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1. Introduction 

 

Carbon nanotubes (CNTs), first designed by Iijima 

(1991), are mostly categorized into two structural groups: 

the single-walled nanotube group (SWCNTs) and the multi-

walled carbon nanotube group (MWCNTs). SWCNTs 

represent tiny cylinders made from a sheet of carbon atoms 

(Basirjafari et al. 2013a) defined as a layer of a graphite 

rolled-up into a continuous cylindrical shape of one carbon 

atom thickness (Natsuki et al. 2013). These nano-structures 

possess numerous unique and attractive properties: strong 

structures, extremely light weight, excellent heat and 

electricity conducting properties. Thanks to these distinctive 

properties, they are substantially used in numerous nano-

electronics, nano-devices, and nano-composites based 

devices. Very frequently, these CNT based nano-devices are 

subjected to external loadings during operation and their 

vibrational characteristics and resonant properties are 

therefore of major concern. Consequently, establishing a 

trustful model considering the accurate vibrational 

properties of CNT based nano- structures are important 

factors for a successful final design. Therefore, research  
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work in the CNT based nano-structures have seen a 

tremendous growth in the past few decades. 

There have been several published studies investigating 

the vibration behavior of beam like nanostructures using 

continuum model (Rao 2000, Gupta et al. 2010). It was 

established that the CNT mechanical properties depend 

strongly on their micro and nanoscopic structure 

(Bouaouina et al. 2018). The classical-continuum 

mechanics (CCM) rules are somehow shown to lead to 

inaccurate results in the material domains where the typical 

micro and nano-structural dimensions are alike the 

structural one. At present, numerous modifications to the 

Classical continuum mechanics theory have been suggested 

to take the micro-structural structures into account: for 

instance, the generalized continuum mechanics theory 

(Anderson et al. 2005). One particular example, was 

proposed by Eringen (1972a) in the name of nonlocal 

mechanic’s theory. This particular theory states that: “the 

stress tensor at a point is a function of strains at all points in 

the continuum” (Ebrahimi et al. 2019, Aydogdu and Arda 

2016). This principle is a bit dissimilar from the CCM 

theory which specifies that: “the stress at a point is a 

function of strain at that particular point” (Basirjafari et al. 

2013a). Then, and only recently, a considerable effort has 

been devoted to the problem of the vibration of these nano-

structures considering the micro and nano size effects 

(Gupta and Batra 2008). In addition, only assuming 

nonlocal gradient elasticity theory showed to capture simply 

softening behavior of nanostructures like CNTs (Rao 2000). 
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Therefore, in order to predict the two different behaviors 

simultaneously (hardening and softening) and combine both 

possible features to mimic the real dynamical behavior of 

the nano-structure, it is convenient to merge two theories: 

the strain and velocity gradient energies theories. As an 

example, Ouakad et al. (2018) formulated the strain and 

velocity gradient theory for the Euler-Bernoulli beam 

theory to examine the nonlinear free vibration problem of 

CNT based nano-resonator. They generalized the strain 

energy to account for the strain and its gradient as well. In 

addition, they also generalized the kinetic energy to 

incorporate velocity and its gradient. 

Because of their wide number of applications, and being 

very flexible in the transverse vibration mode (Farajpour et 

al. 2018), CNTs show promising potential to be used as 

rotating structures such as in miniature nano-rotor base 

devices. In fact, nanostructures possibly undergoing rotation 

are systems with potential to be used in nano-motor based 

devices such as fullerene gears and CNT gears (Mirtalaie 

and Hajabasi 2017, Huang and Han 2016, De Clerck 2014, 

Gopalakrishnan and Narendar 2013, Cai et al. 2014). They 

may be used as rotating machinery in many applications 

such as ultrafast laser spinning microdevices (Král and 

Sadeghpour 2002), nanofluidic desalination devices (Tu et 

al. 2016, Khodabakhshi and Moosavi 2017), shaft of 

nanomotors (Torkaman-Asadi et al. 2015, Kröner 1963) and 

MEMS gyroscope sensors (Yang et al. 2011). Commonly, 

rotating machinery consists of shafts whose diameters may 

change with their respective longitudinal position, and 

bearings placed at various positions along the rotor span. 

Nanostructures undergoing rotation include nanoturbines, 

nanoscale molecular bearings, shaft and gear, and multiple 

gear systems. These nanostructure machines are expected to 

receive considerable attention in the near future. 

Researchers have thus reported the feasibility of nanoscale 

rotating structures such as molecular gears, fullerene gears, 

and carbon nanotubes gears. Nonetheless, all the above 

declared applications and usefulness of such design, the 

precise prediction of their dynamic behavior is therefore 

indispensable for their final implementation. 

Recently, a great effort is devoted to the vibration 

analysis of nanobeams and CNTS under rotation. Barooti et 

al. (2017) investigated the effects of critical speed on the 

vibrational behavior of spinning SWCNT using modified 

couple stress theory by considering the first-order shear 

deformation theory. They included the centrifugal, Coriolis 

and initial tension impacts in their formulation and utilized 

the differential quadrature method to reduce the order of the 

equation of motion. Ghafarian and Ariaei (2016) presented 

the free vibration analysis of a system containing a series of 

rotating nanobeams assuming the nonlocal elasticity theory. 

