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1. Introduction 

 

The Japanese scientists discovered Functionally Graded 

Materials (FGMs) in 1980’s. These FGMs. The FGMs are 

heterogeneous composites. The FGMs have unique 

characteristics i.e., superior thermal and corrosive resistant 

properties, through which they are applicable at severe 

temperature. FGMs also having the material property 

distribution and that can be controlled with the help of 

volume fractions of the constituent’s microstructures. FGMs 

have high application in science and in engineering such as 

nano-probes, as nano-electromechanical systems (NEMS), 

nano-actuators and nano sensors. From the design and 

manufacturing point of view, consideration of the size, 

effects of length together with the atomic forces within the 

equations’ formulation, under mathematical science is very 

important. 

A large amount of theories is available to incorporate 

size effects & brings the importance of size-dependency of 

microstructures. The nonlocal elasticity theory provided 

from Eringen (1972, 1983) and the modified couple stress 
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theory by Yang et al. (2002) happen to be highly significant 

in order to examine microstructures. Mechanical retaliation 

of FG-Euler nanobeams examined by the researcher Eltaher 

et al. (2012, 2013) via finite element (FE) technique. 

Rahmani and Pedram (2014) presented an analytical 

technique to govern the constructional characteristics of FG 

materials nanobeams through nonlocal Timoshenko beam 

theory. In the assumption of the temperature-dependent 

material characteristics, the effect of external thermal 

environment with vibrational frequency characteristics as 

well as the buckling behaviour for FG nanobeams were 

probed by Ebrahimi and Salari (2015a, b), and stress-strain 

analysis related to material structures are studied by 

(Daneshmehr et al. 2015, Hadi et al. 2018a-b, Hosseini et 

al. 2016, 2019, Mazarei et al. 2016, Mohammadi et al. 

2019, Nejad and Hadi 2016a, Nejad et al. 2014, 2016, 2017, 

2018a-b, Shishesaz et al. 2017, Ebrahimi and Barati 2016a-

d, Ghadiri et al. 2016, Chaht et al. 2015, Shafiei et al. 2016, 

Wang et al. 2018, Henderson et al. 2018, Tanaka 2018). 

Stability response examination of FG materials nanobeams 

was analyzed by Rahmani and Jandaghian (2015) following 

the nonlocal third-order shear deformation theory. The 

significant applications and the characteristics of Eringen’s 

non-local elasticity theory were enhanced and have been 

provided by Nejad and Hadi (2016a) to study the bending 

retaliation of bi-directional functionally graded Euler–

Bernoulli nano-beams. The model following the 

characteristics of differential of Eringen’s nonlocal theory 

gives computational easiness, which is not equivalent to the 
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integral model (Zhu and Li 2017a-c). Moreover, the few 

significant literatures have demonstrated that it is very 

important to take into account the size-dependent across the 

provided thickness from micro structures (Li et al. 2018, 

Deng et al. 2018, Tang et al. 2019). She et al. (2018a, b) 

exploited predicted the wave transference nature of FG 

porous materials nanobeams. A good amount of literature is 

available to study the nano and microstructures. Following 

the same field theory of vibrational frequency (She et al. 

2018c), post buckling and buckling (She et al. 2017) and 

nonlinear bending characteristics (She et al. 2018d) of FG 

material thin porous nanotubes were also examined in the 

literature of the present article. She et al. (2019a) examined 

the snap-buckling nature of porous FG curved material 

nanobeam. Moreover, the group of researchers viz., She and 

co-researchers (2019) developed the evaluation to prove the 

nonlinear bending characteristics of FG porous materials 

curved nanobeam. Also, self-consolidating concrete has 

been turned to a favorable construction material due to its 

impressive properties, there are few existing studies on the 

inclusion of carbon nano-fibres or nano-sheets on the self-

consolidating concrete mixtures. Furthermore, using nano-

processed materials could be employed in a variety of 

construction applications, where the nano-scale properties 

of the nano sheets or sprays are able to mitigate some 

micro-structural deficiencies as steel micro crack and stain 

in cold-formed steel uprights or cover the flexural and 

compressive strength loss during cyclic and motonic 

loading scenarios. Furthermore, the nano polymers could be 

the reliable choice in steel-concrete composite systems as 

floor systems where the shear connectors have to interact 

with a ductile concrete, also in higher temperature where 

the composite beams experience a large amount of strength 

loss. Even novel metaheuristic artificial techniques could be 

employed for the most influential parameters on the 

performance of the CFRPs. 

Free vibrational analysis of FG material microbeams 

(Ke et al. 2012, Asghari et al. 2010, 2011), axially graded 

microbeams (Akgöz and Civalek 2013), geometrically 

imperfect FG microbeams (Dehrouyeh-Semnani et al. 

2016) are highly significant. Moreover, the static nature of 

FG material microbeams (Şimşek et al. 2013, Şimşek and 

Reddy 2013, Al-Basyouni et al. 2015) have also 

emphasized on the number of advantages through the 

modified couple stress theory. The effects that elastic 

foundation has in regard to the stability of the FG material’s 

thin microbeams to thermal environment, was assessed by 

Akgöz and Civalek (2014). Relying on the variational 

differential quadrature technique, the nonlinear mechanical 

retaliation of third-order FG material microbeams was 

proposed by Ansari et al. (2016). Ebrahimi and Barati 

(2016a-m) utilized the nonlocal strain gradient theory for 

the sole purpose of examining nanobeams and nanoplates. 

Some of the most renowned authors and researchers worked 

on neglecting the shear deformation effect and other effects 

too (Kheroubi et al. 2016, Tounsi et al. 2013, Youcef et al. 

2015, Zenkour 2016). Incorporating the modified couple 

stress theory, Khorshidi and Shariati (2015) explored that 

by considering the material length scale parameter enhance 

the vibrational natural frequencies of FG material 

nanobeam. A group of researchers Baghani et al. (2016) 

analyzed the nonlinear vibration retaliation of FG material 

tapered-nanobeams via analytical couple-stress technique. 

