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1. Introduction 

 

Many elements of structures made of silicone have 

gained extraordinary applications as construction blocks of 

sensing devices or actuating systems. Silicone material may 

has a nano-crystalline nature due to the fact that it contains 

many nano-pores and nano-grains. The nano-pores and 

nano-grains act as inclusions in the material texture and are 

able to determine all material properties of silicone (Wang 

et al. 2003). So, elastic stiffness of silicone is affected by 

the nano-pores and nano-grains especially their amounts 

and sizes. Also, it must be stated that there is a zone 

between grains and pores which is called interface region. 

For mathematical formulating of a nanocrystalline 

silicon nanoshell, classic mechanics is unable to 

characterize small scale affects. So, there are other theories 

which able to do this. For example, nonlocal theory or strain 

gradient theory have scale factors which makes them 

suitable to be applied in nanoshell modeling (Aydogdu 

2009, Thai 2012, Ke et al. 2012, Eltaher et al. 2013, Barati 

2017, Al-Maliki et al. 2019, Ahmed et al. 2019). The scale 

factor used by these theories can incorporate small scale 

influences by taking into account nano-scale interactions of 

atoms (Mohammadi et al. 2016, Zenkour and Abouelregal 

2014, Ebrahimi and Barati 2016, 2017a, Barati and 

Shahverdi 2016, Bounouara et al. 2016, Besseghier et al. 

2017, Mokhtar et al. 2018, Ebrahimi et al. 2018). The 

theories may have one or more scale factors based on the 

nature of small scale structure, however a one parameter 

strain gradient theory is used in the present study taking into 

account non-uniform strain field. The one parameter strain 
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gradient theory is adopted due to the fact that nano-grains 

may induce stiffness hardening influence to the nanoshell, 

so there is a need to a mechanism to characterize this 

influence. This theory is also used by other authors to 

capture mentioned influences (Lim et al. 2015, Li et al. 

2016, Mehralian et al. 2017). Also, many authors tried to 

investigate mechanical behaviors of nanocrystalline 

structures (Ebrahimi and Barati 2017b, 2018) but a work 

analyzing dynamic behavior of nancrystalline nanoshells is 

still missing. Nanoshells are thin-walled structural 

components which are mechanically studied by different 

authors to understand their static and dynamical properties 

using nonlocal or strain gradient theories (Zeighampour and 

Beni 2014, Ke et al. 2014, Mehralian et al. 2016, Farajpour 

et al. 2017, Sun et al. 2016). 

This article investigates forced vibrational behavior of 

porous nanocrystalline silicon nanoshells under radial 

dynamic loads using strain gradient theory (SGT). This type 

of material contains many pores inside it and also there are 

nano-size grains which define the material character. The 

formulation for nanocrystalline nanoshell is provided by 

first order shell theory and a numerical approach is used in 

order to solve nanoshell equations. SGT gives a scale factor 

related to stiffness hardening provided by nano-grains. For 

more accurate description of size effects due to nano-grains 

or nano-pore, their surface energy influences have been 

introduced. Surface energy of inclusion exhibit 

extraordinary influence on dynamic response of the 

nanoshell. Also, dynamic response of the nanoshell is 

affected by the scale of nano-grain and nano-pore. 

 

 

2. Model of nanocrystalline nanoshells 
 

Figs. 1 and 2 illustrate a nanocrystalline nanoshell made 

of silicone under radial dynamic load with specific 
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frequency. The figures clearly show that pores are available 

in the material structure and are able to change material 

properties (Bourada et al. 2019, Yahia et al. 2015). Elastic 

properties (Young’s moduli and Poisson’s ratio) for a 

nanocrystalline nanoshell can be described as functions of 

bulk and shear moduli (𝐾𝑁𝑐𝑀, 𝜇𝑁𝑐𝑀) as 

 

𝐸𝑁𝑐𝑀 =
9𝐾𝑁𝑐𝑀𝜇𝑁𝑐𝑀
3𝐾𝑁𝑐𝑀 + 𝜇𝑁𝑐𝑀

 (1) 

 

𝑣𝑁𝑐𝑀 =
3𝐾𝑁𝑐𝑀 − 2𝜇𝑁𝑐𝑀
2(3𝐾𝑁𝑐𝑀 + 𝜇𝑁𝑐𝑀)

 (2) 

 

So that 
 

𝐾𝑁𝑐𝑀 ≅ 𝑘𝐻1 × 𝑘𝐻2 ×
1

𝜂𝑘𝑔
 (3) 

 

𝜇𝑁𝑐𝑀 ≅ 𝜇𝐻1 × 𝜇𝐻2 ×
1

𝜂𝜇𝑔
 (4) 

 

So that 𝜂 = 𝐸𝑖𝑛/𝐸𝑔 and also 

 

𝑘𝐻1 = 𝑘𝑒𝑓𝑓(𝑘𝑖𝑛 = 𝜂𝑘𝑔, 

𝜇𝑖𝑛 = 𝜂𝜇𝑔, 𝑘𝑔, 𝜇𝑔, 𝑓𝑔, 𝑘𝑔
𝑠 , 𝜇𝑔

𝑠 , 𝑣𝑖𝑛 = 𝑣𝑔, 𝑅𝑔) 
(5a) 

 

 

 

 

𝜇𝐻1 = 𝜇𝑒𝑓𝑓(𝑘𝑖𝑛 = 𝜂𝑘𝑔, 

𝜇𝑖𝑛 = 𝜂𝜇𝑔, 𝑘𝑔, 𝜇𝑔, 𝑓𝑔, 𝑘𝑔
𝑠 , 𝜇𝑔

𝑠 , 𝑣𝑖𝑛 = 𝑣𝑔, 𝑅𝑔) 
(5b) 

 

𝑘𝐻2 = 𝑘𝑒𝑓𝑓(𝑘𝑖𝑛 = 𝜂𝑘𝑔, 

𝜇𝑖𝑛 = 𝜂𝜇𝑔, 𝑘𝑔 = 0, 𝜇𝑔 = 0, 𝑓𝑣, 𝑘𝑣
𝑠, 𝜇𝑣

𝑠 , 𝑣𝑣, 𝑅𝑣) 
(5c) 

 

𝜇𝐻2 = 𝜇𝑒𝑓𝑓(𝑘𝑖𝑛 = 𝜂𝑘𝑔, 

𝜇𝑖𝑛 = 𝜂𝜇𝑔, 𝑘𝑔 = 0, 𝜇𝑔 = 0, 𝑓𝑣, 𝑘𝑣
𝑠, 𝜇𝑣

𝑠 , 𝑣𝑣, 𝑅𝑣) 
(5d) 

 

In above relations g denotes the nano-grains material 

properties. Also, v denote the porosities material properties. 