They conducted some parametric studies to examine the 

effect of small scale parameter, hub radius and rotational 

speed on the dynamic behavior of the rotating multiple-

CNT system. They concluded that the transverse vibration 

of the considered structure may be significantly affected by 

the small scale parameter, elastic mediums and rotational 

speed of the base structure. Shojaeefard et al. (2019) 

analyzed the free vibration behavior of a rotating cylindrical 

nanoshell modeled by a FG piezomagnetic material. They 

derived the equation of motion by employing the Eringen’s 

nonlocal elasticity. They solved the governing equations by 

applying the generalized differential quadrature method and 

associated boundary conditions. They demonstrated that the 

vibrational characteristics of the studied structure were 

influenced by key factors like the length scale, angular 

velocity, external amperage and viscoelastic media 

parameters. Narendar (2012) studied the flapwise bending 

vibration of a rotating short nanotubes by assuming the 

nanoscale effects. In his analysis, he took into account the 

effects of rotary inertia and shear deformation parameter 

and obtained the natural frequencies of nanotubes through 

differential quadrature method. The influence of the hub 

radii and nonlocal parameter on the vibrational frequencies 

of the system were investigated. Pradhan and Murmu 

(2010) developed a flapwise transverse vibration model for 

a rotating nanocantilever beam (as the blades of a 

nanoturbine) by considering the nonlocal theory of 

elasticity. They employed the differential quadrature 

method to discretize the governing equation and then 

obtained the normalized natural frequencies. They 

concluded that as the angular velocity of the base hub 

increases, the effect of small-scale parameter on the 

fundamental frequency is increased while it is decreased for 

higher modes of vibration. Ebrahimi and Shaghaghi (2015b) 

employed the nonlocal Euler–Bernoulli beam theory to 

analyze the transverse vibration behavior of a pre-stressed 

size-dependent rotating nanotube. They derived the 

governing equation of motion via Hamilton’s principle and 

solved them using differential transform method. They 

performed several numerical studies to examine the effect 

of angular velocity, hub radius and preload stress on the 

vibration characteristics of rotating nanotubes. Kotwal et al. 

(2018) investigated the effect of nonlinear van der Pol 

damping on the planar to whirling transition of nanotubes 

by studying characteristic changes in resonance curves 

against changes in electrostatic actuation and nonlinear 

damping. A new regime was established that was not 

hitherto available in which no whirling dynamics exists no 

matter what values of the value of driving voltage. In 

addition, they were able to eliminate hysteretic jumps in 

both planar and nonplanar directions. According to the 

recent studies in the past decade, it is obvious that the most 

convenient/applicable small-scale model to deal with the 

mechanical behavior of nanotubes is the nonlocal theory of 

elasticity. This model is a popular methodology taking into 

account the size-dependent effects demonstrated by 

miniature structures, although, some other well-known size-

dependent models are also valid and considered by many 

researchers (Akbas 2018, Barretta et al. 2019a, Demir and 

Civalek 2017a, b, Numanoğlu et al. 2018, Civalek and 

Demir 2016, Civalek 2008, Chemi et al. 2015, Civalek and 

Acar 2007, Akgöz and Civalek 2011). According to this 

supreme theory, the state of stress field at a specific point in 

an elastic domain is defined not only by the state of strain 

vector at that point, but also by the state of strain field at 

other points of the material. Hence, it is necessary to know 

different parameters over the entire domain to accurately 

capture the mechanical/physical properties of the nanoscale 

materials. As per this subtle hypothesis, the long-range 

246



 

Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects 

interatomic interactions between different points are taken 

into consideration and therefore the obtained consequence 

depends on the size of the considered structure. Fortunately, 

the nonlocal theory grants us the feasible way to analyze the 

mechanical behavior of ultra-small structures without 

considering considerable amount of complicated equations 

(Ghavanloo et al. 2019). 

As described earlier, most of the previously published 

research have not attempted to investigate the vibration 

characteristics of SWCNTs rotating about their own axis of 

symmetry. Most of the previous studies on CNT based 

nano-rotor dynamics have focused on the vibrations 

behavior of the nanobeams rotating on their fixed hub while 

neglecting the effects of lateral deformations with a suitable 

combination of the gyroscopic effects. These two factors, 

namely the geometric property and gyroscopic effect have 

crucial effects in rotor dynamic analyses. Therefore, a 

suitable combination of both effects is the motivation of our 

work: First, the free vibration of a rotating SWCNT is 

investigated assuming a nonlocal elasticity beam theory. 

The rotating carbon nanotube is assumed to be attached to 

supports and is undergoing rotation about its own axis of 

symmetry. The basic equation of motion for the structural 

vibration of rotating SWCNTs which considers small scale 

effect is therefore acquired. Finally, the resultant nonlinear 

equation is numerically solved to obtain the natural 

frequencies of the rotating SWCNTs while discovering the 

forward and backward whirling motions of the considered 

structure. 