The post-buckling behavior of FG material nanobeams was 

considered by Khorshidi et al. (2016). Attia and Mahmoud 

(2016) provided the surface influence studied in 

microstructures and produced a nonlocal couple stress (NL-

CS) theory. 

As far for the knowledge, this is a prior attempt for the 

examination of the response of the frequency of FG 

nanobeams together with both material length scale 

parameter and nonlocal stress field parameter. So, this 

works is the prior trial to develop a nonlocal couple stress 

beam model showing the surface energy influence. FGMs 

also having the material property distribution and that can 

be controlled with the help of volume fractions of the 

constituent’s microstructures. FGMs have high application 

in science and in engineering such as nano-probes, as nano-

electromechanical systems (NEMS), nano-actuators and 

nano sensors. From the design and manufacturing point of 

view, consideration of the size & length-scale effects and 

the atomic forces in the formulation of equations under 

mathematical science is very important. Time-consuming 

and costly experiments have always been a barrier in front 

of the new explorations; however, employing intelligence 

solutions are one of the practical ways to address these 

issues. Whereas, artificial intelligence techniques have 

performed on a variety of experimental studies and proved 

to be reliable not only in case of parameters estimation but 

also the prediction of crucial design characteristics. 

Different kind of algorithms has introduced which have 

their traits and advantages. Using the relevant algorithms in 

order to analytical assessment has been carried out on 

different types of studies. That being the case, performing 

the artificial intelligence algorithms is a potential method to 

avoid non-linearity and sophisticated analysis of the 

nanoscale problems. 

 

 

2. Theory and formulation 
 

2.1 Power-law FG nanobeam model 
 

Fig. 1 represents the schematics of FG nanobeams. In 

the schematics, L and h represents beam length, thickness 

respectively, and L & h spans along the x- and z-axes. The 

FG nanobeams having the material gradation follow the 

power-law function. The density (ρ), surface elastic 

modulus Es(z), Young’s modulus E(z), and residual surface 

stress (𝜏𝑠) are as follows 

 

𝐸(𝑧) = (𝐸+ − 𝐸−) (
𝑧

ℎ
+

1

2
)

 𝑝

+ 𝐸− (1) 

 

𝑣(𝑧) = (𝑣+ − 𝑣−) (
𝑧

ℎ
+

1

2
)

 𝑝

+ 𝑣− (2) 

 

𝜆𝑠(𝑧) = (𝜆𝑠
+ − 𝜆𝑠

−) (
𝑧

ℎ
+

1

2
)

 𝑝

+ 𝜆𝑠
− (3) 
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Table 1 Material properties of FG nanobeam 

Property Si Al 

E(Gpa) 210 × 109 68.5 × 109 

𝝀𝒔 −4.448 6.842 

𝝁𝒔 −2.774 −0.376 

ρ 2331 3000 

𝝆𝒔 3.17 × 10−7 5.46 × 10−7 

𝝉𝒔 0.6048 0.9108 

𝒗 0.24 0.35 
 

 

 

𝜇𝑠(𝑧) = (𝜇𝑠
+ − 𝜇𝑠

−) (
𝑧

ℎ
+

1

2
)

 𝑝

+ 𝜇𝑠
− (4) 

 

𝜌(𝑧) = (𝜌𝑆
+ − 𝜌−) (

𝑧

ℎ
+

1

2
)

 𝑝

+ 𝜌− (5) 

 

𝜏𝑠(𝑧) = (𝜏𝑠
+ − 𝜏𝑠

−) (
𝑧

ℎ
+

1

2
)

 𝑝

+ 𝜏𝑠
− (6) 

 

𝜌𝑠(𝑧) = (𝜌𝑠
+ − 𝜌𝑠

−) (
𝑧

ℎ
+

1

2
)

 𝑝

+ 𝜌𝑠
− (7) 

 

Where power-law exponent is represented by p. FG 

nanobeams top surface having pure Si, on the other hand, 

bottom surface have pure Al. The ‘+’ and ‘−’ represents the 

material properties of top and bottom surface of the 

considered geometry. Table 1 carries the material properties 

of Si and Al materials. As a function of Lame’s constant (λ 

and µ), the physical neutral axis of FG beams can be 

defined as follows 

 

𝑧0 =

∫ [𝜆(𝑧) + 2𝜇(𝑧)]𝑧𝑑𝑧
ℎ

2

−
ℎ

2

∫ [𝜆(𝑧) + 2𝜇(𝑧)]
ℎ

2

−
ℎ

2

𝑑𝑧

 (8) 

 

2.2 Kinematic relations 
 

The displacement components of FG nanobeams are 

consider to follow theory (Euler–Bernoulli beam) as 

follows 

 

 

 

𝒖𝒙(𝒙, 𝒛, 𝒕) = 𝒖(𝒙, 𝒕) − (𝒛 − 𝒛𝟎)
𝝏𝒘(𝒙, 𝒕)

𝝏𝒙
 (9a) 

 

𝒖𝒛(𝒙, 𝒛, 𝒕) = 𝒘(𝒙, 𝒕) (9b) 

 

where, 𝑢  represents the axial and 𝑤  indicates the 

transverse displacement components of the mid-surface. 

The nonzero normal strain are as follows 

 

𝜀xx = 𝜀𝑥𝑥
0 − (𝑧 − 𝑧0)𝑘0, 

𝜀𝑥𝑥
0 =

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
, 𝑘0 =

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
 

(10) 

 

where 𝜀𝑥𝑥
0  represents the extensional and 𝑘0  bending 

strains. 

 

2.2.1 The modified couple stress theory 
Based on modified couple stress theory model, U 

represents the strain energy of an elastic material-covering 

Ω region, which corresponds to strain and curvature tensors 

as 

 

𝑈 =
1

2
∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉,

Ω

(𝑖. 𝑗 = 1.2.3) (11) 

 

where 𝜎 represents the Cauchy stress tensor, 𝜀 represent 

the classical strain tensor, 𝑚 denotes deviatoric part of the 

couple stress tensor and 𝜒  symbolizes the symmetric 

curvature tensor. The strain and curvature tensors are stated 

in the equation form as 

 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖.𝑗 + 𝑢𝑗.𝑖) (12a) 

 

𝜒𝑖𝑗 =
1

2
(𝜃𝑖.𝑗 + 𝜃𝑗.𝑖) (12b) 

 

where 𝑢𝑖,𝑗 represents the components of the displacement 

vector and 𝜃𝑖,𝑗 represents the components of the rotation 

vectors are 
 

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘.𝑗 (13) 

 

where 𝑒𝑖𝑗𝑘 symbolizes the permutation symbol. 