So, fg and fv are grain and pores volume fractions defined as 

 

𝑓𝑔 = 𝑟(1 − 𝑓𝑣),       𝑟 =
𝑅𝑔
3

(𝑅𝑔 + 𝑇𝑖𝑛)
3
 (6) 

 

Here, 𝑅𝑔, 𝑅𝑣  and 𝑇𝑖𝑛  respectively denote the main 

radiuses of nano-grain, nano-porosity and interface 

thickness. Above equations are employed in order to 

characterize all material properties including nano-porosity 

effect. Without including nano-porosity effect, the material 

properties (Bulk and shear moduli) become (Ebrahimi and 

Barati 2017b) 

 

 

Fig. 1 Configuration of NcM nanoshell 

 

Fig. 2 Configuration of applied radial dynamic load to the nanoshell 
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𝑘𝑒𝑓𝑓 =

3𝑘𝑔(4𝑓𝑔𝜇𝑖𝑛 + 3𝑘𝑖𝑛) + 2𝜇𝑖𝑛 (
4𝑓𝑔𝜇𝑖𝑛𝑘𝑠

∗                     

+3𝑘𝑖𝑛(2 − 2𝑓𝑔 + 𝑘𝑠
∗)
)

3 (3(1 − 𝑓𝑔)𝑘𝑔 + 3𝑓𝑔𝑘𝑖𝑛 + 2𝜇𝑖𝑛(2 + 𝑘𝑠
∗ − 𝑓𝑔𝑘𝑠

∗))
 (7) 

 

𝜇𝑒𝑓𝑓 =
𝜇𝑖𝑛(5 − 8𝑓𝑔𝜉3(7 − 5𝑣𝑖𝑛))

5 − 𝑓𝑔(5 − 84𝜉1 − 20𝜉2)
 (8) 

 

So that 
 

𝜉1 =
15(1 − 𝑣𝑖𝑛)(𝑘𝑠

∗ + 2𝜇𝑠
∗)

4𝐻
 (9a) 

 

𝜉2 =

−15(1 − 𝑣𝑖𝑛) ((
𝜇𝑔

𝜇𝑖𝑛
) (7 + 5𝑣𝑔)                    

−8𝑣𝑔(5 + 3𝑘𝑠
∗ + 𝜇𝑠

∗) + 7(4 + 3𝑘𝑠
∗ + 2𝜇𝑠

∗))

4𝐻
 

(9b) 

 

𝜉3 =
5

16𝐻
[2 (

𝜇𝑔

𝜇𝑖𝑛
)
2

(7 + 5𝑣𝑔) 

          −4(7 − 10𝑣𝑔)(2 + 𝑘𝑠
∗)(1 − 𝜇𝑠

∗) 

          + (
𝜇𝑔

𝜇𝑖𝑛
) (7(6 + 5𝑘𝑠

∗ + 4𝜇𝑠
∗) 

          −𝑣𝑔(90 + 47𝑘𝑠
∗ + 4𝜇𝑠

∗))] 

(9c) 

 

and 
 

𝐻 = −2(
𝜇𝑔

𝜇𝑖𝑛
)
2

(7 + 5𝑣𝑔)(4 − 5𝑣𝑖𝑛) 

         +7(
𝜇𝑔

𝜇𝑖𝑛
)(−39 − 20𝑘𝑠

∗ − 16𝜇𝑠
∗ 

         +5𝑣𝑔(9 + 5𝑘𝑠
∗ + 4𝜇𝑠

∗)) 

         + (
𝜇𝑔

𝜇𝑖𝑛
) 𝑣𝑔(285 + 188𝑘𝑠

∗ + 16𝜇𝑠
∗ 

         −5𝑣𝑖𝑛(75 + 47𝑘𝑠
∗ + 4𝜇𝑠

∗)) 
         +4(7 − 10𝑣𝑔)(−7 − 11𝜇𝑠

∗ − 𝑘𝑠
∗(5 + 4𝜇𝑠

∗) 

         +𝑣𝑖𝑛(5 + 13𝜇𝑠
∗ + 𝑘𝑠

∗(4 + 5𝜇𝑠
∗))) 

(9d) 

 

so that 𝑘𝑠
∗ = 𝑘𝑔

𝑠/𝑅𝑔𝜇𝑖𝑛  and 𝜇𝑠
∗ = 𝜇𝑔

𝑠/𝑅𝑔𝜇𝑖𝑛  are surfaces 

bulks and shear moduli, respectively for which 𝑘𝑔
𝑠 =

2(𝜇𝑔
𝑠 + 𝜆𝑔

𝑠 ). 