 

 

2. Mathematical modelling 
 

Lately, the major concern for researchers in the 

dynamics of rotating devices is to accurately predict their 

respective critical speeds in order to avoid a possible 

resonant state. In rotor dynamics, the revolving speeds that 

results into resonance responses are explicitly named 

critical speeds. The vibration of a nano-rotor is maximum 

in the neighborhood of these critical speeds. In the below, 

we derive the equations governing the vibrational behavior 

of a rotating single walled carbon nanotube (SWCNT). 

SWCNT can be modeled as an elastic cylinder (the rotor) 

within the context of a distributed parameter beam model. It 

is represented as a simple cylindrical shaped beam having 

transverse displacements assumed perpendicular to its plane 

of rotation. 

The below model is established within the framework 

the nonlocal elasticity Euler-Bernoulli (EB) beam theory 

where the effects of rotary inertia and gyroscopic forces are 

 

 

considered, however and for simplicity, shear deformations 

are not considered in the below problem formulation. Since 

CNT are seen as slender beam, the EB beam theory works 

fine. Fig. 1 shows a simplified sketch of an elastic SWCNT 

based nano-rotor with a circular cylindrical shape. The 

length of this presumed uniform nano-rotor is L. The CNT 

will be assumed as a cylindrical beam shape of radius 𝑅, 

and length L. It also has a Young’s modulus E and a mass 

density 𝜌. 
In Fig. 1, the rectangular coordinate system (x y z) 

represents the fixed reference in the 3D space. The z-axis 

represents the nano-rotor centerline. The respective 

transverse motions in the x and y directions at any position 

along the CNT centerline are denoted by 𝑢(𝑧, 𝑡) and 

𝑣(𝑧, 𝑡), respectively. Therefore, the displacement fields at 

any cross-section of the CNT can be expressed as 

 

𝑢𝑥 = 𝑢(𝑧, 𝑡), 
𝑢𝑦 = 𝑣(𝑧, 𝑡), 

𝑢𝑧 = 𝑥
𝜕𝑣(𝑧, 𝑡)

𝜕𝑧
+ 𝑦

𝜕𝑣(𝑧, 𝑡)

𝜕𝑧
 

(1) 

 

In the same figure, the slope inclination angle of the 

tangent to the CNT based nano-rotor displacement curve is 

denoted through two angles (𝜃𝑥(𝑧, 𝑡) and 𝜃𝑦(𝑧, 𝑡)) which 

both represent its respective projections along planes (y-z) 

and (x-z) respectively, which both can be expressed as 
 

{
𝜃𝑥 =

𝜕𝑢(𝑧, 𝑡)

𝜕𝑧

𝜃𝑦 =
𝜕𝑣(𝑧, 𝑡)

𝜕𝑧

 (2) 

 

Next, within the framework of the Euler-Bernoulli 

Beam model, the bending reaction moments acting on 

planes (y-z) and (x-z), correspondingly 𝑀𝑦𝑧  and 𝑀𝑥𝑧  in 

Fig. 1, can be both expressed as follows 

 

{
𝑀𝑦𝑧 = 𝐸𝐼

𝜕𝜃𝑥(𝑧, 𝑡)

𝜕𝑧

𝑀𝑥𝑧 = 𝐸𝐼
𝜕𝜃𝑦(𝑧, 𝑡)

𝜕𝑧

 (3) 

 

The relationship between the stress state with the shear 

forces 𝐹𝑥, 𝐹𝑦 and the bending moments 𝑀𝑦𝑧 and 𝑀𝑥𝑧 in 

a beam can be expressed as follows 

 

𝐹𝑥 = ∫ 𝜎𝑥𝑧𝑑𝐴
𝐿

0

,          𝐹𝑦 = ∫ 𝜎𝑦𝑧𝑑𝐴
𝐿

0

 (4) 

 

 

  

Fig. 1 Schematic drawings of the SWCNT based nano-rotor 
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𝑀𝑥𝑧 = ∫ 𝑥𝜎𝑥𝑥𝑑𝐴
𝐿

0

,          𝑀𝑦𝑧 = ∫ 𝑦𝜎𝑥𝑥𝑑𝐴
𝐿

0

 (5) 

 

In recent years, a plenty of research works have focused 

on the different aspects and models of size-dependent 

models to appropriately capture the nanoscale behavior of 

micro/nanostructures (Pinnola et al. 2020, Barretta et al. 