The engrained combination in the equation format can 

 

Fig. 1 Configuration and coordinates of FG nanobeam 
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be expressed as 
 

𝜎𝑖𝑗 = 𝜆(𝑧)𝜖𝑘𝑘𝛿𝑖𝑗 + 2𝜇(𝑧)𝜖𝑖𝑗 (14a) 

 

𝑚𝑖𝑗 = 2𝜇(𝑧)[𝑙(𝑧)]2𝑋𝑖𝑗 (14b) 

 

where 𝛿𝑖𝑗 symbolizes the Kroenke delta, 𝑙 represent the 

length of the material scale parameter which governs the 

influence of couple stress. 

Láme’s constants related to the considered study can be 

defined by 
 

𝜆(𝑧) =
𝐸(𝑧)𝜈(𝑧)

[1 + 𝜈(𝑧)][1 − 2𝜈(𝑧)]
 (15a) 

 

𝜇(𝑧) =
𝐸(𝑧)

2[1 + 𝜈(𝑧)]
 (15b) 

 

2.2.2 Surface elasticity theory 
For a FGM beam in the absence of any residual stresses 

in the bulk because of surface stress, the prominent stress–

strain combination in the equation format is expressed as 

 

𝜎xx = (𝜆 + 2𝜇)𝜀𝑥𝑥 + 𝑣𝜎𝑧𝑧 (16) 

 

Now, the Gurtin–Murdoch elasticity theory is used, 

where the nanobeams surface is two-dimensional thin 

membrane in connection with the beneath the bulk material. 

Therefore, the surface stress which is non-zero is given as 

 

𝜎𝛼𝛽
𝑠 = 𝜏𝑠𝛿𝛼𝛽 + (𝜏𝑠 + 𝜆𝑠)𝜀𝛾𝛾𝛿𝛼𝛽 

            +2(𝜇𝑠 − 𝜏𝑠)𝜀𝛼𝛽 + 𝜏𝑠𝑢𝛼,𝛽
𝑠  

(17) 

 

𝜎𝛼𝑧
𝑠 = 𝜏𝑠𝑢𝑧,𝛼

𝑠  (18) 

 

Non-zero components of nanobeams for surface stress is 

 

𝜎𝑥𝑥
𝑠 = 𝜏𝑠 + (𝜆𝑠 + 2𝜇𝑠)𝜀𝑥𝑥 (19) 

 

𝜎𝑥𝑧
𝑠 = 𝜏𝑠

𝜕𝑤

𝜕𝑥
 (20) 

 

The stresses at the nanobeam surface thin membrane 

must follow the equilibrium relations 
 

(𝜏𝛽𝑖,𝛽)+ − (𝜎𝑖𝑧)+ = 𝜌+(
𝜕2𝑢𝑖

𝜕𝑡2
)+ 

at   𝑧 = +ℎ/2 

(21) 

 

(𝜏𝛽𝑖,𝛽)− − (𝜎𝑖𝑧)− = 𝜌−(
𝜕2𝑢𝑖

𝜕𝑡2
)− 

at   𝑧 = −ℎ/2 

(22) 

 

Where which (𝜏𝛽𝑖)
+  and (𝜏𝛽𝑖)

−  symbolizes the 

surface stresses; (𝜎𝑖𝑧)+  and (𝜎𝑖𝑧)−  symbolizes the bulk 

stresses. Introducing Eqs. (9), (17) and (18) into Eqs. (21) 

and (22) yields 

 

(𝜎𝑧𝑧)+ = (𝜏𝑠
+)(

𝜕2𝑤

𝜕𝑥2
) − 𝜌𝑠

+(
𝜕2𝑤

𝜕𝑡2
) (23) 

 

(𝜎𝑧𝑧)− = −(𝜏𝑠
−)(

𝜕2𝑤

𝜕𝑥2
) + 𝜌𝑠

−(
𝜕2𝑤

𝜕𝑡2
) (24) 

 

In this study 𝜎𝑧𝑧 is considered to be in the following 

form 
 

𝜎𝑧𝑧 =
𝑧

ℎ
[(𝜎𝑧𝑧)+ − (𝜎𝑧𝑧)−] +

1

2
[(𝜎𝑧𝑧)+ + (𝜎𝑧𝑧)−] (25) 

 

Introducing Eqs. (23) and (24) into (25) which leads to 

 

𝜎𝑧𝑧 =
𝑧

ℎ
[−(𝜌𝑠

+ + 𝜌𝑠
−)

𝜕2𝑤

𝜕𝑡2
+ (𝜏𝑠

+ + 𝜏𝑠
−)

𝜕2𝑤

𝜕𝑥2
]

+
1

2
[−(𝜌𝑠

+ − 𝜌𝑠
−)

𝜕2𝑤

𝜕𝑡2
+ (𝜏𝑠

+

− 𝜏𝑠
−)

𝜕2𝑤

𝜕𝑥2
] 

(26) 

 

2.2.3 The nonlocal constitutive relations 
Following Eringen nonlocal elasticity model, stress state 

at a fixed point at interior of a body is a function of strains 

at all distinct points in the nearest regions. The equivalent 

differential form of the nonlocal native equation can be 

expressed by 
 

(1 − (𝑒0𝑎)𝛻2)𝜎𝑘𝑙 = 𝑡𝑘𝑙 (27) 

 

where 𝛻2  represents Laplacian operator. Scale length is 

represented by the 𝑒0𝑎 , which consider the small-scale 

effect on nano-structures response. At last, the inherent 

equations relations of nonlocal nanobeams is given as (Attia 

and Mahmoud 2016) 
 

𝜎𝑥𝑥 − 𝛽2
𝜕2𝜎𝑥𝑥

𝜕𝑥2
= [𝜆(𝑧) + 2𝜇(𝑧)]𝜀𝑥𝑥 (28) 

 

𝑚𝑥𝑦 − 𝛽2
𝜕2𝑚𝑥𝑦

𝜕𝑥2
= 2𝜇(𝑧)𝑙2𝜒𝑥𝑦 (29) 

 

𝜎𝑥𝑥
𝑠 − 𝛽2

𝜕2𝜎𝑥𝑥
𝑠

𝜕𝑥2
= 𝜏𝑠 + (𝜆𝑠(𝑧) + 2𝜇𝑠(𝑧))𝜀𝑥𝑥 (30) 

 

where 𝛽 = (𝑒0𝑎)2. 

