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1. Introduction 

 

Recently, a new class of promising materials has been 

discovered by Iijima (1991) known as single-walled carbon 

nanotube (SWNT) and multi-walled carbon nanotube 

(MWNT) has drawn considerable attention. Multitude 

studies indicated that the carbon nanotubes (CNTs) have an 

excellent candidate for the reinforcement of polymer 

composites due to their extraordinary Young’s modulus 

(Van Lier et al. 2000), tensile strength (Yu et al. 2000), 

electrical conductivity (Thess et al. 1996), thermal 

properties (Biercuk et al. 2002) and flexibility (Ma et al. 

1998). Several studies have focused on material properties 

of carbon nanotube-reinforced composites (CNTRCs) and 

have shown that the introduction of carbon nanotubes into 

polymers may improve their properties (Fidelus et al. 2005, 

Han and Elliott 2007, Bonnet et al. 2007, Semmah et al. 

2019). 

Functionally graded materials (FGMs) are a new types 

of composites developed recently, namely (FGM) has high 

potential to use as a structural material. Therefore, by 

changing the properties of the material it is possible to 

perform a certain function of material properties 

(Benahmed et al. 2019, Bourada et al. 2019, Tlidji et al. 
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2019, Avcar and Mohammed 2018, Ehyaei et al. 2017, 

Fahsi et al. 2017, Avcar 2019, Boussoula et al. 2019, Avcar 

and Alwan 2017, Boukhari et al. 2016, Daouadji and Adim 

2016, Sofiyev and Avcar 2010, Sekkal et al. 2017, Bousahla 

et al. 2016, Bounouara et al. 2016). Reinforced composites 

are made up of a combination of fibers (Fellah et al. 2019), 

or particle in a matrix material composite material are 

increasingly being used in aircraft primary structures 

because of their superior strength properties over the 

traditional materials. Diamanti and Soutis (2010) studied 

the structural health monitoring techniques for aircraft 

composite structures. Advanced composites have been 

replacing traditional structural materials to repair the 

aircraft structures deflection and a nonlinear bending 

analysis of functionally graded carbon nanotube reinforced 

composite are presented by (Katnam et al. 2013), Bonnet et 

al. (2007) studied the thermal properties and percolation in 

carbon nanotube-polymer composites. Thus, this topic has 

been fascinating many researchers for recently years (Zhang 

et al. 2015, Mirzaei and Kiani 2016, Mehar et al. 2017, Wu 

et al. 2016, Mehar and Panda 2017, Asadi and Beheshti 

2018, Karami et al. 2019a). 

   Due to difficulties encountered in experimental 

methods, the molecular dynamics (MD) simulations are 

used to predict the elastic properties of polymer/carbon 

nanotube composites (Griebel and Hamaekers 2004, Han 

and Elliott 2007) these studies are limited by systems 

calculation. The continuum mechanics methods are widely 

used to predict the responses of reinforced composites 
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analysis of the critical buckling load of a reinforced polymer plate with parabolic distribution of carbon nanotubes. The equations of 
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geometric ratios and the number of modes on the critical load buckling are analysed and discussed. The results show that the critical 

buckling load of parabolic distribution is larger than the linear distribution. This variation is attributed to the concentration of 

reinforcement (CNTs) at the top and bottom faces for the X-CNT type which make the plate more rigid against buckling. 
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structure and nanostructures (Kolahchi et al. 2017, Shokravi 

2017a, Karami et al. 2017, 2018a, b, 2019b, c, Kolahchi 

2017, Ould Youcef et al. 2015, Shokravi 2017b, Odegard et 

al. 2003, Pour et al. 2015, Hajmohammad et al. 2018, 

Chemi et al. 2015, Shahsavari and Janghorban 2017a, 

Bouadi et al. 2018, Berghouti et al. 2019). Vodenitcharova 

and Zhang (2006) developed a continuum model for pure 

bending of a straight nanocomposite beam with a circular 

cross section reinforced by a single-walled carbon 

nanotube. 

The constitutive models and mechanical properties of 

carbon nanotube polymer composites have been studied 

analytically, experimentally, and numerically. Cooper et al. 

(2002) and Barber et al. (2003), which demonstrated that 

carbon nanotubes are effective in reinforcing a polymer due 

to remarkably high separation stress according to a series of 

pull-out tests of individual carbon nanotubes embedded 

within polymer matrix. (Wan et al. 2005 and Barati 2017) 

investigated the effective moduli of the CNT reinforced 

polymer composite, with emphasis on the influence of CNT 

length and CNT matrix interphase on the stiffening of the 

composite. The behavior of CNTRC can be considerably 

improved through the use of a functionally graded 

distribution of CNTs in the matrix (Civalek 2017, Shokravi 

2017b). 

The buckling instability problem is a common question 

in everyday life, in engineering, buckling is a sudden failure 

of a structure subjected to high compressive stresses and 

refers to loss of the load-carrying capacity of a component 

within a structure or of the structure itself. In reality, it is 

very easy to investigate the buckling instability of small 

systems like a single homogenous rod. Building an 

experimental setup one can consider different boundary 

conditions. There are two major categories leading to the 

sudden failure of a mechanical component: material failure 

and structural instability, (buckling). For material failures, 

you need to consider the yield stress for ductile materials 

and the ultimate stress for brittle materials. A research 

project on stability cannot start without recognizing the 

contribution of Euler to the problem of stability when he 

published his famous Euler’s equation on the elastic 

stability of columns back in 1744. His original work 

consisted of determining the buckling load of a cantilever 

column that was fixed at the bottom and free at the top. 