2019b, 2020, Zhu and Li 2017a, 2019, Romano et al. 2017, 

Barretta and de Sciarra 2019). Among them and in 

accordance with the nonlocal elasticity theory, and through 

considering the nonlocal effects of higher-order strain 

gradients 𝜀𝑖𝑗,𝑘 , in which the index k symbolizes the 

differentiation with respect to the parameter 𝑥𝑘, according 

to the extended Eringen’s model (Eringen 1972), the 

nonlocal stress tensor 𝜎  at any point of a continuum 

medium can be expressed as 
 

𝜎𝑖𝑗 = ∫𝐾(|𝑥 − 𝑥
’|, 𝑒0𝑎)𝑡(𝑥

′)𝑑𝑉
𝑉

 (6) 

 

where 𝑡(𝑥) is the classical macroscopic stress tensor at 

any point 𝑥  and the kernel function 𝐾(|𝑥 − 𝑥’|, 𝑒0𝑎) 

represents the nonlocal modulus, and 𝑒0𝑎 represents the 

material constant that depends on the medium lattice 

spacing and wavelength lengths. The macroscopic Hookean 

solid stress tensor 𝑡(𝑥) can be related to the strain tensor 𝜀 

using the following generalized form 
 

𝑡(𝑥) = 𝐶(𝑥): 𝜀(𝑥) (7) 
 

where C represents the 4th-order elasticity tensor and “:” 

denotes the tensor product operator. Eqs. (6) and (7) 

represent the weighted average of the contributions of the 

strain field of all points in the body to the stress field at a 

point. The above integral constitutive relations make the 

elasticity problems difficult to solve. However, it is possible 

to represent the integral constitutive relations in an 

equivalent differential form as follows 
 

𝑡 = 𝜎 − (𝑒𝑎)2𝛻𝜎; (8) 
 

where 𝑒 and 𝑎 are the material constant and the internal 

characteristic lengths, respectively. The resultant stress 

components can be expressed in terms of the scale 

parameter and the nonlocal constitutive relations can be 

consequently written as follows, using Eqs. (7) and (8) 
 

{
 

 𝐸𝜀𝑥𝑧 = 𝜎𝑥𝑧 − (𝑒𝑎)
2
𝜕2𝜎𝑥𝑧
𝜕𝑧2

;

𝐸𝜀𝑦𝑧 = 𝜎𝑦𝑧 − (𝑒𝑎)
2
𝜕2𝜎𝑦𝑧
𝜕𝑧2

;

 (9) 

 

Using Eq. (1), the strains of the rotating CNT can be 

obtained as follow 
 

𝜀𝑥𝑧 =
𝜕𝑢(𝑧, 𝑡)

𝜕𝑧
;       𝜀𝑦𝑧 =

𝜕𝑣(𝑧, 𝑡)

𝜕𝑧
; 

𝜀𝑧𝑧 = 𝑥
𝜕2𝑢(𝑧, 𝑡)

𝜕𝑧2
+ 𝑦

𝜕2𝑣(𝑧, 𝑡)

𝜕𝑧2
; 

(10) 

 

Next, substituting Eq. (9) into Eq. (4) with using Eq. 

(10) yields the following nonlocal shear forces for the CNT 

based nano-rotor 
 

{
 

 𝐸𝐴
𝜕𝑢(𝑧, 𝑡)

𝜕𝑧
= 𝐹𝑥 − (𝑒𝑎)

2
𝜕2𝐹𝑥
𝜕𝑧2

;

𝐸𝐴
𝜕𝑣(𝑧, 𝑡)

𝜕𝑧
= 𝐹𝑦 − (𝑒𝑎)

2
𝜕2𝐹𝑦
𝜕𝑧2

;

 (11) 

 

Similarly, the nonlocal shear moments are obtained with 

substituting Eq. (9) into Eq. (5) along with using Eq. (10) as 
 

{
 

 𝐸𝐼
𝜕2𝑢(𝑧, 𝑡)

𝜕𝑧2
= 𝑀𝑥𝑧 − (𝑒𝑎)

2
𝜕2𝑀𝑥𝑧

𝜕𝑧2
;

𝐸𝐼
𝜕𝑣2(𝑧, 𝑡)

𝜕𝑧2
= 𝑀𝑦𝑧 − (𝑒𝑎)

2
𝜕2𝑀𝑦𝑧

𝜕𝑧2
;

 (12) 

 

To finally get the equations of motion, an infinitesimal 

component with thickness “dz” is considered as illustrated 

in the following Fig. 2. In the same figure, deviations in the 

angular momentums about the principal axes of the moment 

of inertia are shown in addition to the resultant shearing 

force 𝐹(𝑧, 𝑡)  and bending moment 𝑀(𝑧, 𝑡) . The polar 

moment of inertia 𝑑𝐼𝑝 and the diametric moment of inertia 

𝑑𝐼𝑑 of this carbon nanotube element can both be expressed 

as 

{
 

 𝑑𝐼𝑝 = 𝜌𝐴𝑑𝐴
𝑅2

2

𝑑𝐼𝑑 = 𝜌𝐴𝑑𝐴
𝑅2

4

 (13) 

 

Assuming that the nano-rotor is undergoing whirling 

motions and the resultant disposition of the CNT 

infinitesimal element, as shown in the 3D schematic of Fig. 

