝑏𝑚
𝜕𝑦4

𝛷𝑏𝑛 

−𝜆(
𝜕6𝛹𝑏𝑚
𝜕𝑦6

𝛷𝑏𝑛 +
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝜕4𝛹𝑏𝑛
𝜕𝑦4

)] 

−𝐷11
𝑠 [
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝛹𝑠𝑛 − 𝜆 (
𝜕6𝛷𝑠𝑚
𝜕𝑥6

𝛹𝑠𝑛 +
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝜕2𝛹𝑠𝑛
𝜕𝑦2

)] 

−2(𝐷12
𝑠 + 2𝐷66

𝑠 )[
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕2𝛹𝑠𝑛
𝜕𝑦2

− 𝜆(
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝜕2𝛹𝑠𝑛
𝜕𝑦2

 

 

(33) 
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+
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕4𝛹𝑠𝑛
𝜕𝑦4

)] − 𝐷22
𝑠 [
𝜕4𝛹𝑠𝑚
𝜕𝑦4

𝛷𝑠𝑛 

−𝜆(
𝜕6𝛹𝑠𝑚
𝜕𝑦6

𝛷𝑠𝑛 +
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕4𝛹𝑠𝑛
𝜕𝑦4

)] 

+𝐼0𝜔
2[(𝛷𝑏𝑚𝛹𝑏𝑛 +𝛷𝑠𝑚𝛹𝑠𝑛) 

−𝜇(
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝛹𝑏𝑛 +
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛 +
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 

+
𝜕2𝛹𝑏𝑚
𝜕𝑦2

𝛷𝑏𝑛)] − 𝐼2𝜔
2[
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝛹𝑏𝑛 +
𝜕2𝛹𝑏𝑚
𝜕𝑦2

𝛷𝑏𝑛 

−𝜇(
𝜕4𝛷𝑏𝑚
𝜕𝑥4

𝛹𝑏𝑛 + 2
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝜕2𝛹𝑏𝑛
𝜕𝑦2

+
𝜕𝑏𝛹𝑠𝑚
𝜕𝑦4

𝛷𝑏𝑛)] 

−𝐽2𝜔
2[
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛 +
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 − 𝜇(
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝛹𝑠𝑛 

+2
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕2𝛹𝑠𝑛
𝜕𝑦2

+
𝜕4𝛹𝑠𝑚
𝜕𝑦4

𝛷𝑠𝑛)] 

−𝑁𝑥
0(𝑦) [1 − 𝜇 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)] 

[
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝛹𝑏𝑛 +
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛] 

−𝑁𝑦
0(𝑥) [1 − 𝜇 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)] 

[
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 +
𝜕2𝛹𝑏𝑚
𝜕𝑦2

𝛷𝑏𝑛] 

+𝑘𝑝(1 − 𝜇(
𝜕

𝜕𝑥2
+

𝜕

𝜕𝑥2
))[(

𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝛹𝑏𝑛 +
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛 

+
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 +
𝜕2𝛹𝑏𝑚
𝜕𝑦2

𝛷𝑏𝑛)] 

−𝑘𝑤(1 − 𝜇(
𝜕

𝜕𝑥2
+

𝜕

𝜕𝑥2
))(𝛷𝑏𝑚𝛹𝑏𝑛 + 𝛷𝑠𝑚𝛹𝑠𝑛)]𝑑𝑥𝑑𝑦 

= 0 

(33) 

 

∫ ∫ 𝛷𝑠𝑚𝛹𝑠𝑛[−
𝑎

0

𝑏

0

𝐷11
𝑠 [
𝜕4𝛷𝑏𝑚
𝜕𝑥4

𝛹𝑏𝑛 

−𝜆(
𝜕6𝛷𝑏𝑚
𝜕𝑥6

𝛹𝑏𝑛 +
𝜕4𝛷𝑏𝑚
𝜕𝑥4

𝜕2𝛹𝑏𝑛
𝜕𝑦2

)] 

−2(𝐷12
𝑠 + 2𝐷66

𝑠 )[
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝜕2𝛹𝑏𝑛
𝜕𝑦2

− 𝜆(
𝜕4𝛷𝑏𝑚
𝜕𝑥4

𝜕2𝛹𝑏𝑛
𝜕𝑦2

 