Practical solutions are still not available for some types of 

structures. 

Stability is one of the most critical limit states for 

structures during construction and during their service life. 

One of the most difficult challenges in structural stability is 

determining the critical load under which a structure 

collapses due to the loss of stability; this is because of the 

complexity of this phenomenon and the many material 

properties that are influenced by geometric and material 

imperfections and material nonlinearity. The critical 

buckling lead is the force that has to be exceeded to buckle 

the rod. The critical force is contour length-dependent and 

vanishes for an infinitely long rod. 

In cases of critical buckling lead analyses of CNTRC 

structures, Mehar et al. (2019), investigated the buckling of 

graded CNT-reinforced composite sandwich shell structure 

under thermal loading.  Using the Multiscale modeling 

approach Mehar and Panda (2019) gave the solutions for 

thermal critical buckling of nanocomposite curved 

structure. The nonlinear thermal buckling behaviour of 

laminated composite panel structure including the stretching 

effect and higher-order finite element was reported by 

Katariya et al. (2017b). Thus, the topic of buckling of 

functionally graded materials and laminated composite has 

been fascinating many researchers for recently years 

(Meziane et al. 2014, Al-Basyouni et al. 2015, Katariya and 

Panda 2016, Kar et al. 2017, Kar and Panda 2016, 2017, 

Kar et al. 2016, Bourada et al. 2016, Panda and Katariya 

2015, Bellifa et al. 2017a, b, Panda et al. 2017, Panda and 

Singh 2009, Abdelaziz et al. 2017, El-Haina et al. 2017, 

Menasria et al. 2017, Chikh et al. 2017, Shokravi 2017b, 

Kaci et al. 2018, Mokhtar et al. 2018, Yazid et al. 2018, 

Kadari et al. 2018, Bourada et al. 2018, Hellal et al. 2019, 

Karami et al. 2019d, Alimirzaei et al. 2019, Meksi et al. 

2019). 

To the best of authors’ knowledge, no many reports have 

been found in the literature on the buckling of sandwich 

plates and Post-buckling of laminated composite. However, 

Panda and Singh (2010) used the non-linear finite element 

method for optimization of Thermal post-buckling of a 

laminated composite spherical shell panel embedded with 

shape memory alloy fibres. Katariya et al. (2017a) 

investigated the thermal buckling strength of laminated 

sandwich composite panel structure embedded with shape 

memory alloy fibre. Panda and Singh (2013a) gave the post-

buckling analysis of laminated composite doubly curved 

panel embedded with SMA fibers subjected to thermal 

environment. Buckling analysis of SMA bonded sandwich 

structure–using FEM has been developed by Katariya and 

Panda (2018). Panda and Singh (2013b) investigated the 

thermal post-buckling behavior of laminated composite 

spherical shell panel using NFEM. Katariya and Panda 

(2014) studied the Thermo-Mechanical Stability of 

Composite Cylindrical Panels. 

Elastic stability must satisfy two basic criteria, the 

ability of the structure to support the imposed loading 

(strength) and the capacity of the structure to resist 

distortions (stiffness) (Nethercot and Kirby 1979). Elastic 

buckling instability is frequently associated with large 

changes of geometry which often occur quickly as the 

structural member moves from one geometrical position of 

equilibrium to another. For example, when a wood I-joist is 

loaded in the plane of its web by a gradually increasing 

load, an axial deflection is the first wood I-joist response to 

the applied load. This axial deflection lasts until a particular 

load is reached. Any further increase in the applied load will 

cause wood I-joist instability. This instability is 

characterized by the presence of additional wood I-joists 

responses to the applied load, including a lateral wood I-

joist deflection and rotation of the wood I-joist with respect 

to its neutral axis. This condition of instability is called 

lateral-torsional buckling instability. The load at which 

lateral-torsional buckling instability occurs is known as the 

critical lateral-torsional buckling load (Nethercot and 

Trahair 1976). 

This present paper attempts to show the critical buckling 
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load of a functionally graded reinforced polymer plate with 

a parabolic distribution of carbon nanotubes using the shear 

deformation plate theory. This research seeks to analyze the 

influences of various parameters on the critical buckling 

load of plate such as plate thickness, aspect ratios, volume 

fraction and type of reinforcement. 

 

 

2. Geometrical configuration and properties of 
CNTs plate 
 

As shown in Figs. 1 and 2, consider the case of a 

uniform thickness, an FG-CNT reinforced polymer plate 

with linear and parabolic distribution of carbon nanotubes 

referring to coordinates (x, y, z) with length a, width b and 

thickness h. 

Three different models of the distribution of 

reinforcements across the thickness are taken into 

consideration in this study such as uniformly distributed 

(referred to as UD-CNT), linear (referred to as CNT- L) and 

non-linear (referred to as CNT-NL) in the thickness 

direction (Fig. 2). 

Several micromechanical models have been developed 

to predict the effective material properties of CNTRCs, The 

Mori-Tanaka model is applicable to micro particles (Seidel 

and Lagoudas 2006, Li et al. 2007) and the rule of mixture 

(Anumandla and Gibson 2006, Esawi and Farag 2007) is 

simple and convenient to predict the global material 

properties of the CNTRC. 

In the present study, according to the rule of mixture by 

introducing the CNT efficiency parameters (휂1, 휂2, 휂3), the 

effective Young’s modulus and shear modulus of the 

CNTRC layer can be expressed as (Shen 2009). 