1, changes from (𝜃𝑥, 𝜃𝑦) to (𝜃𝑥 + 𝑑𝜃𝑥, 𝜃𝑦 + 𝑑𝜃𝑦) during 

an infinitesimal time dt, the resultant equations of motion 

for the CNT based nano-rotor can be obtained using the 

considered Free-Body Diagrams (FBDs) of Fig. 2. The 

equations of motion are obtained from the relationships 

among momentum and angular momentum changes, and 

shearing forces and moments, in addition to considering the 

Newton’s Second Law as follows 
 

(𝜌𝐴
𝜕2𝑢

𝜕𝑡2
)𝑑𝑧 = −𝐹𝑥 + (𝐹𝑥 +

𝜕𝐹𝑥
𝜕𝑧

𝑑𝑧) − 𝑐
𝜕𝑢

𝜕𝑡
𝑑𝑧 (14) 

 

(𝜌𝐴
𝜕2𝑣

𝜕𝑡2
)𝑑𝑧 = −𝐹𝑦 + (𝐹𝑦 +

𝜕𝐹𝑦
𝜕𝑧

𝑑𝑧) − 𝑐
𝜕𝑣

𝜕𝑡
𝑑𝑧 (15) 

 
𝑑

𝑑𝑡
(𝑑𝐼𝑑𝜃̇𝑥 + 𝑑𝐼𝑝𝜔𝑑(𝑑𝜃𝑦)) 

= −𝑀𝑥𝑧 + (𝑀𝑥𝑧 +
𝜕𝑀𝑥𝑧

𝜕𝑧
𝑑𝑧) + 𝐹𝑥𝑑𝑧 

(16) 

 
𝑑

𝑑𝑡
(𝑑𝐼𝑑𝜃̇𝑦 + 𝑑𝐼𝑝𝜔𝑑(𝑑𝜃𝑥))                  

= −𝑀𝑦𝑧 + (𝑀𝑦𝑧 +
𝜕𝑀𝑦𝑧

𝜕𝑧
𝑑𝑧) + 𝐹𝑦𝑑𝑧 

(17) 

 

where c is the viscous damping coefficient per unit length 

of the nano-rotor, 𝐹𝑥 and 𝐹𝑦 are the components of the 
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shearing force in the x- and y-directions, respectively, and 

𝐹𝑥𝑑𝑧 and 𝐹𝑦𝑑𝑧 both symbolize the moments due to the 

shearing forces in planes (x-z) and (y-z), respectively. 

Next, substituting Eq. (2) into Eqs. (16) and (17) and 

after further simplifications, the following equations are 

obtained 

𝜌𝐴
𝜕2𝑢

𝜕𝑡2
+ 𝑐

𝜕𝑢

𝜕𝑡
=
𝜕𝐹𝑥
𝜕𝑧

 (18) 

 

𝜌𝐴
𝜕2𝑣

𝜕𝑡2
+ 𝑐

𝜕𝑣

𝜕𝑡
𝑑𝑧 =

𝜕𝐹𝑦
𝜕𝑧

 (19) 

 

𝑑𝐼𝑑
𝑑𝑧

𝜕3𝑢

𝜕𝑧𝜕𝑡2
+
𝑑𝐼𝑝
𝑑𝑧

𝜔
𝜕2𝑣

𝜕𝑧𝜕𝑡
=
𝜕𝑀𝑥𝑧

𝜕𝑧
+ 𝐹𝑥 (20) 

 

𝑑𝐼𝑑
𝑑𝑧

𝜕3𝑣

𝜕𝑧𝜕𝑡2
−
𝑑𝐼𝑝
𝑑𝑧

𝜔
𝜕2𝑢

𝜕𝑧𝜕𝑡
=
𝜕𝑀𝑦𝑧

𝜕𝑧
+ 𝐹𝑦 (21) 

 

In the above moment equations (Eqs. (20) and (21)), the 

left hand side terms are repressing the rotary inertia as well 

as the gyroscopic moment effects. By differentiating once 

these latter equations with respect to z and substituting Eqs. 

(18) and (19) in order to eliminate 𝐹𝑥  and 𝐹𝑦 , the 

following equations are therefore obtained 
 

𝑑𝐼𝑑
𝑑𝑧

𝜕4𝑢

𝜕𝑧2𝜕𝑡2
+
𝑑𝐼𝑝
𝑑𝑧

𝜔
𝜕3𝑣

𝜕𝑧2𝜕𝑡
 

=
𝜕2𝑀𝑥𝑧

𝜕𝑧2
+ 𝜌𝐴

𝜕2𝑢

𝜕𝑡2
+ 𝑐

𝜕𝑢

𝜕𝑡
 

(22) 

 

𝑑𝐼𝑑
𝑑𝑧

𝜕4𝑣

𝜕𝑧2𝜕𝑡2
−
𝑑𝐼𝑝
𝑑𝑧

𝜔
𝜕3𝑢

𝜕𝑧2𝜕𝑡
 

=
𝜕2𝑀𝑦𝑧

𝜕𝑧2
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
+ 𝑐

𝜕𝑣

𝜕𝑡
 

(23) 

 

Substituting Eq. (12) into Eqs. (22) and (23), the 

following resulting equations of motion (EOMs) are 

obtained 

 

 