+
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝜕4𝛹𝑏𝑛
𝜕𝑦4

)] − 𝐷22
𝑠 [
𝜕4𝛹𝑏𝑚
𝜕𝑦4

𝛷𝑏𝑛 − 𝜆(
𝜕6𝛹𝑏𝑚
𝜕𝑦6

𝛷𝑏𝑛 

+
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝜕4𝛹𝑏𝑛
𝜕𝑦4

)] − 𝐻11
𝑠 [
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝛹𝑠𝑛 

−𝜆(
𝜕6𝛷𝑠𝑚
𝜕𝑥6

𝛹𝑠𝑛 +
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝜕2𝛹𝑠𝑛
𝜕𝑦2

)] 

−2(𝐻12
𝑠 + 2𝐻66

𝑠 )[
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕2𝛹𝑠𝑛
𝜕𝑦2

− 𝜆(
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝜕2𝛹𝑠𝑛
𝜕𝑦2

 

+
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕4𝛹𝑠𝑛
𝜕𝑦4

)] − 𝐻22
𝑠 [
𝜕4𝛹𝑠𝑚
𝜕𝑦4

𝛷𝑠𝑛 − 𝜆(
𝜕6𝛹𝑠𝑚
𝜕𝑦6

𝛷𝑠𝑛 

+
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕4𝛹𝑠𝑛
𝜕𝑦4

)] + 𝐼0𝜔
2[𝛷𝑏𝑚𝛹𝑏𝑛 − 𝜇(

𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝛹𝑏𝑛 

+
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛 +
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 +
𝜕2𝛹𝑏𝑚
𝜕𝑦2

𝛷𝑏𝑛)] 

−𝐽2𝜔
2[
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝛹𝑏𝑛 +
𝜕2𝛹𝑏𝑚
𝜕𝑦2

𝛷𝑏𝑛 − 𝜇(
𝜕4𝛷𝑏𝑚
𝜕𝑥4

𝛹𝑏𝑛 

 

(34) 

+2
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝜕2𝛹𝑏𝑛
𝜕𝑦2

+
𝜕𝑏𝛹𝑠𝑚
𝜕𝑦4

𝛷𝑏𝑛)] − 𝐾2𝜔
2[
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛 

+
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 − 𝜇(
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝛹𝑠𝑛 + 2
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕2𝛹𝑠𝑛
𝜕𝑦2

 

+
𝜕4𝛹𝑠𝑚
𝜕𝑦4

𝛷𝑠𝑛)] − 𝑁𝑥
0(𝑦) [1 − 𝜇 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)] 

[
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝛹𝑏𝑛 +
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛] 

−𝑁𝑦
0(𝑥) [1 − 𝜇 (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)] 

[
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 +
𝜕2𝛹𝑏𝑚
𝜕𝑦2

𝛷𝑏𝑛] + 𝐴55
𝑠 [
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛 

−𝜆(
𝜕4𝛷𝑠𝑚
𝜕𝑥4

𝛹𝑠𝑛 +
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕2𝛹𝑠𝑛
𝜕𝑦2

)] 

+𝐴44
𝑠 [
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 − 𝜆(
𝜕4𝛹𝑠𝑚
𝜕𝑦4

𝛷𝑠𝑛 +
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝜕2𝛹𝑠𝑛
𝜕𝑦2

) 

+𝑘𝑝(1 − 𝜇(
𝜕

𝜕𝑥2
+

𝜕

𝜕𝑥2
))[
𝜕2𝛷𝑏𝑚
𝜕𝑥2

𝛹𝑏𝑛 +
𝜕2𝛷𝑠𝑚
𝜕𝑥2

𝛹𝑠𝑛 

+
𝜕2𝛹𝑠𝑚
𝜕𝑦2

𝛷𝑠𝑛 +
𝜕2𝛹𝑏𝑚
𝜕𝑦2

𝛷𝑏𝑛)] 

−𝑘𝑤(1 − 𝜇(
𝜕

𝜕𝑥2
+

𝜕

𝜕𝑥2
))(𝛷𝑏𝑚𝛹𝑏𝑛 + 𝛷𝑠𝑚𝛹𝑠𝑛)]𝑑𝑥𝑑𝑦 

= 0 

(34) 

 

The function 𝛷𝑚 is for variying boundary conditions 

and happens to be given as 
 

SS: 
Φ𝑚(𝑥) = sin(𝜆𝑚𝑥) 

𝜆𝑚 =
𝑚𝜋

𝑎
 

(35) 

 

CC: 