 

𝐸11 = 휂1𝑉𝑐𝑛𝑡𝐸11
𝑐𝑛𝑡 + 𝑉𝑝𝐸

𝑝 (1a) 

 

 

 

 

Fig. 1 Plate with nanotube of Carbone 

 

 

 

Fig. 2 The different models of the reinforcement provisions 
 

Table 1 Distributions of reinforcements across the thickness 

Uniformly 

distributed 
UD- CNT 𝑉𝑐𝑛𝑡 = 𝑉𝑐𝑛𝑡

∗
 

Linear 

functionally 

graded 

O- CNT- L 𝑉𝑐𝑛𝑡 = 2(1 −
2|𝑧|

ℎ
)𝑉𝑐𝑛𝑡

∗  

X- CNT- L 𝑉𝑐𝑛𝑡 = 2(
2|𝑧|

ℎ
)𝑉𝑐𝑛𝑡

∗
 

Non-linear 

functionally 

graded 

O- CNT- NL 𝑉𝑐𝑛𝑡 = 2(1 −
2|𝑧|

ℎ
)

2

𝑉𝑐𝑛𝑡
∗  

X- CNT- NL 𝑉𝑐𝑛𝑡 = 2(
2|𝑧|

ℎ
)

2

𝑉𝑐𝑛𝑡
∗

 

 

 

 

 
휂2
𝐸22

=
𝑉𝑐𝑛𝑡
𝐸22
𝑐𝑛𝑡 +

𝑉𝑝
𝐸𝑝

 (1b) 

 
휂3
𝐺12

=
𝑉𝑐𝑛𝑡
𝐺12
𝑐𝑛𝑡 +

𝑉𝑝
𝐺𝑝

 (1c) 

 

Where 𝐸11
𝑐𝑛𝑡 , 𝐸22

𝑐𝑛𝑡  and 𝐺12
𝑐𝑛𝑡 indicate the Young’s 

moduli and shear modulus of SWCNTs, respectively, and 

𝐸𝑃   and 𝐺𝑃  represent the properties of the isotropic 

matrix. 휂1, 휂2 and  휂3  are CNT/matrix efficiency 

parameters, the  𝑉𝑐𝑛𝑡 and 𝑉𝑃 are the volume fractions of 

the carbon nanotubes and matrix, respectively, and are 

related by 𝑉𝑐𝑛𝑡 + 𝑉𝑃 = 1. For other properties in terms of 

Poisson’s ratio (ν) and mass density (ρ), these can be 

written as 

 

𝜈12 = 𝑉𝑐𝑛𝑡𝜈12
𝑐𝑛𝑡 + 𝑉𝑝𝜈

𝑝,      𝜌 = 𝑉𝑐𝑛𝑡𝜌
𝑐𝑛𝑡 + 𝑉𝑝𝜌

𝑝 (2) 

 

To consider the three distributions of reinforcements 

across the thickness (Table 1). 

Where 𝑉𝑐𝑛𝑡
∗ is the given volume fraction of CNTs, which 

can be obtained from the following equation (Draoui et al. 

2019) 

 

𝑉𝑐𝑛𝑡
∗ =

𝑊𝑐𝑛𝑡

𝑊𝑐𝑛𝑡 + (𝜌
𝑐𝑛𝑡 𝜌𝑚⁄ )(1 −𝑊𝑐𝑛𝑡)

 (3) 

 

Where 𝑊𝑐𝑛𝑡  is the mass fraction of the carbon 

nanotube in the nano-composite plate. in this study, we 

introduce the CNT efficiency parameter to consider the 

small-scale effect and other effects onthe material properties 

of CNTRCs. The CNT efficiency parameters (휂) associated 

with the given volume fraction (𝑉𝑐𝑛𝑡
∗ ) (Zhu et al. 2012) 

 

η
1
 = 0.149 and η

2
= η

3
= 0.934 

for the case of Vcnt
* = 0.11 

 

η
1
= 0.150 and η

2
= η

3
= 0.941 

for the case of Vcnt
* = 0.14 

 

η
1
= 0.149 and η

2
= η

3
= 1.381 

for the case of Vcnt
* = 0.17 
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3. Equations of motion 
 

According to the high order shear deformation plate 

theory for describing the behaviour of the CNTRC plates. 

The displacements of any point in the plate along the x, y 

and z axes, denoted by u(x, y, z, t), v(x, y, z, t) and w(x, y, t) 

respectively is given below (Reddy 2004, Mahi et al. 2015) 

 

{

𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝑣(𝑥, 𝑦, 𝑧, 𝑡)

𝑤(𝑥, 𝑦, 𝑡)
} = {

𝑢0(𝑥, 𝑦, 𝑡)

𝑣0(𝑥, 𝑦, 𝑡)

𝑤0(𝑥, 𝑦, 𝑡)
} − {

𝑧𝑤,𝑥
𝑧𝑤,𝑦
0

} + 𝜓(𝑧) {
𝜙𝑥
𝜙𝑦
0

} (4) 

 

In which u0, v0 and w0 are the displacements along the x, 

y and z directions in the mid plane of the plate, t is time and 

ϕx, ϕy are the total bending rotation of the cross-section at 

any point of the reference plane. If the last term in Eq. (4) is 

neglected, the displacements are reduced to the classical 

plate theory (CPT). Also, the first order shear deformation 

theory (FSDT) is obtained by setting, Ψ(z) = z. 

In terms of higher order shear deformation theories, the 

corresponding shape functions are defined as follows. 