𝑑𝐼𝑑
𝑑𝑧

𝜕4𝑢

𝜕𝑧2𝜕𝑡2
+
𝑑𝐼𝑝
𝑑𝑧

𝜔
𝜕3𝑣

𝜕𝑧2𝜕𝑡
= (𝑒𝑎)2 (

𝑑𝐼𝑑
𝑑𝑧

𝜕6𝑢

𝜕𝑧4𝜕𝑡2
 

+
𝑑𝐼𝑝
𝑑𝑧

𝜔
𝜕5𝑣

𝜕𝑧4𝜕𝑡
− 𝜌𝐴

𝜕4𝑢

𝜕𝑧2𝜕𝑡2
− 𝑐

𝜕3𝑢

𝜕𝑧2𝜕𝑡
) 

+𝐸
𝑑𝐼𝑑
𝑑𝑧

𝜕4𝑢

𝜕𝑧4
+ 𝜌𝐴

𝜕2𝑢

𝜕𝑡2
+ 𝑐

𝜕𝑢

𝜕𝑡
 

(24) 

 

𝑑𝐼𝑑
𝑑𝑧

𝜕4𝑣

𝜕𝑧2𝜕𝑡2
−
𝑑𝐼𝑝
𝑑𝑧

𝜔
𝜕3𝑢

𝜕𝑧2𝜕𝑡
= (𝑒𝑎)2 (

𝑑𝐼𝑑
𝑑𝑧

𝜕6𝑣

𝜕𝑧4𝜕𝑡2
 

+
𝑑𝐼𝑝
𝑑𝑧

𝜔
𝜕5𝑢

𝜕𝑧4𝜕𝑡
− 𝜌𝐴

𝜕4𝑣

𝜕𝑧2𝜕𝑡2
− 𝑐

𝜕3𝑣

𝜕𝑧2𝜕𝑡
) 

+𝐸
𝑑𝐼𝑑
𝑑𝑧

𝜕4𝑣

𝜕𝑧4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
+ 𝑐

𝜕𝑣

𝜕𝑡
 

(25) 

 

From Eq. (13), we can express the component 
𝑑𝐼𝑑

𝑑𝑧
 and 

𝑑𝐼𝑝

𝑑𝑧
 considering the hollow SWCNT under consideration for 

this work as follows 
 

{
𝐼𝑑 =

𝑑𝐼𝑑
𝑑𝑧

=
𝜋

4
(𝑅0

4 − 𝑅𝑖
4),

𝐼𝑝 =
𝑑𝐼𝑝
𝑑𝑧

=
𝜋

2
(𝑅0

4 − 𝑅𝑖
4),

 (26) 

 

Finally, and since the problem seem to be showing a 

symmetric like behavior, a complex variable r = u + iv is 

introduced and the above EOMs cab be further simplified as 

follows 
 

𝐼𝑑
𝜕4𝑟

𝜕𝑧2𝜕𝑡2
− 𝑖𝐼𝑝𝜔

𝜕3𝑟

𝜕𝑧2𝜕𝑡
= (𝑒𝑎)2 (𝐼𝑑

𝜕6𝑟

𝜕𝑧4𝜕𝑡2
 

−𝑖𝐼𝑝𝜔
𝜕5𝑟

𝜕𝑧4𝜕𝑡
− 𝜌𝐴

𝜕4𝑟

𝜕𝑧2𝜕𝑡2
− 𝑐

𝜕3𝑟

𝜕𝑧2𝜕𝑡
) 

+𝐸𝐼𝑑
𝜕4𝑟

𝜕𝑧4
+ 𝜌𝐴

𝜕2𝑟

𝜕𝑡2
+ 𝑐

𝜕𝑟

𝜕𝑡
 

(27) 

 

The above equation of motion, Eq. (27), represents the 

 

 (a) (b)  

Fig. 2 Free body diagrams of the CNT infinitesimal element of length “dz” in (a) the x-z plane 
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basic equation for the vibration of a SWCMT based nano-

rotor considering small scale effect, and both gyroscopic 

and rotary inertia effects. The respective boundary 

conditions would depend on the considered supports for the 

SWCNT based nano-rotor and can be summarized as 

follows 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑟(𝑧 = 0, 𝑡) = 𝑟(𝑧 = 𝐿, 𝑡)

=
𝜕𝑟

𝜕𝑧
(𝑧 = 0, 𝑡) =

𝜕𝑟

𝜕𝑧
(𝑧 = 𝐿, 𝑡) = 0

→  for fixed-fixed boundary conditions

𝑟(𝑧 = 0, 𝑡) = 𝑟(𝑧 = 𝐿, 𝑡)

=
𝜕2𝑟

𝜕𝑧2
(𝑧 = 0, 𝑡) =

𝜕2𝑟

𝜕𝑧2
(𝑧 = 𝐿, 𝑡) = 0

→  for simply-sopported boundary condition
𝜕𝑟

𝜕𝑧
(𝑧 = 0, 𝑡) =

𝜕𝑟

𝜕𝑧
(𝑧 = 𝐿, 𝑡)

=
𝜕2𝑟

𝜕𝑧2
(𝑧 = 0, 𝑡) =

𝜕2𝑟

𝜕𝑧2
(𝑧 = 𝐿, 𝑡) = 0

→  for free-free boundary condition

 (28) 

 

It is worth mentioning that for the subsequent analysis, 

the simply-supported case will only be considered as a case 

study. 