Φ𝑚(𝑥) = sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥) 
                  −𝜉𝑚(cos(𝜆𝑚𝑥) − cosh(𝜆𝑚𝑥)) 

𝜉𝑚 =
sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥)

cos(𝜆𝑚𝑥) − cosh(𝜆𝑚𝑥)
 

𝜆1 = 4.730,        𝜆2 = 7.853,        𝜆3 = 10.996, 

𝜆4 = 14.137,     𝜆𝑚≥5 =
(𝑚 + 0.5)𝜋

𝑎
 

(36) 

 

CS: 

Φ𝑚(𝑥) = sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥) 
                   −𝜉𝑚(cos(𝜆𝑚𝑥) − cosh(𝜆𝑚𝑥)) 

𝜉𝑚 =
sin(𝜆𝑚𝑥) + sinh(𝜆𝑚𝑥)

cos(𝜆𝑚𝑥) + cosh(𝜆𝑚𝑥)
 

𝜆1 = 3.927,        𝜆2 = 7.069,        𝜆3 = 10.210, 

𝜆4 = 13.352,     𝜆𝑚≥5 =
(𝑚 + 0.25)𝜋

𝑎
 

(37) 

 

Now, in order to achieve the new function 𝛹𝑛, x, m & a 

by y, n & b must be replaced respectively. Afterwards, the 

coefficient matrix of all the aforementioned expressions 

above gives the eigenvalue problem 

 

([𝐾] + 𝜔2[𝑀]) {
𝑊𝑏

𝑊𝑠
} = 0 (38) 

 

Here, [M] & [K] represents the mass and stiffness 

matrix correspondingly. Now to compute the problem 

further, putting the coefficient matrix equals to zero 
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(necessary and sufficient condition) which gives the natural 

frequencies. 

Note: calculations are executed by including the 

dimensionless expressions shown below as 

 

𝜔̂ = 𝜔
𝑎2

ℎ
√
𝜌

𝐸
,          𝐾𝑤 = 𝑘𝑤

𝑎4

𝐷∗
,         𝐾𝑝 = 𝑘𝑝

𝑎2

𝐷∗
, 

𝐷∗ =
𝐸ℎ3

12(1 − 𝑣2)
,   𝑁̄ = 𝑁

𝑎2

𝐷∗
 

(39) 

 

 

4. Numerical results and discussions 
 
Following the two-variable shear deformation concept, 

this is section is going to delineate the vibration 

characteristics of thin graphene sheets are resting over an 

elastic material half-space subjected to face in-plane 

loading. The considered structure studies the more precise 

examination of graphene sheets form the two-scale 

coefficients are in connection with the strain gradient and 

nonlocal effects. Graphene thin sheets have the following 

material properties: E = 1 TPa, v = 0.19, ρ = 2300 kg/m3 and 

graphene sheet is 0.34 nm thick. Figs. 1 and 2, represents 

the schematics of graphene sheets having in-plane loading. 

Futhermore, validation of natural frequencies of thin 

graphene sheets is followed by Sobhy (2014) for the distinct 

 

 

 

 

Table 1 A comparison of the natural frequency of a 

graphene sheet for various nonlocal and foundation 

parameters (a/h = 10) 

µ 

Kw = 0, Kp = 0 Kw = 100, Kp = 0 Kw = 0, Kp = 20 

Sobhy 

(2014) 
Present 

Sobhy 

(2014) 
Present 

Sobhy 

(2014) 
Present 

0 1.93861 1.93861 2.18396 2.18396 2.7841 2.78410 

1 1.17816 1.17816 1.54903 1.54903 2.31969 2.31969 

2 0.92261 0.92261 1.36479 1.36479 2.20092 2.20092 

3 0.78347 0.78347 1.27485 1.27485 2.14629 2.14629 

4 0.69279 0.69279 1.22122 1.22122 2.11486 2.11486 
 

 

 

nonlocal parameters (µ = 0, 1, 2, 3, 4 nm2) & foundation 

constants ({Kw, Kp} = {(0,0), (100,0), (0,20)} along with 

also achieved frequency by Galerkin technique is in well 

agreement with Sobhy (2014), which is presented in Table 

1. Length scale parameter or the strain gradient is set to zero 

(λ = 0) for comparison study. 