 

 

3. Governing equations 
 

After applying the extended Hamilton’s principle, 

fundamental equation is obtained as follows 
 

∫ 𝛿(𝑈 − 𝑇 + 𝑉)𝑑𝑡 = 0
𝑡

0

 (31) 

 

Here 𝑈, 𝑇and 𝑉 represents the strain energy, kinetic 

energy & external forces work, respectively. The strain 

energy is given as 
 

𝛿𝑈 = ∫(𝜎𝑖𝑗𝛿𝜀𝑖𝑗)𝑑𝑉
𝑣

+ ∫ (𝜎𝑖𝑗
𝑠 𝛿𝜀𝑖𝑗)𝑑𝑆+

𝑆+

+ ∫ (𝜎𝑖𝑗
𝑠 𝛿𝜀𝑖𝑗)𝑑𝑆−

𝑆−
 

(32) 
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Introducing the Eq. (10) into Eq. (32) gives 
 

𝛿𝑈 = ∫ [(𝑁 + 𝑁𝑠)(𝛿𝜀𝑥𝑥
0 ) − (𝑀 + 𝑀𝑠)(𝛿𝑘0)

𝐿

0

]𝑑𝑥 (33) 

 

where 𝑁  represents the axial force moment and 𝑀 

denotes the bending moment. The variation of kinetic 

energy is given as 
 

𝛿𝑇 = ∫ [𝐼0(�̇�𝛿�̇� + �̇�𝛿�̇�) − 𝐼1(�̇�
𝜕𝛿�̇�

𝜕𝑥
+ 𝛿�̇�

𝜕�̇�

𝜕𝑥
)

𝐿

0

+ 𝐼2

𝜕�̇�

𝜕𝑥

𝜕𝛿�̇�

𝜕𝑥
] 𝑑𝑥 

(34) 

 

Where (𝐼0, 𝐼1, 𝐼2)  are the mass moment of inertias, 

defined as follows 

 

(𝐼0, 𝐼1, 𝐼2) = 𝑏 ∫ 𝜌(𝑧)(1, (𝑧 − 𝑧0), (𝑧 − 𝑧0)2)
+ℎ/2

−ℎ/2

𝑑𝑧 (35) 

 

Introducing the Eqs. (32)-(34) in Eq. (31) and the 

coefficients of 𝛿𝑢, 𝛿𝑤 equating to zero 

 
𝜕(𝑁 + 𝑁𝑠)

𝜕𝑥
= 𝐼0�̈� − 𝐼1

𝜕�̈�

𝜕𝑥
 (36) 

 

𝜕2(𝑀 + 𝑀𝑠)

𝜕𝑥2
= 𝐼0�̈� + 𝐼1

𝜕�̈�

𝜕𝑥
− 𝐼2

𝜕2�̈�

𝜕𝑥2
 (37) 

 

Solving the Eqs. (28)-(30) and which yields 

 

𝑁 − 𝛽
𝜕2𝑁

𝜕𝑥2
= 𝐴11

𝜕𝑢

𝜕𝑥
− 𝐵11

𝜕2𝑤

𝜕𝑥2
 

                         +
𝐴44

2
[(𝜏𝑠

+ − 𝜏𝑠
−)

𝜕2𝑤

𝜕𝑥2
− (𝜌𝑠

+ − 𝜌𝑠
−)

𝜕2𝑤

𝜕𝑡2
] 

                         +
𝐵44

ℎ
[(𝜏𝑠

+ + 𝜏𝑠
−)

𝜕2𝑤

𝜕𝑥2
− (𝜌𝑠

+ + 𝜌𝑠
−)

𝜕2𝑤

𝜕𝑡2
] 

(38) 

 

𝑁𝑠 − 𝛽
𝜕2𝑁𝑠

𝜕𝑥2
= [𝑏(𝜆𝑠

+ + 2𝜇𝑠
+ + 𝜆𝑠

− + 2𝜇𝑠
−) + 2𝐴11

𝑠 ]
𝜕𝑢

𝜕𝑥
 

                              −[
𝑏ℎ

2
(𝜆𝑠

+ + 2𝜇𝑠
+ − 𝜆𝑠

− − 2𝜇𝑠
−) 

                              +2𝐵11
𝑠 ]

𝜕2𝑤

𝜕𝑥2
 

(39) 

 

𝑀 − 𝛽
𝜕2𝑀

𝜕𝑥2
= 𝐵11

𝜕𝑢

𝜕𝑥
− 𝐷11

𝜕2𝑤

𝜕𝑥2
 

                           +
𝐵44

2
[(𝜏𝑠

+ − 𝜏𝑠
−)

𝜕2𝑤

𝜕𝑥2
 

                           −(𝜌𝑠
+ − 𝜌𝑠

−)
𝜕2𝑤

𝜕𝑡2
]  +

𝐷44

ℎ
[(𝜏𝑠

+ + 𝜏𝑠
−)

𝜕2𝑤

𝜕𝑥2
 

                           −(𝜌
𝑠
+ + 𝜌

𝑠
−)

𝜕2𝑤

𝜕𝑡2
] 

(40) 

 