 

 

3. Eigenvalue problem formulation 
 

In order to compute the frequencies variation of the 

SWCNT based nano-rotor, the free vibration solution of Eq. 

(27) assuming simply supported beam boundary conditions 

can be expressed accordingly as follows 

 

𝑟(𝑧, 𝑡) = 𝑟 𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑧) 𝑒𝑖𝜔𝑛𝑡; (29) 

 

where 𝑟 and ωn symbolize both the amplitude of vibration 

and its respective angular natural frequency of the rotating 

nano-rotor vibration, and n its respective mode of vibration 

number. Then, substituting Eq. (29) into Eq. (27) yields 

 

𝐼𝑑𝜔𝑛
2 (
𝑛𝜋

𝐿
)
2

− 𝐼𝑝𝜔𝑛 (
𝑛𝜋

𝐿
)
2

𝜔 = −𝜌𝐴𝜔𝑛
2 + 𝑖𝑐𝜔𝑛 + 

+(𝑒𝑎)2 (−𝐼𝑑 (
𝑛𝜋

𝐿
)
4

𝜔𝑛
2 + 𝐼𝑝𝜔𝑛 (

𝑛𝜋

𝐿
)
4

𝜔 

−𝜌𝐴𝜔𝑛
2 (
𝑛𝜋

𝐿
)
2

+ 𝑖𝑐𝜔𝑛 (
𝑛𝜋

𝐿
)
2

) + 𝐸𝐼𝑑 (
𝑛𝜋

𝐿
)
4

; 

(30) 

 

The above equation represents the SWCNT based nano-

rotor frequency equation. With neglecting the eccentricity 

and damping effect, solving numerically the above 

frequency equation would result into two distinct roots both 

functions including the scale parameter 𝑒𝑎 and the nano-

rotor input rotating speed 𝜔. It is also worth mentioning 

that these solutions are the natural frequencies for the 

rotating SWCNT incorporating both the gyroscopic and 

small scale effects. The main advantage of this simple 

frequency equation is that it explicitly shows the 

dependency of the natural frequencies of the nano-rotor 

with its respective geometrical and mechanical properties. 

The two resultant frequencies in the frequency spectrum are 

either positive root demonstrating the frequency of a 

forward whirling mode, while the negative root 

characterizes that of a backward whirling mode, 

respectively. 
 

 

4. Results and analysis 
 

4.1 Validation of the present analysis 
 

As a case study, a SWCNT whose geometrical and 

mechanical properties are summarized in Table 1 is 

considered. As to certify the validity of the above obtained 

eigenvalue problem equation, we propose to compare our 

numerical results with the below case study in Table 1. 

Table 2 shows the frequencies of a SWCNTs for several 

values of the CNT aspect ratios based on some published 

theoretical and experimental data in the literature. In the 

table, the first column shows the aspect ratios of the 

nanotube and the next columns are summarizing the 

numerical data obtained from the Classical Continuum 

Mechanics (CCM) theory and the Molecular Dynamics 

(MD) simulations as compared to the results of the present 

study. It can be observed from the table that the 

fundamental frequency predictions of different non-rotating 

SWCNTs are showing satisfactory agreement with the 

available MD simulations and that the small scale effects 

shouldn’t be neglected as compared to the CCM theory. 
 

 

Table 1 The geometrical and physical properties of the 

considered SWCNT in this investigation 

Parameter Respective value  

SWCNT Young’s modulus 

(Basirjafari et al. 2013b) 
E = 1 TPa  

SWCNT mass density 

(Basirjafari et al. 2013b) 
𝜌 = 2300 kg/m3  

Carbon-Carbon bond scale parameter 

(Gupta and Batra 2008) 
𝑒𝑎 = 0.142 nm  

The speed of light (vacuum condition) 

(Anderson et al. 2005) 
𝐶 ≈ 3 × 108 m/s  

Frequency of vibration 

(Anderson et al. 2005) 
𝑓 =

𝜔𝑛

2𝜋𝐶
 (Hz)  

 

 

 

Table 2 The fundamental natural frequencies (in THz) for 

several SWCNTs aspect ratio as acquired from the 

nonlocal theory (this study), the CCM, and 

Molecular Dynamics (MD) simulations, for  = 0 

SWCNT 

aspect 

ratio 

Results of 

Eq. (30) 

Classical 

continuum 

mechanics 
(𝒆𝒂 = 𝟎 𝒏𝒎) 

Molecular dynamics 

Eringen (1983), 

Nahvi and Boroojeni (2013), 

Hayat et al. (2017) 

10.1 0.3629 0.364 0.3618 

20.9 0.0753 0.0853 0.0724 

31.6 0.0361 0.0373 0.0358 

39.1 0.0252 0.0244 0.0259 
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4.2 Whirling Motion Analysis 
 

In this section, the forward and backward frequencies 

obtained in the previous section by the present method are 

compared in graphic form through Figs. 3 to 6 for SWCNT 

and considering simply-supported boundary conditions. 