Third order shear deformation theory (TSDT): 
 

𝜓(𝑧) = 𝑧 (1 −
4𝑧2

3ℎ
2) (5a) 

 

Sinusoidal shear deformation theory (SSDT): 
 

𝛹(𝑧) =
ℎ

𝜋
sin (

𝜋𝑧

ℎ
) (5b) 

 

The linear normal strain and transverse shear strain are 

associated with the displacements via 
 

{

휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦

} =

{
  
 

  
 
𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

− 𝑧

{
  
 

  
 
𝜕2𝑤0
𝜕𝑥2

𝜕2𝑤0
𝜕𝑦2

2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

 

                  +𝜓(𝑧)

{
  
 

  
 
𝜕𝜑𝑥
𝜕𝑥
𝜕𝜑𝑦
𝜕𝑦

(
𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦
𝜕𝑥

)
}
  
 

  
 

 

(6a) 

 

{
𝛾𝑥𝑧
𝛾𝑦𝑧
} = {

𝜑𝑥 +
𝜕𝜓(𝑧)

𝜕𝑧

𝜑𝑦 +
𝜕𝜓(𝑧)

𝜕𝑧

} (6b) 

 

The expression of normal and shear stress are written by 

linear elastic constitutive law as 

 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

} = (

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

){

휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦

} ; (7a) 

{
𝜎𝑦𝑧
𝜎𝑥𝑧

} = (
𝑄44 0
0 𝑄55

) {
𝛾𝑦𝑧
𝛾𝑥𝑧
},                 (7a) 

 

Where Qij are the transformed elastic constants 

 

𝑄11 =
𝐸11

1 − 𝜐12𝜐21
,     𝑄22 =

𝐸22
1 − 𝜐12𝜐21

, 

𝑄12 =
𝜐21𝐸11

1 − 𝜐12𝜐21
,     𝑄66 = 𝐺12 

𝑄55 = 𝐺13                    𝑄44 = 𝐺23 

(7b) 

 

The governing differential equations of motion can be 

derived from Hamilton’s principle (Attia et al. 2015, 

Guessas et al. 2018, Belabed et al. 2018, Cherif et al. 2018, 

Fourn et al. 2018, Youcef et al. 2018, Karami et al. 2018c, 

Draiche et al. 2019, Chaabane et al. 2019). 
 

∫ (𝛿𝑈 + 𝛿𝑉)
𝑡

0

𝑑𝑡 = 0 (8) 

 

Where 𝛿𝑈  and 𝛿𝑉  are the virtual variation of the 

strain energy and the virtual work done by external forces. 

The expression of the virtual strain energy is (Beldjelili 

et al. 2016, Zine et al. 2018, Attia et al. 2018) 
 

𝛿𝑈 = ∫ ∫𝜎𝑥𝑥𝛿휀𝑥𝑥 + 𝜎𝑦𝑦𝛿휀𝑦𝑦 + 𝜎𝑥𝑦𝛿𝛾𝑥𝑦
𝐴

ℎ

2

−
ℎ

2

 

                      +𝜎𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝐴𝑑𝑥 

(9) 

 

By substituting Eq. (6) into Eq. (9), one obtains 

 

𝛿𝑈 = ∫{𝑁𝑥𝑥𝛿𝑢0,𝑥 −𝑀𝑥𝑥𝛿𝑤𝑂,𝑥𝑥 + 𝑃𝑥𝑥𝛿∅𝑥,𝑥
𝐴

 

+𝑁𝑦𝑦𝛿𝑣0,𝑦𝑀𝑦𝑦𝛿𝑤0,𝑦𝑦𝑃𝑦𝑦𝛿∅𝑦,𝑦 

+𝑁𝑥𝑦(𝛿𝑢0,𝑦 + 𝛿𝑣0,𝑥) − 2𝑀𝑥𝑦𝛿𝑤0,𝑥𝑦 

+𝑃𝑥𝑦(𝛿∅𝑥,𝑦 + 𝛿∅𝑦,𝑥) + 𝑅𝑦𝑧𝛿∅𝑦 + 𝑅𝑥𝑧𝛿∅𝑥}𝑑𝑥𝑑𝑦 

(10) 

 

Where stress resultants can be defined as follows 

 

(Nxx, Nyy, Nxy) = ∫ (𝜎xx, 𝜎yy, 𝜎xy)dz
ℎ/2

−ℎ/2

 (11a) 

 

(Mxx, Myy, Mxy) = ∫ z(𝜎xx, 𝜎yy, 𝜎xy)dz
ℎ/2

−ℎ/2

 (11b) 

 

(Pxx, Pyy, Pxy) = ∫ ψ(z)(𝜎xx, 𝜎yy, 𝜎xy)dz

ℎ

2

−
ℎ

2

 

𝑅𝑦𝑧 = ∫
∂ψ(z)

∂(z)

ℎ

2

−
ℎ

2

𝜎yzdz 

𝑅𝑥𝑧 = ∫
∂ψ(z)

∂(z)

ℎ/2

−ℎ/2

𝜎xzdz 

(11c) 

 

The stress resultants in form of material stiffness and 

displacement components are obtained by substituting Eq. 
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(7) into Eq. (10). 
 