For the atoms within the material, the elastic modulus of 

E(r0) has been defined. This modulus is identical to that of 

nano-grains (Eg). r0 is the reference position of the atoms in 

which they are vibrating. Then, it is possible to define 

elastic modulus of interface atoms as Ein = E(r) at a new 

position r. Next, for the afore-mentioned elastic moduli 

there a relationship as follows 

 
𝐸𝑖𝑛
𝐸𝑔

=
𝐸(𝑟)

𝐸(𝑟0)
 

=
1

𝑛 −𝑚
((𝑛 + 1) (

𝑟0
𝑟
)
𝑛+3

− (𝑚 + 1) (
𝑟0
𝑟
)
𝑚+3

) 

(10) 

 

so that 
 

𝑟0
𝑟
= (

𝜌(𝑟)

𝜌(𝑟0)
)
1/3

 (11) 

 

Above relations are applicable to silicone when m = 8 

and n = 12. Then, nanoshell mass density may be defined as 

follows taking into account the portions of nano-grains and 

nano-porosity 
 

𝜌𝑁𝑐𝑀 = (1 − 𝑓𝑔 − 𝑓𝑣)𝜌𝑖𝑛 + 𝑓𝑔𝜌𝑔 (12) 

 

For the nanocrystalline nanoshell, we use first order 

shell formulation which owns three displacements (u, v, w) 

and two rotations (𝜑𝑥, 𝜑𝜃) as (Faleh et al. 2018, She et al. 

2018, Zine et al. 2018) 

 

𝑢1(𝑥, 𝜃, 𝑧, 𝑡) = 𝑢(𝑥, 𝜃, 𝑡) + 𝑧𝜑𝑥(𝑥, 𝜃, 𝑡) (13a) 

 

𝑢2(𝑥, 𝜃, 𝑧, 𝑡) = 𝑣(𝑥, 𝜃, 𝑡) + 𝑧𝜑𝜃(𝑥, 𝜃, 𝑡) (13b) 

 

𝑢3(𝑥, 𝜃, 𝑧, 𝑡) = 𝑤(𝑥, 𝜃, 𝑡) (13c) 

 

Based upon first order shell formulation, we can state 

the strains of the nanoshell in following forms 
 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+ 𝑧

𝜕𝜑𝑥
𝜕𝑥

 

𝜀𝜃 =
1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤 + 𝑧

𝜕𝜑𝜃
𝜕𝜃

) 

𝛾𝑥𝜃 =
1

𝑅

𝜕𝑢

𝜕𝜃
+
𝜕𝑣

𝜕𝑥
+
𝑧

𝑅

𝜕𝜑𝑥
𝜕𝜃

+ 𝑧
𝜕𝜑𝜃
𝜕𝑥

 

𝛾𝑧𝑥 = 𝜑𝑥 +
𝜕𝑤

𝜕𝑥
, 𝛾𝑧𝜃 = 𝜑𝜃 +

1

𝑅

𝜕𝑤

𝜕𝜃
−
𝑣

𝑅
 

(14) 

 

Next, Hamilton’s integral based on strain, kinetic and 

external energies (U, T, V) should be stated as 
 

∫ 𝛿(𝑈 − 𝑇 − 𝑉)𝑑𝑡 = 0
𝑡

0

 (15) 

 

So that 
 

𝛿𝑈 = ∫(𝜎𝑖𝑗𝛿𝜀𝑖𝑗
𝑉

)𝑅𝑑𝑥𝑑𝜃𝑑𝑧 (16) 

 

𝛿𝑉 = ∫(𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐
𝑉

))𝛿𝑤𝑅𝑑𝑥𝑑𝜃𝑑𝑧 (17) 

 

𝛿𝐾 = ∫ ((
𝜕𝛿𝑢1
𝜕𝑡

)
2

+ (
𝜕𝛿𝑢2
𝜕𝑡

)
2

+ (
𝜕𝛿𝑢3
𝜕𝑡

)
2

)𝑅𝑑𝑥𝑑𝜃𝑑𝑧
𝑉

 (18) 

 

Also, 𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is radial mechanical load. 

Derived from Hamilton’s integral of Eq. (15) are the 

below governing equations (Mehralian et al. 2017) 
 

𝜕𝑁𝑥𝑥
𝜕𝑥

+
1

𝑅

𝜕𝑁𝑥𝜃
𝜕𝜃

= 𝐼0
𝜕2𝑢

𝜕𝑡2
+ 𝐼1

𝜕2𝜑𝑥
𝜕𝑡2

 (19a) 

 

𝜕𝑁𝑥𝜃
𝜕𝑥

+
1

𝑅

𝜕𝑁𝜃𝜃
𝜕𝜃

+
𝑄𝑧𝜃
𝑅
= 𝐼0

𝜕2𝑣

𝜕𝑡2
+ 𝐼1

𝜕2𝜑𝜃
𝜕𝑡2

 (19b) 

 

𝜕𝑄𝑥𝑧
𝜕𝑥

+
1

𝑅

𝜕𝑄𝑧𝜃
𝜕𝜃

−
𝑁𝜃𝜃
𝑅

= +𝐼0
𝜕2𝑤

𝜕𝑡2
+ 𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (19c) 

 

𝜕𝑀𝑥𝑥

𝜕𝑥
+
1

𝑅

𝜕𝑀𝑥𝜃

𝜕𝜃
− 𝑄𝑥𝑧 = 𝐼1

𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝜑𝑥
𝜕𝑡2

 (19d) 
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𝜕𝑀𝑥𝜃

𝜕𝑥
+
1

𝑅

𝜕𝑀𝜃𝜃

𝜕𝜃
− 𝑄𝜃𝑧 = 𝐼1

𝜕2𝑣

𝜕𝑡2
+ 𝐼2

𝜕2𝜑𝜃
𝜕𝑡2

 (19d) 

 

for which 
 

(𝐼0, 𝐼1, 𝐼2) = ∫ (1, 𝑧, 𝑧2)
ℎ/2

−ℎ/2

𝜌𝑁𝑐𝑀𝑑𝑧 (20) 

 

and 
 

{𝑁𝑥𝑥, 𝑁𝜃𝜃 , 𝑁𝑥𝜃} = ∫ {𝜎𝑥𝑥, 𝜎𝜃𝜃, 𝜎𝑥𝜃}
ℎ/2

−ℎ/2

𝑑𝑧 (21a) 

 

{𝑀𝑥𝑥, 𝑀𝜃𝜃, 𝑀𝑥𝜃} = ∫ {𝜎𝑥𝑥, 𝜎𝜃𝜃, 𝜎𝑥𝜃}
ℎ/2

−ℎ/2

𝑧𝑑𝑧 (21b) 

 

{𝑄𝑥𝑧, 𝑄𝑧𝜃} = 𝜅𝑠∫ {𝜎𝑥𝑧, 𝜎𝑧𝜃}
ℎ/2

−ℎ/2

𝑑𝑧 (21c) 

 

In last integral, 𝜅𝑠 introduces shear correction factor. 