Fig. 3 displays the variation of the fundamental 

frequency of spinning CNT, governed by Eq. (30), versus 

the small scale parameter ea. It is visibly acknowledged 

from this variation graph that the fundamental frequency of 

the system is split into two branches namely forward and 

backward modes as a consequence of the gyroscopic effect. 

Moreover, it should be pointed out that the rotational and 

whirling motions have the same directions in forward whirl 

while the whirl is opposed to the rotational speed in 

backward whirl. According to the demonstrated results of 

Fig. 3, it can be deduced that as the small scale parameter 

increases, the absolute values of the forward and backward 

speeds are increased accordingly. Moreover, the backward 

whirling speed is more sensitive to the variation of 

nanoscale parameter in comparison with the forward mode 

as shown in the same figure. 

Fig. 4 shows the variation of the first natural frequency 

of spinning nano-rotor as a function of CNT length L. One 

can observe that the absolute value of both forward and 

backward speeds both increase with the CNT effective 

length. In contrast, it is also shown that this increase trend is 

completely different as compared to the previous case. As 

can be observed, the slope of the solid black line 

corresponding to the forward mode increases with the 

nanotube length whereas the same slope for the dashed blue 

line corresponding to the backward mode is decaying as the 

nanotube length increases. 

Because of the non-symmetric characteristic of the 

gyroscopic effect, computing the whirling speeds variation 

with the input spinning frequency is of great significance in 

applications involving rotating CNTs. According to the 

results of Fig. 5, it is demonstrated that as the input angular 

velocity increases, the gyroscopic hardening effect 

(contributing as a negative kinetic energy) tends to increase 

the forward whirl speed. Contrariwise, the gyroscopic 

softening effect (contributing as a positive kinetic energy) 

results in decreasing the absolute value of the corresponding 

backward whirl. Another interesting consequence can be 

 

 

 

Fig. 3 Fundamental frequency of CNT based nanorotor vs. 

small scale parameter ea 

noticeably observed from the results of Fig. 5 is the non- 

trivial frequency separation among the forward and 

backward modes respective frequencies when the angular 

velocity is around zero. In fact, this is due to the 

asymmetric properties of the gyroscopic effects as 

demonstrated by Eq. (30). 

The first three fundamental natural frequencies of the 

spinning nano-rotor as a function of CNT radius R, are 

displayed in Fig. 6. As shown in the figure, the second and 

third modes frequencies are shown to be the most sensitive 

to the radius of the SWCNT: these two frequencies increase 

considerably with increasing CNT. It is also inferred that 

 

 

 

Fig. 4 Fundamental frequency of CNT based nanorotor vs. 

SWCNT length L 

 

 

 

Fig. 5 Fundamental frequency of CNT based nanorotor vs. 

angular frequency  

 

 

 

Fig. 6 The first three natural frequencies of CNT based 

nanorotor vs. SWCNT radius R 
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as the number of mode increases, the separation between 

the forward and backward speeds of the CNT absed nano-

rotor are increasing considerably. 
 

 

5. Conclusions 
 

In the present investigation, a detailed numerical study 

to explore the forward and backward whirling motions of a 

spinning CNT-based nano-rotor while considering the size-

dependency and gyroscopic effects is presented. The 

governing equations of motion were derived within the 

framework of the Eringen nonlocal elasticity theory and the 

eigenvalue problem was established accordingly to extract 

the natural frequencies of the system. 

To demonstrate the accurateness of the simulated results 

in this study, the obtained frequencies were compared with 

those available in the literature, and excellent agreement has 

been demonstrated. Then, it was shown that the 

fundamental natural frequencies of the rotating SWCNT, 

consisting of a forward mode and a backward mode, are 

both influenced by the CNT basic geometric properties 

(such as the length and the radius) in addition to its material 

properties (such as Young’s modulus, density and Poisson’s 

ratio). In fact, due to the coupling in the CNT lateral 

motions in both the x and y directions, backward and 

forward nonlinear natural frequencies were discussed in this 

numerical study. Indeed, due to the assumed asymmetric 

properties of the whirling motions of the CNT based nano-

rotor, an important frequency separation occurred between 

the forward and backward modes even for a zero input 

spinning angular velocity. These two modes of vibration 

were also shown to be significantly depending on the 

spinning CNT input rotating speed and the nonlocal scale 

parameter (mainly due to microstructural nature of the 

nano-system). The absolute values of the forward and 

backward critical speeds increase with the small scale 

parameter. In addition, the backward natural frequency was 

revealed to be more sensitive to the variation of nanoscale 

parameter as compared to the forward mode. Dissimilarly, 

the forward whirling speed was shown to be more sensitive, 

as compared to the backward mode, to the SWCNT length. 

Actually, the inclusion of the nonlocal effect increased the 

forward natural frequency and decreased the backward one. 

The nonlocal effect is considerably different and more 

pronounced in the higher vibration modes. In addition, it 

was shown that the forward natural frequencies decrease by 

the increase in the value of the radius-to length ratio of the 

CNT based nano-rotor. The opposite effect was realized for 

the backward mode. This outcome was shown to be more 

prominent in the higher modes of vibration. 
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