{

Nxx
Nyy
Nxy

} = [

A11 A12 0
A21 A22 0
0 0 A66

] {

휀(0)xx
휀(0)yy

𝛾(0)
xy

} 

              + [

B11 B12 0
B21 B22 0
0 0 B66

] {

휀(1)xx
휀(1)yy

𝛾(1)
xy

} 

              + [

C11 C12 0
C21 C22 0
0 0 C66

] {

휀(𝜓)xx
휀(𝜓)yy

𝛾(𝜓)
xy

} 

(12a) 

 

{

Mxx

Myy

Mxy

} = [

B11 B12 0
B21 B22 0
0 0 B66

] {

휀(0)xx
휀(0)yy

𝛾(0)
xy

} 

              + [

D11 D12 0
D21 D22 0
0 0 D66

] {

휀(1)xx
휀(1)yy

𝛾(1)
xy

} 

              + [

E11 E12 0
E21 E22 0
0 0 E66

] {

휀(𝜓)xx
휀(𝜓)yy

𝛾(𝜓)
xy

} 

(12b) 

 

{

Pxx
Pyy
Pxy

} = [

C11 C12 0
C21 C22 0
0 0 C66

] {

휀(0)xx
휀(0)yy

𝛾(0)
xy

} 

             + [

E11 E12 0
E21 E22 0
0 0 E66

] {

휀(1)xx
휀(1)yy

𝛾(1)
xy

} 

             + [

F11 F12 0
F21 F22 0
0 0 F66

] {

휀(𝜓)xx
휀(𝜓)yy

𝛾(𝜓)
xy

} 

(12c) 

 

{
𝑅𝑦𝑧
𝑅𝑥𝑧

} = [
H44 0
0 H55

] {
γyz
(0)

γxz
(0)} (12d) 

 

Where 𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐶𝑖𝑗 , 𝐷𝑖𝑗 , 𝐸𝑖𝑗 , 𝐹𝑖𝑗 ,  are the plate 

stiffness, defined by 
 

[𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗] = ∫ 𝑄𝑖𝑗[1, 𝑧, 𝑧
2]

ℎ

2

−
ℎ

2

𝑑𝑧; 

𝑖, 𝑗 = 1,2,6 

(13a) 

 

[𝐶𝑖𝑗,𝐸𝑖𝑗 , 𝐹𝑖𝑗] = ∫ 𝜓

ℎ

2

−
ℎ

2

(𝑧)𝑄𝑖𝑗[1, 𝑧, 𝜓(𝑧)]𝑑𝑧; 

𝑖, 𝑗 = 1,2,6 

(13b) 

 

For the CNTRC plates, the principle of virtual work 

done by external loadingsis 
 

𝛿𝑉 = ∫ (𝑁𝑥
0
𝜕𝑤0
𝜕𝑥

𝜕𝛿𝑤0
𝜕𝑥

+ 𝑁𝑦
0
𝜕𝑤0
𝜕𝑦

𝜕𝛿𝑤0
𝜕𝑦

)𝑑𝑥𝑑𝑦
𝐴

 (14) 

By substituting the equations of the strain energy and 

the virtual work done by external forces into Hamilton’s 

principle, Then, integrating by parts and collecting the 

coefficients of δu0, δv0, δw0, δφx and δφy, leads to the 

following equations of motion. 

 

𝛿𝑢0 :        
𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 0                 (15a) 

 

𝛿𝑣0 :        
𝜕𝑁𝑦𝑦
𝜕𝑦

+
𝜕𝑁𝑥𝑦
𝜕𝑥

= 0                 (15b) 

 

𝛿𝑤0 :        
𝜕2𝑀𝑥𝑥

𝜕𝑥2
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
 

                 +𝑁𝑥
0
𝜐2𝑤0
𝜐2𝑥

+ 𝑁𝑦
0
𝜐2𝑤0
𝜐2𝑦

= 0 

(15c) 

 

𝛿𝜙𝑥 :        
𝜕𝑃𝑥𝑥
𝜕𝑥

+
𝜕𝑃𝑥𝑦
𝜕𝑦

− 𝑅𝑦𝑧 = 0         (15d) 

 

𝛿𝜙𝑦 :        
𝜕𝑃𝑦𝑦
𝜕𝑦

+
𝜕𝑃𝑥𝑦
𝜕𝑥

− 𝑅𝑦𝑧 = 0         (15e) 

 

The Navier solution procedure is employed to formulate 

the closed-form solutions for buckling problems of simply 

supported CNTRC plates (Bakhadda et al. 2018, Medani et 

al. 2019). 

 

𝑢0(𝑥, 𝑦, 𝑡) = ∑ ∑𝑈𝑀𝑁𝑒
𝑖𝜔𝑡 𝑐𝑜𝑠( 𝛼𝑥) 𝑠𝑖𝑛( 휁𝑦)

∞

𝑁=1

∞

𝑀=1

 

𝑣0(𝑥, 𝑦, 𝑡) = ∑ ∑𝑉𝑀𝑁𝑒
𝑖𝜔𝑡 𝑠𝑖𝑛( 𝛼𝑥) 𝑐𝑜𝑠( 휁𝑦)

∞

𝑁=1

∞

𝑀=1

 

𝑤0(𝑥, 𝑦, 𝑡) = ∑ ∑𝑊𝑀𝑁𝑒
𝑖𝜔𝑡 𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛( 휁𝑦)

∞

𝑁=1

∞

𝑀=1

 

𝜑𝑥(𝑥, 𝑦, 𝑡) = ∑ ∑𝛩𝑥𝑀𝑁𝑒
𝑖𝜔𝑡 𝑐𝑜𝑠( 𝛼𝑥) 𝑠𝑖𝑛( 휁𝑦)

∞

𝑁=1

∞

𝑀=1

 

𝜑𝑦(𝑥, 𝑦, 𝑡) = ∑ ∑𝛩𝑦𝑀𝑁𝑒
𝑖𝜔𝑡 𝑠𝑖𝑛( 𝛼𝑥) 𝑐𝑜𝑠( 휁𝑦)

∞

𝑁=1

∞

𝑀=1

 

(16) 

 

Where 𝛼 =
𝑀𝜋

𝑎
  and 휁 =

𝑁𝜋

𝑏
.𝑖 = √−1. 