𝑀𝑠 − 𝛽
𝜕2𝑀𝑠

𝜕𝑥2
= [

𝑏ℎ

2
(𝜆𝑠

+ + 2𝜇𝑠
+ − 𝜆𝑠

− − 2𝜇𝑠
−) + 2𝐵11

𝑠 ]
𝜕𝑢

𝜕𝑥
 

                           −[4(𝜆𝑠
+ + 2𝜇

𝑠
+ + 𝜆𝑠

− + 2𝜇
𝑠
−)  + 2𝐷11

𝑠 ]
𝜕2𝑤

𝜕𝑥2
 

(41) 

 

𝑌1 − 𝛽2
𝜕2𝑌1

𝜕𝑥2
= −𝐴13𝑙2

𝜕2𝑤

𝜕𝑥2
 (42) 

where the cross-sectional rigidities of the considered 

structure are given as follows 
 

(𝐴11, 𝐵11, 𝐷11) 

= 𝑏 ∫ [𝜆(𝑧) + 2𝜇(𝑧)](1, (𝑧 − 𝑧0), (𝑧 − 𝑧0)2)
ℎ/2

−ℎ/2

𝑑𝑧 
(43) 

 
(𝐴11

𝑠 , 𝐵11
𝑠 , 𝐷11

𝑠 ) 

= ∫ [𝜆𝑠(𝑧) + 2𝜇𝑠(𝑧)](1, (𝑧 − 𝑧0), (𝑧 − 𝑧0)2)
ℎ/2

−ℎ/2

𝑑𝑧 
(44) 

 
(𝐴44, 𝐵44, 𝐷44) 

= 𝑏 ∫
𝑣(𝑧)

1 − 𝑣(𝑧)
(1, (𝑧 − 𝑧0), (𝑧 − 𝑧0)2)

ℎ/2

−ℎ/2

𝑑𝑧 
(45) 

 

Solving Eqs. (38)-(42), required equations of motion 

related to FG nanobeam carrying displacements are as 

 

𝐴11

𝜕2𝑢

𝜕𝑥2
− 𝐵11

𝜕3𝑤

𝜕𝑥3
+

𝐴44

2
[(𝜏𝑠

+ − 𝜏𝑠
−)

𝜕3𝑤

𝜕𝑥3
 

−(𝜌𝑠
+ − 𝜌𝑠

−)
𝜕3𝑤

𝜕𝑥𝜕𝑡2
] +

𝐵44

ℎ
[(𝜏𝑠

+ + 𝜏𝑠
−)

𝜕3𝑤

𝜕𝑥3
 

−(𝜌𝑠
+ + 𝜌𝑠

−)
𝜕3𝑤

𝜕𝑥𝜕𝑡2
] + [𝑏(𝜆𝑠

+ + 2𝜇𝑠
+ + 𝜆𝑠

− + 2𝜇𝑠
−) 

+2𝐴11
𝑠 ]

𝜕2𝑢

𝜕𝑥2
− [

𝑏ℎ

2
(𝜆𝑠

+ + 2𝜇𝑠
+ − 𝜆𝑠

− − 2𝜇𝑠
−) 

+2𝐵11
𝑠 ]

𝜕3𝑤

𝜕𝑥3
− 𝐼0

𝜕2𝑢

𝜕𝑡2
+ 𝐼1

𝜕3𝑤

𝜕𝑥𝜕𝑡2
 

+𝛽(𝐼0

𝜕4𝑢

𝜕𝑥2𝜕𝑡2
− 𝐼1

𝜕5𝑤

𝜕𝑥3𝜕𝑡2
) = 0 

(46) 

 

𝐵11

𝜕3𝑢

𝜕𝑥3
− (𝐷11 + 𝑙2𝐴13)

𝜕4𝑤

𝜕𝑥4
+

𝐵44

2
[(𝜏𝑠

+ − 𝜏𝑠
−)

𝜕4𝑤

𝜕𝑥4
 

−(𝜌𝑠
+ − 𝜌𝑠

−)
𝜕4𝑤

𝜕𝑥2𝜕𝑡2
] +

𝐷44

ℎ
[(𝜏𝑠

+ + 𝜏𝑠
−)

𝜕4𝑤

𝜕𝑥4
 

−(𝜌𝑠
+ + 𝜌𝑠

−)
𝜕4𝑤

𝜕𝑥2𝜕𝑡2
] + [

𝑏ℎ

2
(𝜆𝑠

+ + 2𝜇𝑠
+ − 𝜆𝑠

− − 2𝜇𝑠
−) 

+2𝐵11
𝑠 ]

𝜕3𝑢

𝜕𝑥3
− [

𝑏ℎ2

4
(𝜆𝑠

+ + 2𝜇𝑠
+ + 𝜆𝑠

− + 2𝜇𝑠
−) 

+2𝐷11
𝑠 ]

𝜕4𝑤

𝜕𝑥4
− 𝐼0

𝜕2𝑤

𝜕𝑡2
− 𝐼1

𝜕3𝑢

𝜕𝑥𝜕𝑡2
+ 𝐼2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
 

+𝛽(+𝐼0

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+ 𝐼1

𝜕5𝑢

𝜕𝑥3𝜕𝑡2
− 𝐼2

𝜕6𝑤

𝜕𝑥4𝜕𝑡2
) = 0 

(47) 

 

 

4. Solution method 
 

Analytical solution is utilize to obtain the fundamental 

expressions of nonlocal couple stress nanobeams of FGM 

with distinct boundary edges. To please the distinct 

boundary conditions, following solution for displacement 

variables is used 

 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑛

𝜕𝑋𝑚(𝑥)

𝜕𝑥

∞

𝑛=1

𝑒𝑖𝜔𝑛𝑡 (48) 

 

𝑤(𝑥, 𝑡) = ∑ 𝑊𝑛𝑋𝑚

∞

𝑛=1

(𝑥)𝑒𝑖𝜔𝑛𝑡 (49) 
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where (𝑈𝑛,𝑊𝑛) represents the unknown Fourier coefficients. 

Introducing the Eqs. (48)-(49) in Eqs. (46)-(47) 

respectively, yields 
 

{[𝐾] + [𝑀]𝜔2} {
𝑈𝑛

𝑊𝑛
} = 0 (50) 

 

where [K] represents the stiffness matrix and [M] represents 

the mass matrixes for nanobeams of FG material, 

respectively. 