Generally, SGT (with scale factor l) possesses the below 

formulations for the relations between stresses and strains 

of a nanoshell 
 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑥𝜃
𝜎𝑥𝑧
𝜎𝑧𝜃}

 
 

 
 

=
𝐸(𝑧)

1 − 𝑣2
(1 − 𝑙2𝛻2) 

(

 
 

1 𝑣 0 0 0
𝑣 1 0 0 0
0 0 (1 − 𝑣)/2 0 0

0 0 0 (1 − 𝑣)/2 0
0 0 0 0 (1 − 𝑣)/2)

 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝜃𝜃
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑧𝜃}

 
 

 
 

 

(22) 

 

Right hand side of above equation has been integrated 

about the thickness of nanoshell, then the following 

relations will be derived 
 

𝑁𝑥𝑥 = (1 − 𝜆𝛻
2) [𝐴11

𝜕𝑢

𝜕𝑥
+ 𝐵11

𝜕𝜑𝑥
𝜕𝑥

 

            +
𝐴12
𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) +

𝐵12
𝑅

𝜕𝜑𝜃
𝜕𝜃

] 
(23) 

 

𝑀𝑥𝑥 = (1 − 𝜆𝛻
2) [𝐵11

𝜕𝑢

𝜕𝑥
+ 𝐷11

𝜕𝜑𝑥
𝜕𝑥

 

             +
𝐵12
𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) +

𝐷12
𝑅

𝜕𝜑𝜃
𝜕𝜃

] 
(24) 

 

𝑁𝜃𝜃 = (1 − 𝜆𝛻
2) [𝐴12

𝜕𝑢

𝜕𝑥
+ 𝐵12

𝜕𝜑𝑥
𝜕𝑥

 

             +
𝐴11
𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) +

𝐵11
𝑅

𝜕𝜑𝜃
𝜕𝜃

] 
(25) 

 

𝑀𝜃𝜃 = (1 − 𝜆𝛻
2) [𝐵12

𝜕𝑢

𝜕𝑥
+ 𝐷12

𝜕𝜑𝑥
𝜕𝑥

 

             +
𝐵11
𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) +

𝐷11
𝑅

𝜕𝜑𝜃
𝜕𝜃

] 
(26) 

 

𝑁𝑥𝜃 = (1 − 𝜆𝛻
2) [𝐴66 (

1

𝑅

𝜕𝑢

𝜕𝜃
+
𝜕𝑣

𝜕𝑥
) 

             +𝐵66 (
1

𝑅

𝜕𝜑𝑥
𝜕𝜃

+
𝜕𝜑𝜃
𝜕𝑥

)] 
(27) 

 

𝑀𝑥𝜃 = (1 − 𝜆𝛻
2) [𝐵66(

1

𝑅

𝜕𝑢

𝜕𝜃
+
𝜕𝑣

𝜕𝑥
) 

             +𝐷66 (
1

𝑅

𝜕𝜑𝑥
𝜕𝜃

+
𝜕𝜑𝜃
𝜕𝑥

)] 
(28) 

 

𝑄𝑥𝑧 = (1 − 𝜆𝛻
2)𝐴̃66 (𝜑𝑥 +

𝜕𝑤

𝜕𝑥
) (29) 

 

𝑄𝜃𝑧 = (1 − 𝜆𝛻
2)𝐴̃66 (𝜑𝜃 +

1

𝑅

𝜕𝑤

𝜕𝜃
−
𝑣

𝑅
) (30) 

 

So that 
 

𝐴11 = ∫
𝐸𝑁𝑐𝑀
1 − 𝑣2

ℎ

2

−
ℎ

2

𝑑𝑧,          𝐵11 = ∫
𝐸𝑁𝑐𝑀
1 − 𝑣2

𝑧

ℎ

2

−
ℎ

2

𝑑𝑧, 

𝐷11 = ∫
𝐸𝑁𝑐𝑀𝑧

2

1 − 𝑣2

ℎ

2

−
ℎ

2

𝑑𝑧,        𝐴12 = ∫
𝑣𝐸𝑁𝑐𝑀
1 − 𝑣2

ℎ

2

−
ℎ

2

𝑑𝑧, 

 𝐵12 = ∫
𝑣𝐸𝑁𝑐𝑀
1 − 𝑣2

𝑧

ℎ

2

−
ℎ

2

𝑑𝑧,      𝐷12 = ∫
𝑣𝐸𝑁𝑐𝑀𝑧

2

1 − 𝑣2

ℎ

2

−
ℎ

2

𝑑𝑧, 

𝐴66 = ∫
𝐸𝑁𝑐𝑀

2(1 + 𝑣)

ℎ

2

−
ℎ

2

𝑑𝑧,      𝐵66 = ∫
𝐸𝑁𝑐𝑀

2(1 + 𝑣)

ℎ

2

−
ℎ

2

𝑧𝑑𝑧, 

𝐷66 = ∫
𝐸𝑁𝑐𝑀

2(1 + 𝑣)
𝑧2

ℎ/2

−ℎ/2

𝑑𝑧 

𝐴̃66 = 𝑘𝑠∫
𝐸𝑁𝑐𝑀

2(1 + 𝑣)

ℎ/2

−ℎ/2

𝑑𝑧, 

(31) 