Further into discussion, analysis of strain gradient and 

nonlocal influence on vibrational frequencies of thin sheets 

of graphene materials against non-dimensionless load is 

delineated in Fig. 3 for a/h = 10. When λ = 0, graphene 

sheets natural frequencies are achieved following the 

 

Fig. 1 The configuration of graphene sheet resting on elastic substrate 

  

Fig. 2 Various cases of in-plane bending loads 
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Fig. 3 Variation of dimensionless frequency versus 

dimensionless load for different nonlocal and strain 

gradient parameters (a/h = 10, ξ = 0.5) 

 

 

elasticity theory. When both µ = 0 & λ = 0, the figures 

render significant outcomes following original continuum 

mechanics. When the in-plane load value is fixed, it is 

recorded that graphene thin sheet natural frequency 

decreases with the increment in the value of nonlocal 

parameter. The results delineate how the nonlocal parameter 

develops an influence of stiffness-softening which shows 

there is in fact a decrease with the value of natural 

frequency. Another factor discovered is the influence the 

nonlocal parameter has on frequency (natural) mainly 

relying on the length scale or even the strain gradient 

parameter. As outcomes, stiffness-hardening influence is 

because of the strain gradients due to graphene sheet natural 

frequency grows in value with increments in the value of 

length scale parameter. Furthermore, it is observed that the 

increment in the non-dimensional load reduces the material 
 

 

 

Fig. 4 Variation of dimensionless frequency versus 

dimensionless load for different load factors 

(a/h = 10, µ = 1 nm2, λ = 0.5 nm2) 
 

 

Fig. 5 Variation of dimensionless frequency versus 

dimensionless load for different boundary conditions 

(a/h = 10, ξ = 0.5, µ = 1 nm2, λ = 0.5 nm2) 

 

 

plate natural and stiffness upto the critical point i.e., when 

the frequency of the considered structure becomes zero. On 

the achieved critical point, the thin graphene sheets only 

buckle and do not follow the oscillations. So, there is a 

dependency of achieved critical points over length scale 

parameter. Therefore, in nonlocal strain gradient theory, 

when we use the concept of length scale parameter, gives 

the high value of critical point unless which is not achieved 

by using the nonlocal theory. Therefore, the result indicate 

that, it is significant to take both length scale along with 

nonlocal parameters in examination of thin graphene 

material sheets. 

Additionally, Fig. 4 delineate the non-dimensional 

frequency variation of thin graphene material sheets of 

nonlocal strain against non-dimensionless load for varied 

load factors, when there is a fixed value of a/h = 10, µ = 1 

nm2 and λ = 0.5 nm2. In-plane loading decreases the 

stiffness of the plate and the influences remarkably on the 

structure performance. So, it is noticeable that, as if there is 

an increment in the load factor which leads to the increment 

in the non-dimensional frequencies. As a result, critical load 

buckling shifted to the right side of the framework because 

of increment of the load factor, the in-plane load reduces. 

Now, Fig. 5 depicts the non-dimensional frequency 

variation of the considered nonlocal strain gradient 

graphene against the non-dimensional load for distinct 

boundary condition at a/h = 10, ξ = 0.5, µ = 1 nm2 and λ = 

0.5 nm2. As we increase the total amount of clamped edges 

to make the graphene sheets more rigid, which results for 

increment in the natural frequency. As outcomes, achieved 

critical buckling loads of the considered structure of 

different boundary conditions follows the order: CCCC > 

CCSS > CSSS > SSSS. 

Moving on, Fig. 6 signifies the influence that the 

Winkler-Pasternak foundation has on nonlocal strain 

gradient thin graphene material sheets vibrational 

frequencies at points a/h = 10, ξ = 0.5, µ = 1 nm2, λ = 0.5 

nm2. From the figure, it is observed how the graphene 
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Fig. 7 Variation of dimensionless frequency versus 

dimensionless load for different values of plate 

length (ξ = 0.5, 𝜂 = 1, Kw = 25, Kp = 5, µ = 1 

nm2, λ = 0.5 nm2) 

 

 

material sheet vibration behavior relies tremendoudly on 

both the Pasternak as well as the Winkler parameters. 

Hence, Pasternak thin film and Winkler thin layer creates a 

continuous and discontinuous interaction with graphene 

material sheet. The bending rigidity of the considered 

material plates graphene has been enhanced by increasing 

the value of Pasternak and Winkler parameters. Moreover, 

Pasternak thin film influences more on natural frequency in 

comparison to Winkler thin film. It is noticeable that 

increment in the foundation variables produces higher 

critical buckling loads. 