Where UMN, and VMN, WMN, ΘxMN and ΘyMN are arbitrary 

parameters and ω , the frequency of free vibration. 

Substituting the Eq. (13) into the Eq. (14), one obtains 

the closed-form solutions which are presented in the 

following matrix form. 

 

(

 
 

[
 
 
 
 
𝑠11 𝑠12 𝑠13 𝑠14 𝑠15
𝑠12 𝑠22 𝑠23 𝑠24 𝑠25
𝑠13 𝑠23 𝑠33 𝑠34 𝑠35
𝑠14 𝑠24 𝑠34 𝑠44 𝑠45
𝑠15 𝑠25 𝑠35 𝑠45 𝑠55]

 
 
 
 

)

 
 

{
 
 

 
 
𝑈𝑀𝑁
𝑉𝑀𝑁
𝑊𝑀𝑁

𝛩𝑥𝑀𝑁
𝛩𝑦𝑀𝑁}

 
 

 
 

= 0 (17) 

 

Where 
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𝑠11 = −𝐴11𝛼
2 + 𝐴66휁

2,      𝑠12 = −𝛼휁(𝐴12 + 𝐴66), 
𝑠13 = 0,                                   𝑠14 = −𝐵11𝛼

3 − 𝐵66휁
2, 

𝑠15 = −𝐵12𝛼휁 − 𝐵66𝛼휁, 
𝑠21 = 𝑠12,                               𝑠22 = −𝐴66𝛼

2 − 𝐴22휁
2, 

𝑠23 = 0,                                  𝑠24 = −𝐵12𝛼휁 − 𝐵66𝛼휁, 
𝑠25 = −𝐵66𝛼

2 − 𝐵22휁
2,     𝑠31 = 𝑠13, 

𝑠32 = 𝑠23, 
𝑠33 = −𝐷55𝛼

2 − 𝐷44휁
2 −𝑁𝑥𝛼2 −𝑁𝑦휁2, 

𝑠34 = −𝐷55𝛼,                       𝑠35 = −𝐷44휁, 
𝑠41 = 𝑠14,                              𝑠42 = 𝑠24, 
𝑠43 = 𝑠34, 
𝑠44 = −𝐶11𝛼

2 − 𝐶66휁
2 − 𝐷55, 

𝑠45 = −𝛼휁(𝐶12 + 𝐶66),      𝑠51 = 𝑠15, 
𝑠52 = 𝑠25,                              𝑠53 = 𝑠35, 
𝑠54 = 𝑠45, 
𝑠55 = −𝐷44 − 𝐶66𝛼

2 − 𝐶22휁
2 

(18) 

 

The following dimensionless parameter is used to 

present the numerical results for buckling analyses of 

CNTRC plates. 

 

𝑁𝑐𝑟 =
𝑁𝑐𝑟𝛼

2

𝜋𝐷0
     Where      𝐷0 =

𝐸𝑝ℎ3

12[1 − (𝜈𝑃)2]
 (19) 

 

 

4. Results and discussions 
 
Numerical results are presented and discussed in this 

section for FG-CNTRC plates. We first need to determine 

 

 

the effective material characteristics of CNTRCs plates 

employed throughout this work are given as follows. 

PMPV (Polymer) is used as the matrix in which material 

properties are: 𝑣𝑃 = 0.34, 𝜌𝑃 = 1150 kg/m3  and 𝐸𝑃 =
2.1 GPa. For reinforcement material, the armchair (10,10) 

SWCNTs is chosen with the following properties according 

to the study of Zhu et al. (2012) 
 

𝑣12
𝑐𝑛𝑡 = 0.175;  𝜌𝑐𝑛𝑡 = 1400 kg/m3;  𝐸11

𝑐𝑛𝑡 = 5.6466 𝑇𝑃𝑎; 
𝐸22
𝑐𝑛𝑡 = 7.0800 TPa;     𝐺12

𝑐𝑛𝑡 = 𝐺13
𝑐𝑛𝑡 = 𝐺23

𝑐𝑛𝑡 = 1.9445 TPa 
 

So as to check the mathematical formulation in previous 

sections of the present theory, Table 1 demonstrates a 

comparison between the results obtained by the present 

model and the results of TSDT (Wattanasakulpong and 

Chaikittiratana 2015) which is based on the first-order 

theory Mindlin- Reissner, this examination is made only for 

linear distribution under uniaxial and biaxial loading, with 

different values of carbon nanotube volume fraction and 

various reinforcement plate are considered in this table with 

thickness ratio of plate (a/h = 10). It can be seen the good 

agreement between the results. 