 

The SGT governing equations of dynamically loaded 

nano-crystalline nano-sized shells might be derived by 

putting Eqs. (23)-(30), in Eq. (19) which are 
 

(1 − 𝜆𝛻2) [𝐴11
𝜕2𝑢

𝜕𝑥2
+ 𝐵11

𝜕2𝜑𝑥
𝜕𝑥2

+
𝐴12
𝑅
(
𝜕2𝑣

𝜕𝑥𝜕𝜃
+
𝜕𝑤

𝜕𝑥
) 

+
𝐵12
𝑅

𝜕2𝜑𝜃
𝜕𝑥𝜕𝜃

+
𝐴66
𝑅
(
1

𝑅

𝜕2𝑢

𝜕𝜃2
+
𝜕2𝑣

𝜕𝑥𝜕𝜃
) 

+
𝐵66
𝑅
(
1

𝑅

𝜕2𝜑𝑥
𝜕𝜃2

+
𝜕2𝜑𝜃
𝜕𝑥𝜕𝜃

)] − 𝐼0
𝜕2𝑢

𝜕𝑡2
− 𝐼1

𝜕2𝜑𝑥
𝜕𝑡2

= 0 

 

(32a) 

 

(1 − 𝜆𝛻2) [𝐴66 (
1

𝑅

𝜕2𝑢

𝜕𝑥𝜕𝜃
+
𝜕2𝑣

𝜕𝑥2
) 

+𝐵66 (
1

𝑅

𝜕2𝜑𝑥
𝜕𝑥𝜕𝜃

+
𝜕2𝜑𝜃
𝜕𝑥2

) +
𝐴12
𝑅

𝜕2𝑢

𝜕𝑥𝜕𝜃
 

+
𝐵12
𝑅

𝜕2𝜑𝑥
𝜕𝑥𝜕𝜃

+
𝐴11
𝑅2

(
𝜕2𝑣

𝜕𝜃2
+
𝜕𝑤

𝜕𝜃
) +

𝐵11
𝑅2

𝜕2𝜑𝜃
𝜕𝜃2

 

𝐴̃66
𝑅
(𝜑𝜃 +

1

𝑅

𝜕𝑤

𝜕𝜃
−
𝑣

𝑅
)] − 𝐼0

𝜕2𝑣

𝜕𝑡2
− 𝐼1

𝜕2𝜑𝜃
𝜕𝑡2

= 0 

(32b) 

 

(1 − 𝜆𝛻2) [𝐴̃66 (
𝜕𝜑𝑥
𝜕𝑥

+
𝜕2𝑤

𝜕𝑥2
) 

+
𝐴̃66
𝑅
(
𝜕𝜑𝜃
𝜕𝜃

+
1

𝑅

𝜕2𝑤

𝜕𝜃2
−
1

𝑅

𝜕𝑣

𝜕𝜃
) −

𝐴12
𝑅

𝜕𝑢

𝜕𝑥
 

−
𝐵12
𝑅

𝜕𝜑𝑥
𝜕𝑥

−
𝐴11
𝑅2

(
𝜕𝑣

𝜕𝜃
+ 𝑤) −

𝐵11
𝑅2

𝜕𝜑𝜃
𝜕𝜃

] 

(32c) 
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−𝐼0
𝜕2𝑤

𝜕𝑡2
= 𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐                                    (32c) 

 

(1 − 𝜆𝛻2) [𝐵11
𝜕2𝑢

𝜕𝑥2
+ 𝐷11

𝜕2𝜑𝑥
𝜕𝑥2

+
𝐵12
𝑅
(
𝜕2𝑣

𝜕𝑥𝜕𝜃
+
𝜕𝑤

𝜕𝑥
) 

+
𝐷12
𝑅

𝜕2𝜑𝜃
𝜕𝑥𝜕𝜃

𝐵66
𝑅
(
1

𝑅

𝜕2𝑢

𝜕𝜃2
+
𝜕2𝑣

𝜕𝑥𝜕𝜃
) 

+
𝐷66
𝑅
(
1

𝑅

𝜕2𝜑𝑥
𝜕𝜃2

+
𝜕2𝜑𝜃
𝜕𝑥𝜕𝜃

) − 𝐴̃66 (𝜑𝑥 +
𝜕𝑤

𝜕𝑥
)] 

−𝐼1
𝜕2𝑢

𝜕𝑡2
− 𝐼2

𝜕2𝜑𝑥
𝜕𝑡2

= 0 

(32d) 

 

(1 − 𝜆𝛻2)[𝐵66 (
1

𝑅

𝜕2𝑢

𝜕𝑥𝜕𝜃
+
𝜕2𝑣

𝜕𝑥2
) 

+𝐷66 (
1

𝑅

𝜕2𝜑𝑥
𝜕𝑥𝜕𝜃

+
𝜕2𝜑𝜃
𝜕𝑥2

) +
𝐵12
𝑅

𝜕2𝑢

𝜕𝑥𝜕𝜃
 

+
𝐷12
𝑅

𝜕2𝜑𝑥
𝜕𝑥𝜕𝜃

+
𝐵11
𝑅2

(
𝜕2𝑣

𝜕𝜃2
+
𝜕𝑤

𝜕𝜃
) +

𝐷11
𝑅2

𝜕2𝜑𝜃
𝜕𝜃2

 

−𝐴̃66 (𝜑𝜃 +
1

𝑅

𝜕𝑤

𝜕𝜃
−
𝑣

𝑅
)] − 𝐼1

𝜕2𝑣

𝜕𝑡2
− 𝐼2

𝜕2𝜑𝜃
𝜕𝑡2

= 0 

(32e) 

 

 

3. Method of solution 
 

As mentioned there are five displacements based on 

considered shell theory. So, the first step to define and 

approximate these displacements in the following forms 

(Saidi et al. 2016, Merazi et al. 2015) 

 