 

𝑘1,1 = (𝐴11 + 2𝐴11
𝑠 + 𝑏(𝜆𝑠

+ + 2𝜇𝑠
+ + 𝜆𝑠

− + 2𝜇𝑠
−))𝛼3, 

𝑘1,2 = (𝐵11 + 2𝐵11
𝑠 + 0.5𝑏ℎ(𝜆𝑠

+ + 2𝜇𝑠
+ − 𝜆𝑠

− − 2𝜇𝑠
−))𝛼9, 

𝑘2,1 = −(𝐵11 + 2𝐵11
𝑠 + 0.5𝑏ℎ(𝜆𝑠

+ + 2𝜇𝑠
+ − 𝜆𝑠

− − 2𝜇𝑠
−))𝛼3 

             + [0.5𝐴44(𝜏𝑠
+ − 𝜏𝑠

−) +
𝐵44

ℎ
(𝜏𝑠

+ + 𝜏𝑠
−)] 𝛼3, 

𝑘2,2 = +(−𝐷11 − 𝑙2𝐴13 − 2𝐷11
𝑠  

             −
𝑏ℎ2

4
(𝜆𝑠

+ + 2𝜇𝑠
+ + 𝜆𝑠

− + 2𝜇𝑠
−))𝛼9 

             + [0.5𝐵44(𝜏𝑠
+ − 𝜏𝑠

−) +
𝐷44

ℎ
(𝜏𝑠

+ + 𝜏𝑠
−)] 𝛼9, 

𝑚1,1 = (𝑎1 − 𝛽𝑎3)𝐼0, 
𝑚1,2 = (𝑎7 − 𝛽𝑎9)𝐼1, 
𝑚2,1 = −(𝑎1 − 𝜇𝑎3)𝐼1 

              + [0.5𝐴44(𝜌𝑠
+ − 𝜌𝑠

−) +
𝐵44

ℎ
(𝜌𝑠

+ + 𝜌𝑠
−)] 𝛼1 

𝑚2,2 = (𝑎5 − 𝜇𝑎7)𝐼0 − (𝑎7 − 𝜇𝑎9)𝐼2 + [0.5𝐵44(𝜌𝑠
+ − 𝜌𝑠

−) 

              +
𝐷44

ℎ
(𝜌𝑠

+ + 𝜌𝑠
−)]𝛼7, 

 

where 
 

𝛼1 = ∫ 𝑋𝑚
′

𝐿

0

𝑋𝑚
′ 𝑑𝑥, 𝛼3 = ∫ 𝑋𝑚

′′′𝑋𝑚
′

𝐿

0

𝑑𝑥 

𝛼5 = ∫ 𝑋𝑚

𝐿

0

𝑋𝑚𝑑𝑥, 𝛼7 = ∫ 𝑋𝑚
′′ 𝑋𝑚

𝐿

0

𝑑𝑥, 𝛼9 

      = ∫ 𝑋𝑚
′′′′𝑋𝑚

𝐿

0

𝑑𝑥 

(51) 

 

The function𝑋𝑚  for different boundary conditions is 

defined by 

 

 

 

 

 

S-S 
𝑋𝑚(𝑥) = sin(𝜆𝑛𝑥) 

𝜆𝑛 =
𝑛𝜋

𝐿
 

(52) 

 

C-C 

𝑋𝑚(𝑥) = sin(𝜆𝑛𝑥) − sinh(𝜆𝑛𝑥) 
                  −𝜉𝑚(cos(𝜆𝑛𝑥) − cosh(𝜆𝑛𝑥)) 

𝜉𝑚 =
sin(𝜆𝑛𝑥) − sinh(𝜆𝑛𝑥)

cos(𝜆𝑛𝑥) − cosh(𝜆𝑛𝑥)
 

𝜆1 = 4.730,             𝜆2 = 7.853, 
𝜆3 = 10.996,          𝜆4 = 14.137, 

𝜆𝑛≥5 =
(𝑛 + 0.5)𝜋

𝐿
 

(53) 

 

C-S 

𝑋𝑚(𝑥) = sin(𝜆𝑛𝑥) − sinh(𝜆𝑛𝑥) 
                  −𝜉𝑚(cos(𝜆𝑛𝑥) − cosh(𝜆𝑛𝑥)) 

𝜉𝑚 =
sin(𝜆𝑛𝑥) + sinh(𝜆𝑛𝑥)

cos(𝜆𝑛𝑥) + cosh(𝜆𝑛𝑥)
 

𝜆1 = 3.927,             𝜆2 = 7.069, 
𝜆3 = 10.210,          𝜆4 = 13.352, 

𝜆𝑛≥5 =
(𝑛 + 0.25)𝜋

𝐿
 

(54) 

 

 

5. Numerical results and discussions 
 

This section represents the FG nanobeams frequency 

response characteristics of L= 10 nm length which contains 

the nonlocal couple stress elasticity. Furthermore, the 

influence of distinct consider parameters on natural 

frequencies is obtained in the present article, where the 

important considered parameters are surface elasticity, 

power-law exponent, material length scale parameter, 

nonlocality parameter, slenderness ratio and boundary 

conditions. The non-dimensional natural frequencies 

obtained in this analysis can be represented as follows 
 

�̅� =
𝜔𝐿2

ℎ
√

𝜌𝑐

𝐸𝑐
 (55) 

 

Following the considered distinct boundary conditions 

viz., C-S, S-S and C-C, the natural frequency that are 

dimensionless of FG nanobeams are examined and 

comparison is done relying on the nonlocal couple stress 
 

 

Table 2 Comparison of the dimensionless frequency for nonlocal FG nanobeams (L/h = 20) 

B.C. β p = 0.1 p = 0.5 p = 1 

  
CBT 

(Eltaher et al. 2012) 
Present 

CBT 

(Eltaher et al. 2012) 
Present 

CBT 

(Eltaher et al. 2012) 
Present 

S-S 

0 9.2129 9.18873 7.8061 7.73775 7.0904 6.9885 

1 8.7879 8.76631 7.4458 7.38203 6.7631 6.66723 

2 8.4166 8.39725 7.1312 7.07125 6.4774 6.38655 

3 8.0887 8.07120 6.8533 6.79669 6.2251 6.13857 

C-C 

0 20.8529 20.8240 17.5613 17.5355 15.8612 15.8375 

1 19.6741 19.6438 16.5686 16.5413 14.9645 14.9396 

2 18.6707 18.6439 15.7235 15.6991 14.2013 14.1789 

3 17.8037 17.7827 14.9934 14.9737 13.5419 13.5237 
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elasticity (NL-CS), nonlocal surface elasticity (NL-SE) and 

nonlocal couple stress based surface elasticity (NL-CS-SE). 