Subsequentally, Fig. 7 reveals the non-dimensional 

frequency variation against non-dimensionl in-plane 

bending load in consideration of various side-to-thickness 

ratios (a/h) at ξ = 0.5, 𝜂 = 1, Kw = 25, Kp = 5, µ = 1 nm2, 

 

 

 

Fig. 8 Variation of dimensionless frequency versus 

length scale parameter for different values of load 

factor (ξ = 0.5, N = 5, Kw = 25, Kp = 5, µ = 1 nm2) 

 

 

λ = 0.5 nm2. From the Fig. 7 it can be observed that 

graphene material thin sheets by changing more side-to-

thickness ratios creates frequency that is more vibrational 

means have high critical buckling load. 

Influence of load factors (𝜂 = Ny/Nx) & ξ is shown in 

Figs. 8 and 9 on non-dimensional frequency variation of 

graphene material thin sheets against length scale parameter 

respectively when N = 5, Kw = 25, Kp = 5, µ = 1 nm2. If 

there is an increment in the measure of biaxial load factor 

(𝜂) which leads to the influence of applied load and i.e., 

more significant in y direction. However, which leads to a 

remarkable decrement in the graphene plate natural 

frequencies and stiffness. Moreover, with the increment in 

the in-plane bending load factor (ξ), the outcome of the load 

applied gets in the decrement and as a result, there is a 

significant increment in vibration frequencies. Here ξ = 2, 

  

Fig. 6 Variation of dimensionless frequency versus dimensionless load for different Winkler and Pasternak parameters 

(a/h = 10, ξ = 0.5, µ = 1 nm2, λ = 0.5 nm2) 
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Fig. 9 Variation of dimensionless frequency versus 

length scale parameter for different values of load 

factor (𝜂 = 1, N = 5, Kw = 25, Kp = 5, µ = 1 nm2) 

 

 

the graphene material thin sheet is having pure bending and 

it has the highest frequency in comparison with other 

bending loads. 
 

 

5. Conclusions 
 

The current original research paper carries what is 

known as the nonlocal strain gradient theory which makes 

use of potentially scrutinizing the free quivering nature of 

single-layer graphene folio or sheets under in-plane bending 

loads placed on the elastic mediums that consequently apply 

an advanced two-variable plate theory. What the theory 

does is it generally presents the two scale variables 

formally, in relation with the strain gradient along with 

nonlocal influences in order to apprehend stiffness-

hardening & softening effect. Moreover, Hamilton’s 

principle is studied and integrated with the aim to achieve 

the fundamental basic equation in regard to the considered 

study i.e., nonlocal strain gradient graphene folio theory. A 

Galerkin’s technique has been applied with the intent of 

solving the fundamental equations for the distinct boundary 

conditions. Influence of the distinct factors which can be in-

plane loading, length scale parameter, load factor, elastic 

foundation, boundary conditions, and nonlocal parameter on 

vibration properties of graphene sheets are investigated. 

Pasternak thin film influences more on natural frequency in 

comparison to Winkler thin film. It is noticed that increment 

in the foundation parameters produces higher critical 

buckling loads. From study, there are some remarkable 

outcomes: 
 

● The temperature increment deploys the thin plate 

natural frequencies and stiffness results into the 

degradation up to a certain critical point whenever 

the resultant frequencies approaches to the zero 

value. 

● It is noticeable that increment in the foundation 

parameters produces higher critical buckling loads. 

● In nonlocal strain gradient theory this present 

research uses the concept of length scale parameter, 

gives the high value of critical point unless which is 

not achieve by using the nonlocal theory. 

● Achieved critical buckling loads of the considered 

structure of different boundary condition follows the 

order: CCCC > CCSS > CSSS > SSSS. 

● Although, it is clear from the achieved results: 

nonlocal strain gradient theory obtained higher 

critical buckling loads in respect to the nonlocal 

elasticity theory. 

● The natural frequency gets increment along with the 

increment in the length scale parameter, results into 

the stiffness-hardening influence because of strain 

gradients. 

● In the increment of in-plane bending load factor, 

then there is a drop in the value of applied load 

resultant and which leads in the increment of the 

value of vibration frequencies. 

● Absolutely, in view of strain gradient influences to 

deferment in the buckling of graphene material folio. 
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