𝑢 = ∑∑𝑈𝑚𝑛
𝜕𝑋𝑚(𝑥)

𝜕𝑥

∞

𝑛=1

𝑐𝑜𝑠(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (33) 

 

𝑣 = ∑∑𝑉𝑚𝑛𝑋𝑚(𝑥)

∞

𝑛=1

𝑠𝑖𝑛(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (34) 

 

𝑤 = ∑∑𝑊𝑚𝑛𝑋𝑚(𝑥)

∞

𝑛=1

𝑐𝑜𝑠(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (35) 

 

𝜑𝑥 = ∑∑𝛷𝑚𝑛
𝜕𝑋𝑚(𝑥)

𝜕𝑥

∞

𝑛=1

𝑐𝑜𝑠(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (36) 

 

𝜑𝜃 = ∑∑𝛩𝑚𝑛𝑋𝑚(𝑥)

∞

𝑛=1

𝑠𝑖𝑛(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (37) 

 

The maximum values of displacements are denoted by 

𝑈𝑚𝑛,𝑉𝑚𝑛 ,𝑊𝑚𝑛,𝛷𝑚𝑛 ,𝛩𝑚𝑛 and 𝑋𝑚  is a function based on 

the type of the boundary condition. Here are the boundary 

conditions at x = 0, L of nanoshell 

 

𝑤 =
𝜕2𝑤

𝜕𝑥2
=
𝜕4𝑤

𝜕𝑥4
= 0    𝑓𝑜𝑟    𝑆 − 𝑆 

𝑤 =
𝜕𝑤

𝜕𝑥
=
𝜕3𝑤

𝜕𝑥3
= 0      𝑓𝑜𝑟    𝐶 − 𝐶 

(38) 

 

By putting Eqs. (33)-(37) in Eq. (32) and taking into 

account the Galerkin’s concept, we obtain 

 

{[𝐾] + 𝜔𝑒𝑥
2 [𝑀]}

{
 
 

 
 
𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝛷𝑚𝑛
𝛩𝑚𝑛}

 
 

 
 

=

{
 
 

 
 
0
0
𝑄𝑑𝑦𝑛𝑎𝑚𝑖𝑐
0
0 }

 
 

 
 

 (39) 

 

So that 𝜔𝑒𝑥 is external frequency and 

 

𝑘1,1 = 𝐴11 (ϒ31 − 𝜆(ϒ51 −
𝑛2

𝑅
ϒ31)) 

           −𝑛2
𝐴66
𝑅2

(ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) 

(40) 

 

𝑘2,1 = 𝑛 (
𝐴12
𝑅
+
𝐴66
𝑅
)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) , 

𝑘1,2 = −𝑛 (
𝐴12
𝑅
+
𝐴66
𝑅
)(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) 

(41) 

 

𝑘3,1 = +
𝐴12
𝑅
(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) , 

𝑘1,3 = −
𝐴12
𝑅
(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) 

(42) 

 

𝑘4,1 = +𝐵11 (ϒ31 − 𝜆 (ϒ51 −
𝑛2

𝑅
ϒ31)) 

            −𝑛2
𝐵66
𝑅2

(ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) , 

𝑘1,4 = 𝐵11 (ϒ31 − 𝜆 (ϒ51 −
𝑛2

𝑅
ϒ31)) 

           −𝑛2
𝐵66
𝑅2

(ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) 

(43) 

 

𝑘5,1 = 𝑛 (
𝐵12
𝑅
+
𝐵66
𝑅
)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)), (44) 

 

𝑘1,5 = −𝑛(
𝐵66
𝑅
+
𝐵12
𝑅
)(ϒ20 − 𝜆(ϒ40 −

𝑛2

𝑅
ϒ20)) (45) 

 

𝑘2,2 = 𝐴66 (ϒ20 − 𝜆 (ϒ40 −
𝑛2

𝑅
ϒ20)) 

            −𝑛2
𝐴11
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

            −
𝐴̃66
𝑅2

(ϒ00 − 𝜆(ϒ20 −
𝑛2

𝑅
ϒ00)) 

(46) 

 

𝑘3,2 = −𝑛(
𝐴11
𝑅2

+
𝐴̃66
𝑅2
)(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)), (47) 
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𝑘2,3 = −𝑛(
𝐴̃66
𝑅2

+
𝐴11
𝑅2
)(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)) (47) 

 

𝑘4,2 = −𝑛 (
𝐵12
𝑅
+
𝐵66
𝑅
)(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) , 

𝑘2,4 = +𝑛 (
𝐵12
𝑅
+
𝐵66
𝑅
)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) 

(48) 

 

𝑘5,2 = 𝐵66 (ϒ20 − 𝜆 (ϒ40 −
𝑛2

𝑅
ϒ20)) 

            −𝑛2
𝐵11
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

            +
𝐴̃66
𝑅
(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)) 

(49) 

 

𝑘3,3 = 𝐴̃66 (ϒ20 − 𝜆 (ϒ40 −
𝑛2

𝑅
ϒ20)) 

            −𝑛2
𝐴̃66
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

            −
𝐴11
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

(50) 

 

𝑘4,3 = (𝐴̃66 −
𝐵12
𝑅
)(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) , 

𝑘3,4 = +(
𝐵12
𝑅
− 𝐴̃66)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) 

(51) 

 

𝑘5,3 = 𝑛 (+
𝐴̃66
𝑅
−
𝐵11
𝑅2
)(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)) , 

𝑘3,5 = −𝑛(+
𝐵11
𝑅2

−
𝐴̃66
𝑅
)(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)) 

(52) 

 

𝑘4,4 = +𝐷11 (ϒ31 − 𝜆 (ϒ51 −
𝑛2

𝑅
ϒ31)) 

            −𝑛2
𝐷66
𝑅2

(ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) 

            −𝐴̃66 (ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) 

(53) 

 

𝑘5,4 = +𝑛 (
𝐷12
𝑅
+
𝐷66
𝑅
)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) , 