Moreover, the effect of gradient index (p) and nonlocality 

parameter (β) is also find. The outcomes tabulated in Tables 

from 3 to 5 affirms that for a selected measure of gradient 

 

 

 

 

 

 

index and slenderness ratio a significant influence of NL-

CS on natural frequency over NL-CS-SE and NL-SE 

theories can be witnessed. It is notice that fact, NL-CS 

theory carries a length scale parameter which shows that the 

influence of stiffness-hardening of FG nanobeams. 

Table 3 Dimensionless frequency of FG nanobeams with S-S boundary conditions for various elasticity theories (l = 0.5 h) 

 β 
NL-SE NL-CS NL-CS-SE 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

L/h = 10 

0 2.67343 2.35267 2.0961 4.02805 3.35256 2.77671 3.91118 3.31535 2.76324 

1 2.55041 2.24439 1.99964 3.84287 3.19844 2.64906 3.73121 3.16277 2.63607 

2 2.44295 2.14981 1.91537 3.68109 3.06379 2.53754 3.57399 3.02948 2.52498 

3 2.34801 2.06625 1.84093 3.53816 2.94483 2.43901 3.43511 2.91174 2.42685 

4 2.26335 1.99174 1.77454 3.41068 2.83873 2.35113 3.31125 2.80674 2.33933 

L/h = 20 

0 2.41584 2.18294 1.94774 4.04068 3.36367 2.78563 3.7459 3.2018 2.65563 

1 2.30473 2.08254 1.85816 3.85493 3.20904 2.65757 3.57362 3.05454 2.53349 

2 2.20767 1.99482 1.7799 3.69264 3.07394 2.54569 3.42312 2.92589 2.42678 

3 2.12191 1.91734 1.71076 3.54926 2.95459 2.44685 3.29015 2.81223 2.33252 

4 2.04544 1.84823 1.6491 3.42138 2.84813 2.35869 3.17157 2.71087 2.24845 
 

Table 4 Dimensionless frequency of FG nanobeams with C-S boundary conditions for various elasticity theories (l = 0.5 h) 

 β 
NL-SE NL-CS NL-CS-SE 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

L/h = 10 

0 4.17471 3.67391 3.27332 6.28948 5.23456 4.33554 6.10754 5.17722 4.31513 

1 3.95146 3.4774 3.09829 5.95347 4.9548 4.10388 5.78092 4.90031 4.08439 

2 3.76057 3.3094 2.94863 5.66614 4.71558 3.90578 5.50165 4.66356 3.8871 

3 3.59492 3.1636 2.81875 5.41676 4.50796 3.73385 5.25931 4.45811 3.71589 

4 3.44939 3.03552 2.70466 5.19765 4.32556 3.5828 5.0464 4.27762 3.56548 

L/h = 20 

0 3.77421 3.4104 3.04294 6.3125 5.25479 4.35179 5.85214 5.00217 4.14887 

1 3.57353 3.22906 2.88115 5.97703 4.97551 4.12052 5.54097 4.73619 3.92827 

2 3.4018 3.07388 2.74269 5.68994 4.7365 3.92259 5.27469 4.50858 3.73949 

3 3.25266 2.93912 2.62244 5.44059 4.52892 3.75069 5.04344 4.31092 3.57555 

4 3.12156 2.82066 2.51675 5.2214 4.34644 3.59957 4.84016 4.13717 3.43143 
 

Table 5 Dimensionless frequency of FG nanobeams with C-C boundary conditions for various elasticity theories (l = 0.5 h) 

 β 
NL-SE NL-CS NL-CS-SE 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

L/h = 10 

0 6.01006 5.28912 4.71246 9.12162 7.59152 6.28777 8.79262 7.45337 6.21232 

1 5.66594 4.98627 4.44281 8.59626 7.15375 5.92543 8.28917 7.02659 5.85685 

2 5.37488 4.73012 4.21472 8.15233 6.78391 5.61928 7.86335 6.66562 5.55615 

3 5.1245 4.50978 4.01849 7.77076 6.46607 5.35615 7.49706 6.35512 5.29747 

4 4.90615 4.31761 3.84735 7.4382 6.18908 5.12683 7.17761 6.08432 5.07186 

L/h = 20 

0 5.43454 4.91071 4.38159 9.15726 7.62286 6.31294 8.42658 7.20273 5.97404 

1 5.12839 4.63411 4.13479 8.63829 7.19072 5.95512 7.95187 6.79703 5.63754 

2 4.86876 4.39953 3.92549 8.19861 6.82462 5.65197 7.54929 6.45296 5.35217 

3 4.64495 4.19732 3.74505 7.81988 6.50928 5.39086 7.20226 6.15636 5.10616 

4 4.44941 4.02064 3.58742 7.48921 6.23397 5.16288 6.89907 5.89723 4.89123 
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However, there is only the consideration of nonlocal stress 

field parameter and deterioration of length scale parameter; 

the natural frequencies were underestimated in the previous 

works. Furthermore, while ignoring the boundary 

conditions, it is found that with the help of nonlocal 

parameter (β) in the examination have a detrimental 

influence on frequencies because of stiffness-softening 

influence. Therefore, FG nanobeams natural frequencies are 

evaluated by the assumption of modified couple stress 

theory overestimated. 

The influence of the length scale parameter (l/h) on the 

non-dimensional frequency of NL-CS FG nanobeams with 

varied nonlocal parameters (β) is shown in Fig. 2. 