Table 2 shows a comparison between the distribution of 

the linear and non-linear reinforcement linear inside the 

polymer matrix. We note from this table that the form non 

linear (X-CNT-NL) gives higher critical loads than the other 

forms (X-CNT-L, O-CNT-L, O-CNT-NL) under uniaxial 

and biaxial loading. This variation shows that the nonlinear 

distribution of the reinforcement makes the plate stiffer that 

will resist better against buckling. The high variation of 

 

 

Table 2 The comparison results of dimensionless critical buckling load of present square plate with 

(Wattanasakulpong and Chaikittiratana 2015) results under different loading 

Uniaxial loading γx = -1, γy = 0
 

Reinforcement type Source 𝑉𝑐𝑛𝑡
∗ = 0.11 𝑉𝑐𝑛𝑡

∗ = 0.14 𝑉𝑐𝑛𝑡
∗ = 0.17 

UD-CNT 

TSDT 20.6814 23.3559 32.3180 

SSDT 20.7286 23.4229 32.3890 

Present 20.6788 23.3520 32.3142 

X-CNT 

TSDT 24.2864 26.8941 37.6943 

SSDT 24.3943 27.0177 37.8069 

Present 24.2791 26.8860 37.6881 

O-CNT 

TSDT 14.4990 16.6984 22.6823 

SSDT 14.4515 16.6451 22.6276 

Present 14.5040 16.7041 22.6883 

Biaxial loading γx = -1, γy = -1 

UD-CNT 

TSDT 10.3407 11.6780 16.1590 

SSDT 10.3643 11.7115 16.1945 

Present 10.3394 11.6760 16.1571 

X-CNT 

TSDT 12.1432 13.4471 18.8472 

SSDT 12.1972 13.5089 18.9035 

Present 12.1396 13.4430 18.8440 

O-CNT 

TSDT 7.2495 8.3492 11.3411 

SSDT 7.2257 8.3225 11.3138 

Present 7.2520 8.3521 11.3442 
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critical buckling load is esteemed at the high values of (a/h) 

ratios. 

The dimensionless buckling critical loads of square 

reinforced plate under uniaxial and biaxial loads for various 

reinforcements are presented in Table 3 with different 

values of volume fraction. It is seen that the dimensionless 

critical load increases if the volume fraction of CNTs 

increases for al reinforcement type. On the other hand, the 

X-CNT-NL reinforced plate has a high resistance against 

buckling compared to other types of reinforcement because 

there is a concentration of the reinforcement at the top and 

 

 

 

 

 

 

bottom face of reinforced plate. 

The effec t  of  var ious  mode number  on  the 

dimensionless critical buckling load of square reinforced 

plate are also presented in the Table 4 under two types of 

compressive load, uniaxial (γx = -1, γy = 0) and biaxial (γx = 

-1, γy = -1). It is deduced that the dimensionless critical 

buckling load increase by increasing of the number of 

modes. The increase of dimensionless critical buckling load 

is attributed to the deformation configuration concerning 

the vibration mode when the number of modes increases the 

wave length decreases and the plate supports better under 

Table 3 Dimensionless critical buckling loads of CNTRC square plates with different types of 

distributions (linear and nonlinear) and various (a/h) ratios 

Uniaxial loading: γx = -1, γy = 0 

a/h UD-CNT X-CNT O-CNT X-CNTNL O-CNTNL 

5 13.9179 14.8082 11.5783 15.3194 10.2369 

10 32.3142 37.6881 22.6883 40.3459 17.3376 

20 51.8827 68.6094 30.9110 77.5797 21.3800 

40 61.5705 87.3715 34.0940 102.3821 22.7389 

Biaxial loading: γx = -1, γy = -1 

5 6.9590 7.4041 5.7892 7.6597 5.1184 

10 16.1571 18.8440 11.3442 20.1730 8.6688 

20 25.9414 34.3047 15.4555 38.7898 10.6900 

40 30.7852 43.6858 17.0470 51.1910 11.3695 
 

Table 4 The effect of different values of the volume fraction on the critical buckling load for 

CNTRC plate 

 Uniaxial loading: γx = -1, γy = 0 Biaxial loading: γx = -1, γy = -1 

Volume fraction UD-CNT X-CNT-NL O-CNT-NL UD-CNT X-CNT-NL O-CNT-NL 

𝑉𝑐𝑛𝑡
∗ = 0.11 20.6788 26.0727 11.1411 10.3394 13.0363 5.5706 

𝑉𝑐𝑛𝑡
∗ = 0.14 23.3520 28.6197 12.9088 11.6760 14.3098 6.4544 

𝑉𝑐𝑛𝑡
∗ = 0.17 32.3142 40.3459 17.3376 16.1571 20.1730 8.6688 

 

Table 5 Effect of mode number and type of loading on the variation of critical buckling load for 

different types of CNTRC plate 

  Uniaxial loading: γx = -1, γy = 0 Biaxial loading: γx = -1, γy = -1 

(n; m) V*cnt = 0.17 UD-CNT X-CNT-NL O-CNT-NL UD-CNT X-CNT-NL O-CNT-NL 

(1,1)  32.3142 40.3459 17.3376 16.1571 20.1730 8.6688 

(1,2)  56.5915 60.7802 41.4465 50.9324 54.7022 37.3014 

(1,3)  70.6534 77.1926 49.6396 67.9360 74.2237 47.7287 

(n; m) V*cnt = 0.14  

(1,1)  23.3520 28.6197 12.9088 11.6760 14.3098 6.4544 

(1,2)  38.9258 42.3454 27.8884 35.0333 38.1109 25.0996 

(1,3)  49.7685 55.5404 32.7098 47.8543 53.4043 31.4517 

(n; m) V*cnt = 0.11  

(1,1)  20.6788 26.0727 11.1411 10.3394 13.0363 5.5706 

(1,2)  35.9232 39.6244 25.1726 32.3309 35.6619 22.6553 

(1,3)  44.9805 50.3565 29.8728 43.2505 48.4197 28.7237 
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Fig. 3 The effect of aspect ratio (a/h) and values of volume 

fraction on the dimensionless critical buckling load of 

UD-NT under biaxial load 
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Fig. 4 The effect of geometric ratio (a/b) and values of 

volume fraction on the dimensionless critical 

buckling load of UD-CNT under biaxial load with 

(a/h = 10) 

 

 

the applied axial load. In addition, the results reveal that the 

dimensionless critical buckling load results increase as the 

volume fraction increase. 