𝑘4,5 = −𝑛 (
𝐷66
𝑅
+
𝐷12
𝑅
)(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) 

(54) 

 

𝑘5,5 = +𝐷66 (ϒ20 − 𝜆 (ϒ40 −
𝑛2

𝑅
ϒ20)) 

            −𝑛2
𝐷11
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

(55) 

        −𝐴̃66 (ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) (55) 

 

𝑚1,1 = +𝐼0ϒ11 (56) 
 

𝑚2,2 = 𝑚3,3 = 𝑚5,5 = +𝐼0ϒ00 (57) 
 

𝑚4,1 = +𝐼1ϒ11, 𝑚4,4 = +𝐼2ϒ11, (58) 
 

𝑚5,2 = 𝑚2,5 = +𝐼1ϒ00 (59) 
 

𝑄𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑄𝑛ϒ00 (60) 
 

where 
 

ϒ00 = ∫ 𝑋𝑚

𝐿

0

𝑋𝑚𝑑𝑥 (61) 

 

ϒ20 = ∫
𝑑2𝑋𝑚
𝑑𝑥2

𝐿

0

𝑋𝑚𝑑𝑥 (62) 

 

ϒ11 = ∫
𝑑𝑋𝑚
𝑑𝑥

𝐿

0

𝑑𝑋𝑚
𝑑𝑥

𝑑𝑥 (63) 

 

ϒ31 = ∫
𝑑3𝑋𝑚
𝑑𝑥3

𝐿

0

𝑑𝑋𝑚
𝑑𝑥

𝑑𝑥 (64) 

 

ϒ40 = ∫
𝑑4𝑋𝑚
𝑑𝑥4

𝐿

0

𝑋𝑚𝑑𝑥 (65) 

 

In the following, the normalized parameters and also 

suitable forms of function Xm have been introduced 
 

𝜛 = 100𝜔𝑛ℎ√
𝜌𝑔

𝐸𝑔
,      𝜆 =

𝑙

𝐿
, 

𝑊̄𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 𝑊
10𝐸𝑐ℎ

3

𝐿4𝑞0
 

(66) 

 

X𝑚(𝑥) = sin (
𝑚𝜋

𝐿
𝑥)      for     𝑆 − 𝑆 (67) 

 

X𝑚(𝑥) = 𝑠𝑖𝑛
2 (
𝑚𝜋

𝐿
𝑥)      for     𝐶 − 𝐶  (68) 

 

The dynamical loading acted in the nanoshell may be 

defined as 
 

𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =∑𝑄𝑛𝑠

∞

𝑛=1

𝑖𝑛 [
𝑚𝜋

𝑎
𝑥] 𝑐𝑜𝑠[ 𝑛𝜃] 𝑠𝑖𝑛𝜔𝑒𝑥 𝑡 (69) 

 

𝑄𝑛

=
1

2𝜋𝐿
∫ ∫ 𝑠

3𝜋

2

−
𝜋

2

𝑖𝑛 [
𝑚𝜋

𝐿
𝑥] 𝑐𝑜𝑠[ 𝑛𝜃]

𝑥0+0.5𝐿0

𝑥0−0.5𝐿0

𝑞(𝑥)𝑑𝑥𝑑𝜃 

=
8𝑞0
𝑚𝑛𝜋2

𝑠𝑖𝑛 [
𝑚𝜋

𝐿
𝑥0] 𝑠𝑖𝑛 [

𝑚𝜋𝐿0
2𝐿

] 

(70) 

 

So that q(x) = q0 defines the magnitude of uniform 

loading and x0 is load position. 
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Table 1 Comparison of natural frequencies of strain 

gradient shells (l = h) 

 𝝎𝟏𝟏 𝝎𝟐𝟐 

h/R 
SGT (Zeighampour 

and Beni 2014) 
Present 

SGT (Zeighampour 

and Beni 2014) 
Present 

0.02 0.1980 0.1980 0.2795 0.2795 

0.05 0.2110 0.2111 0.3953 0.3954 
 

 

 

Table 2 Material properties of nanocrystalline nanoshell 

Phase-1 

(Interface) 

Ein = 45.56 GPa, vin = 0.064, 

ρin = 2004.3 kg/m3 

Phase-2 

(Si-nanograins) 

Eg = 169 GPa, vg = 0.064, 

ρg = 2300 kg/m3 

Phase-3 

(nanovoids) 
Ev = 0 

Surface coefficients of 

grains and voids 

𝜆𝑠 = -4.488 N/m, 

𝜇𝑠 = -2.774 N/m 
 

 
 

4. Numerical results and discussions 
 
Present chapter explores forced vibrational behaviors of 

porous nanocrystalline nano-sized shells in the context of 

strain gradient theory. One strain gradient factor is employed 

to describe stiffness enhancement of NcM nanoshells. 

According to Table 1, we found that vibrational frequency 

of nanoshells in the context of first order shell theory and 

SGT is very close to that presented by Zeighampour and 

Beni (2014). For comparison, SGT factor is set to l = h. 

Moreover, the material properties of NcM nanoshells have 

been prepared in Table 2. 

Fig. 3 examines the effects of SGT factor on dynamical 

deflections and resonance frequencies of NcM nanoshell 

having S-S and C-C edge condition at R/h = 20 and fv = 0.1. 

One is able to derive the frequencies of classical elasticity 

 

 

theory discarding SGT factor by assuming λ = 0. It is 

obvious that dynamical deflections of SGT nanoshell are 

prominently influenced by the value of external frequency 

of dynamical load. Actually, dynamical deflections increase 

smoothly by increasing of external frequency. In a special 

magnitude of external frequency, a remarkable increment in 

deflections of SGT nanoshells will be seen. Note that the 

external frequency of dynamical loading matches with the 

natural frequencies of SGT nanoshells causing the 

resonance phenomena. According to SGT, increase of SGT 

factors yields greater vibrational frequencies. Such result 

demonstrates the rigidity enhancement influence owning to 

incorporation of strain gradients. 