Moreover, the influence of surface effect is also been 

emphasize in the study. It is noticed that in Fig. 2 at 

constant nonlocal parameter value with all distinct 

boundary conditions, as the value of l/h ratio increases, then 

there is great impact on natural frequency, as a result natural 

frequency starts increases significantly. So, at large l/h ratio, 

the influence of nonlocal parameter is remarkable. This 

result governs that the FG nanobeams turns into the high 

rigid form with the increment of length scale parameter, 

then the softening influence of nonlocal parameter is 

noticeable. Therefore, the presence of both the parameters, 

which are discussed above is highly important for the 

accurate examination of the FG nanobeams. Moreover, high 

 

 

 

 

frequency is observed in the absence of surface influence. 

In the view of S-S and C-S boundary conditions, a high 

measure of frequency is noticed for C-C boundary condition 

because of Fg nanobeams have higher rigidity with addition 

of number of strong supports. 

In view of NL-CS-SE FG nanobeam, the non-

dimensional frequency variation versus length scale 

parameter is examined in the assumption of distinct gradient 

indices (p). Fig. 3, it is easily noticed that for a chosen 

measure of material length scale parameter, a higher 

measure of frequency is observed for the mow measure of 

gradient index. Now, as outcomes, it is noticed that in the 

increment of the gradient index, the percentage of the metal 

gets increases and which also diminished the FG 

nanobeams rigidity. Afterwards, it is found that the effect of 

gradient index is remarkably noticeable at larger material 

length scale parameter. Therefore, as conclusion it is 

observed that, a less influence of gradient index on 

frequency vibrations prevails when the examination is done 

while ignoring the couple stress effect (l/h = 0). As the 

couple stress influence is considered (l/h ≠ 0), the 

remarkable influence of the gradient index (p) becomes 

remarkable. 

The FG nanobeams frequency variation is observed in 

presence of distinct elasticity theories and it is compared 

against with slenderness ratio in Fig. 4. In the examination 
 

 

 

 

   

(a) S-S (b) C-S (c) C-C 

Fig. 2 Variation of dimensionless frequency of NL-CS FG nanobeam versus length scale parameter for various 

nonlocal parameters (L/h = 40, p = 0.5) 

   

(a) S-S (b) C-S (c) C-C 

Fig. 3 Variation of dimensionless frequency of NL-CS-SE FG nanobeam versus length scale parameter for various 

gradient indices (L/h = 20, β = 2 nm2) 
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of the study, the measure of the gradient index is selected as 

p = 1. Furthermore, for NL-SE theory, the measure of the 

nonlocal parameter is fixed (β = 2 nm2). In the considered 

structure the examination of the frequency vibrations is 

done while following the nonlocal CS and nonlocal NL-CS-

SE theories, at the assumption of l = 0.25h and β = 2 nm2. 

As an outcomes, it governs that from the three theories NL-

CS theory shows a negligible influence of slenderness ratio 

on non-dimensional frequency vibrations while the if FG-

nanobeam follows the NL-CS-SE and NL-SE, it is more 

effected by slenderness ratio. Furthermore, as the measure 

of the slenderness ratio gets increment, the non-dimensional 

frequency gets decrement. 

Couple stress effect influence on the non-dimensional 

frequency of NL-SE FG nanobeam together with nonlocal 

parameter and slenderness ratio id delineated in Fig. 5. The 

outcomes from the figure is that, β has the higher value 

which shows the detrimental influence on vibrational 

frequency of the FG nanobeams. Moreover, it is shows that 

if FG nanobeams have less slenderness ratio which creates a 

higher frequency. Furthermore, the outcome of the classical 

beam model, for NL-SE FG nanobeams along with nonlocal 

parameter, the natural frequencies variation pattern is same, 

in absence slenderness ratio. In view of achieved FG 

nanobeam natural frequency in absence of the couple stress 

effect, a large measure value of frequency is witnessed after 

 

 

 

 

the addition of influence of couple stress in examination. 

 

 

6. Conclusions 
 

This research article represents the more exact 

forecasting of FG nanobeams natural frequency carry out 

creates a nonlocal couple stress theory relying on surface 

elasticity where dual scale parameters are launched to 

capture size effects. The basic fundamental equations are 

achieved as per modified couple stress theory to represents 

the effect of local rational degree of freedom. Such 

influence is carried out in the structure considered by 

Eringen following nonlocal elasticity theory, which carries 

long-range and nonlocal interactions between the particles. 

Variable material properties are described by power-law 

model. Numerical outcomes show the following: 
 

(1) Incorporation of nonlocal parameter conduct to 

underneath frequencies after diminishing the FG 

nanobeams bending stiffness. 

(2) Incorporation of the couple stress influence creates 

the FG nanobeams stiffer, and which cause the 

monotonic supplement in the vibration frequencies. 

(3) In the company of elasticity theories, the frequency 

outcomes of NL-SE and NL-CS theories are lowest 

   

(a) S-S (b) C-S (c) C-C 

Fig. 4 Variation of dimensionless frequency of FG nanobeam versus slenderness ratio for NL-SE, NL-CS and NL-

CS-SE theories (p = 1, l = 0.25 h, β = 2 nm2) 

   

(a) S-S (b) C-S (c) C-C 

Fig. 5 Variation of dimensionless frequency of NL-SE FG nanobeam versus nonlocal parameter for various 

slenderness ratios (l/h = 0.5, p = 1) 
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and highest respectively. NL-CS-SE theory forecast 

the natural frequencies which is all the time is 

between NL-SE and NL-CS theories. 

(4) The FG nanobeams frequency influenced by 

surface elasticity and which rely on the measure of 

slenderness ratio (L/h). As outcomes, it is achieved 

that the FG nanobeams having larger slenderness 

ratios are further influenced by surface effect. 

(5) Frequencies, which are dimensionless, are 

decreasing continuously by the increment in the 

index value of power-law. Influence of gradient 

index on the resultant frequencies is highly 

remarkable at excessive material length scale 

parameter. 

(6) NL-CS-SE clamped-clamped FG nanobeam 

produces excessive frequencies in comparison to 

simply-supported at a constant length scale and 

nonlocal parameters. 
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