Fig. 3 shows the effect of ratio a/h on the critical 

buckling load for different values of the volume fraction of 

CNT. Note that the increase in the ratio a/h leads to an 

increase in the critical buckling load. The increase in the 

ratio a/h makes the plate thin and diminish the transversal 

sheer effect taken into consideration by the Mindlin-

Reissner theory. In addition, the critical load with a volume 

fraction equal 0.17 gives the largest load compared to the 

other fractions of carbon nanotube. The increase in the 

dimensionless critical buckling load is appropriate to the 

quantity of carbon nanotubes in the reinforced plate. 

The effect of geometric ratio a/b on the dimensionless 

critical buckling load for different values of the volume 

fraction of CNT is presented in Fig. 4. Note that the 

increase in the ratio a/b leads to an increase in the critical 

buckling load. The effect of geometric ratio a/b is attributed 

to the increase of reinforced plate dimensions. Also, the 

dimensionless critical buckling load increase with 

increasing of the CNTs volume fraction. 
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Fig. 5 The dimensionless critical buckling load of a square 

plate for different form of reinforcement 

distribution and geometric ratio with Vcnt* = 0.17 
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Fig. 6 The comparison between the linear X-CNT-L and 

nonlinear X-CNT-NL distribution for the plate type 

X-CNT 

 

 

Fig. 5 shows the influence of the geometric ratio 

parameter a/h and the distribution of carbon nanotubes in 

the polymer matrix on the critical buckling load. We 

observe that the critical buckling load increase with 

increasing of ratio a/h. Furthermore, the plate with 

distribution nonlinear X-CNTNL gives a Larger critical 

buckling load because has a high resistance against 

buckling compared to other reinforcement types UD -CNT 

and O-CNT-NL. The high resistance is attributing to the 

concentration of the CNTs reinforcement at the top and 

bottom face of reinforced plate. 

The linear X-CNT-L and nonlinear X-CNT-NL 

distribution for the X-CNT reinforcement plate type is 

illustrated in Fig. 6. We see that the critical buckling load 

for both distribution increase when the ratio a/h increases. 

This increase is estimated on the little values of a/h ratio. 

We also note that the critical load of buckling of nonlinear 

distribution X-CNT-NL is larger than the linear distribution. 

This variation is attributed to the concentration of 

reinforcement (CNTs) at the top and bottom faces of the 

plate, which makes it more rigid against buckling. 
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5. Conclusions 
 

In this paper, the influence of different parameters on the 

dimensionless critical buckling load of carbon nanotube-

reinforced composite plates using the shear deformation 

theory is studied and discussed. The overseeing differential 

equations incorporate the various parameters that are solved 

by implementing Hamilton’s principle and the 

dimensionless critical load analyses of linear and nonlinear 

distribution of CNTs are gotten. The exactness of the 

outcomes is analyzed utilizing the available date in the 

literature. Finally, through some parametric investigated 

study the results showed the dependence of buckling 

behavior on the different parameters such as aspect ratios, 

volume fraction, plate thickness and linear and nonlinear 

distribution. 

From the numerical outcomes, it is presumed that the 

concentration of the nanotubes in the nonlinear distribution 

at the top and bottom face of plate conduce to high 

resistance against buckling compared with different types of 

reinforcement. In terms of critical buckling load, the results 

show: 

 

● The form nonlinear (X-CNT-NL) gives higher 

critical loads than the other forms (UD –CNT,X-

CNT-L, O-CNT-L, O-CNT-NL) under uniaxial and 

biaxial loading. 

● It is seen that the dimensionless critical load 

increases if the volume fraction of CNTs increases 

for al reinforcement type. 

● It is deduced that the dimensionless critical buckling 

load increase by increasing of the number of modes 

● As the number of modes increases, the wavelength 

decreases and the plate supports better under the 

applied axial load. 

● The results reveal that the dimensionless critical 

buckling load results increase as the volume fraction 

increase. 

● The increase in the ratio a/h makes the plate thin and 

diminish the transversal sheer effect taken into 

consideration by the Mindlin-Reissner theory. 

● The high resistance of the reinforced plate is 

attributing to the concentration of the CNTs 

reinforcement at the top and bottom face. 

 

Finally, the results demonstrate the dependence of 

critical buckling load on the different parameters and the 

concentration of reinforcement (CNTs) at the top and 

bottom faces of nonlinear distribution X-CNT-NL plate 

make it more rigid compared with the linear distribution. An 

improvement of present formulation will be considered in 

the future work to consider the thickness stretching effect 

by using quasi-3D shear deformation models (Draiche et al. 

2016, Ait Atmane et al. 2017, Abualnour et al. 2018, 

Benchohra et al. 2018, Younsi et al. 2018, Bouhadra et al. 

2018, Karami et al. 2018d, e, Addou et al. 2019, Boukhlif et 

al. 2019, Boutaleb et al. 2019, Mahmoudi et al. 2019, Zarga 

et al. 2019, Bouanati et al. 2019, Zaoui et al. 2019, Khiloun 

et al. 2019, Boulefrakh et al. 2019). 
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