Fig. 4 studies the effects of nangrains/nanopores average 

radius and surface layer on resonance frequency of NcM 

nanoshell with S-S edge conditions at R/h = 20 and fv = 0.1. 

It is obvious that vibration behaviors of NcM nanoshells are 

relied on the surface energies of nano-grains and nano-

porosities. After ignoring the surface energies of nano-

grains and nano-porosities, increase of average radius yields 

lower resonance frequencies. After incorporating the 

surface energy of nano-grains and nano-porosities, the 

greatest and lowest resonance frequencies have been 

achieved n the cases of Rg = Rv = 100 nm and 20 nm, 

respectively. Actually, resonance frequencies at Rave = 0.5 

nm are higher than in the case Rg=20 nm. Such result is 

owning to the hardening influences of surface layers and 

strain gradients on the nanoshell structure at small size of 

nano-grain. Accordingly, influences of the surface layers of 

nano-grains and nano-porosities become more remarkable 

as their sizes decline. 

Pore percentage effects  on forced vibrat ion 

characteristic of NcM nanoshells with various edge 

conditions are depicted in Fig. 5 for Rg = 20 nm. Achieved 

result shows that increment of pore coefficient is 

corresponding to lower resonance frequencies at a fixed 

strain gradient parameter. Such result is owning to a 

remarkable decline in rigidity of nanoshells in the existence 

of nano-pores within the material texture. Thus, one may 
 

 

 

  

(a) S-S (b) C-C 

Fig. 3 Dimensionless amplitude of NCM nanoshell versus excitation frequency for different strain gradient parameters 

(R/h = 20, Rg = 20 nm, fv = 0.1) 
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conclude that both nano-pores scale (size) and amount are 

crucial to describe the behaviors of NcM nanoshells. 

Fig. 6 indicates the effect of radius-to-thickness ratio 

(R/h) of SGT nanoshells on dynamic deflection and 

resonance frequencies when λ = 0.5, Rg = 20 nm, fv = 0.1. 

One can observe that resonance frequency is notably 

declined with the increasing in radius-to-thickness ratios. 

This is because the nanoshell with higher radius-to-

thickness ratios is more flexible leading to smaller 

resonance frequency. Accordingly, dynamic deflection of 

the nanoshell is increased with the increment in the 

magnitude of radius-to-thickness ratio at a certain value of 

excitation frequency. 

Impacts of dynamical loading areas (L0/L) and positions 

(x0/L) on dynamical deflections and resonance frequencies 

 

 

 

 

of NcM nanoshell have been depicted in Figs. 7 and 8, 

respectively. For these figures, values of R/h = 20, λ = 0.5 

are supposed. It is clear that as the radial dynamical 

loadings move away from the boundary, the dynamical 

deflections become greater. Moreover, when the areas of 

radial dynamical loadings become wider, the dynamical 

deflections of SGT nanoshell gets bigger. However, the 

resonance frequencies or natural frequencies remain fixed 

by changes of dynamical loading areas and locations. 

Fig. 9 depicts 1st longitudinal mode shape of SGT 

nanoshell based on various pore coefficient at R/h = 20, λ = 

0.5, and θ = π/6. For this figure, Ω = 0.1 is supposed for 

external frequency. One can observe that nano-pores within 

the material may notably affect the modes shapes of the 

nanoshell. The radial deflections of a nanoshell increase by 

  

(a) With surface phase (b) Without surface phase 

Fig. 4 Dimensionless amplitude of NCM nanoshell versus excitation frequency for different inhomogeneity sizes 

(R/h = 20, fv = 0.1, λ = 0.5) 

  

(a) S-S (b) C-C 

Fig. 5 Dimensionless amplitude of NCM nanoshell versus excitation frequency for different strain gradient parameters 

(R/h = 20, Rg = 20 nm, λ = 0.5) 
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Fig. 7 Dimensionless amplitude of NCM nanoshell versus 

excitation frequency for various area of uniform 

dynamic load (R/h = 20, λ = 0.5, Rg = 20 nm, fv = 0.1, 

x0 = 0.5 L) 

 

 

 

increase of nano-pore coefficients. Thus, configuration of 

SGT nanoshell under dynamical loadings relies on the 

magnitude of nano-pore percentage. 

 

 

5. Conclusions 
 

In this paper, forced vibration behavior of strain gradient 

porous nanocrystalline silicon shells was explored by 

employing first order shell model. Micromechanical 

modeling of nanocrystalline materials accounting for the 

size of nano-grains and nano-porosities and their volume 

 

 

 

 

Fig. 8 Dimensionless amplitude of NCM nanoshell versus 

excitation frequency for different locations of 

uniform dynamic load (R/h = 20, λ = 0.5, Rg = 20 nm, 

fv = 0.1, L0 = 0.3L) 

 

 

 

fractions was presented. It was found that increasing the 

strain gradient parameter results in enlargement of the 

resonance frequencies of NcM nanoshell. The porosity 

percentage had a great influence on resonance frequencies 

of NcM nanoshells. However, all of these observations were 

dependent on the surface layer of nano-grains and nano-

porosities. As the size of nano-grains and nano-porosities 

declined, the effect of their surface layer on resonance 

frequencies became more important. Therefore, 

configuration of a NcM nanoshell under dynamical loadings 

relies on the value of nano-pore percentage. 

  

(a) S-S (b) C-C 

Fig. 6 Dimensionless amplitude of NCM nanoshell versus excitation frequency for different radius-to-thickness ratios 

(L/h = 20, λ = 0.5, Rg = 20 nm, fv = 0.1) 
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Fig. 9 First mode shape of NCM nanoshell for different 

porosity percentages (R/h = 20, λ = 0.5, Ω = 0.1, 

θ = π/6, Rg = 20 nm) 
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