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1. Introduction 

 

Today, applications of smart progressive material have 

been changed significantly in design and manufacturing of 

structures in different industries. For improve the efficiency 

of systems, advanced materials are used in both nano and 

macro scales (Akgöz and Civalek 2017, 2018, Ghobadi et 

al. 2019, Mehralian et al. 2016a, b, Tadi Beni 2016, 

Kheibari and Tadi Beni 2017, Mohtashami and Tadi Beni 

2019). One particular type of these materials is composite 

reinforced by nanofillers which provide superior 

mechanical, chemical an electrical property (Zhang and 

Park 2018, 2019, Zheng et al. 2018a, b). In order to increase 

the efficiency of composite materials, it is more desirable to 

utilize a kind of matrix which has a low cost and high 

performance, simultaneously (Shen et  al .  2017, 

Mohammadimehr et al. 2018, Tam et al. 1019). Polymeric 

laminates are one of the most widely used elements in the 

various industrials such as aerospace, maritime and 

automobile industries (Walter et al. 2016). These laminates 

subjected to applied load maybe have buckled and 

consequently, lose their performances. Therefore, study of 

buckling behavior of them is important (Nemeth 1986, Tadi 

and Mehralian 2017). On the beam and plane-like structures 

which are subjected to a compressive load, the buckling 

phenomenon occurs when the energy capacity of structures 

to be full and the body intends to shape change (Tadi et al. 

2017). Indeed, the buckling state is the separation point 
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between the static equilibrium and post-buckling path. In 

order to ensure the stability of structures, prediction of 

buckling behavior of them is particularly important for 

designers (Mehralian and Tadi Beni 2016, Huang and Atluri 

1995, Alibeigi et al. 2018, Ebnali Samani and Tadi Beni 

2018). Furthermore, resonance phenomenon may also occur 

in the plate, where it oscillates with large amplitude. In 

order to control the resonance of structures, free vibration 

analysis of them is necessary (Aydogdu 2014, Soleimani 

and Tadi Beni 2018, Besseghier et al. 2015, Tadi Beni et al. 

2015). Today, functionally graded material (FGM) is one of 

the most used materials in various systems. In this type of 

material physical properties change along special direction 

(Dastjerdi and Akgöz 2018, Shojaeian and Tadi Beni 2015). 

Functionally graded reinforced laminates are one of the 

newest structures. They are made from layers that each of 

them has a specific volume fractions of fillers. According to 

distribution schema of the fillers across the thickness of 

laminates, several patterns are introduced for laminates 

configuration (Song et al. 2017). The simplest type is U-

pattern which all the layers contain the same value of 

reinforcements. Another form is O-pattern. In this pattern 

both upper and bottom layers have a minimum value of 

fillers and by the move towards the mid-surface, amount of 

fillers increases, so that mid-layer has an extreme value of 

reinforcement. On the contrary, in the X-pattern, upper and 

bottom layers have a greatest value of fillers and by the 

move towards mid-layer, the amount of fillers belittles, so 

that mid-layer has a less amount of reinforcement. 

Graphene sheet (GS) and carbon nanotube (CNT) are the 

best nanofillers for polymeric matrix (Mittal et al. 2015). 

Actually, it can be said GS is the substance of carbon based 

nono-fillers such as CNT, graphite, fullerene, and graphene 
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oxide sheet (GO) (Jia et al. 2018, Kaushik and Majumder 

2015, Rodriguez-Perez et al. 2017). GS is one of the thinner 

known materials which has 3.4 Angstroms thickness. It has 

superior properties compared to other nano-fillers which 

one can note to excellent surface contacts and reasonable 

cost (Kocman et al. 2014). Several investigations have 

shown that conventional micromechanical theories cannot 

present the real value of mechanical properties for 

polymeric nanocomposites. According to the complexity 

and price of the experimental procedure, Molecular 

dynamics (MD) simulation can be a suitable approach for 

calculation of the mechanical constant of materials (Jia and 

Qingsheng 2009). Based on the MD method, Han and Eliot 

(2007) determined the elastic properties of CNT reinforced 

polymer composites. Li et al. (2019) investigated 

mechanical properties of polymer composites reinforced by 

CNT and GS. Temperature-dependent mechanical 

properties of a polymeric composite reinforced by woven 

graphene were studied by Lin et al. (2017). They 

demonstrated MD results are dissimilar to the results 

generated by conventional mixture rule. Shiu and Tsai 

(2014) based on MD studied the mechanical properties of 

the graphene-based polymeric composite. They considered 

epoxy as matrix and also implemented GS, GO and 

graphene flakes for reinforcements. Recently, several 

studies have been conducted on the mechanical behavior of 

FG-laminates (Ebrahimi and Habibi 2017, Fan et al. 2019, 

Malekzadeh and Zarei 2014, Nguyen-Quang et al. 2018, 

Shen and Xiang 2018, Shen et al. 2018). Shen et al. (2017a, 

b) analyzed buckling, bending and vibration of FG-

laminated. Kiani (2017) investigated buckling of 

rectangular FG-CNT laminates subjected to a non-uniform 

compression load. Karimi et al. studied buckling and post-

buckling of defected FG graphene/PMMA composite 

(Karimi et al. 2019). The vibration of FG-CNT conical shell 

studied by Kiani et al. (2018b). They also investigated the 

vibration of FG-CNT skew cylindrical shells (Kiani et al. 

2018a). Shen and Xiang (2019) studied buckling and post-

buckling of cylindrical FG-GS laminated subjected to 

torsional loads. Mirzaei and Kiani (2016) studied the 

vibration of FG-CNT cylindrical laminates. They also 

investigated thermal buckling of FG-GS laminates (Mirzaei 

and Kiani 2017). 
In the present work, the free vibration and buckling 

behavior of FG-GS polymeric laminates are explored. In 

structural stability analysis, boundary and physical 

conditions have a vital rule in the response of structures 

respected to external loads. The main purpose of this 

research is to investigate the critical load and natural 

frequency of functionally graded graphene/PMMA 

laminates with arbitrary boundary conditions. In addition to 

mechanical properties, it is revealed that boundary 

conditions have an influential effect on body stiffness. As a 

result, the effects of geometrical conditions are studied on 

buckling and vibration of rectangular laminates. In buckling 

analysis, composite laminates are subjected to uniaxial, 

biaxial and shear loads. Also, the effects of geometrical 

conditions are investigated on free vibration of square 

laminate. Polymethyl methacrylate (PMMA) is considered 

as a matrix. Elastic properties of graphene/PMMA 

composite are predicted by MD simulation. Considering 

that conventional mixture rule cannot present reasonable 

data for polymeric nano-composites, by inserting MD 

results into the rule of mixture, corrective factors are 

calibrated for the aforementioned composite. For dynamic 

analysis, Chebyshev-Ritz method is implemented. The 

Chebyshev shape functions are selected in such a way that 

the various boundary conditions be satisfied. Laminates are 

considered in three U, O and X-pattern configurations. 

Furthermore, the effect of the number of layers (N) is 

investigated. It is revealed that the number of layers is 

irrelevant on both buckling load and natural frequency of 

U-pattern laminates. Moreover, it is shown that in all of the 

boundary conditions, X-pattern presents higher natural 

frequency and buckling load compared to U-pattern. As 

well as, it is illustrated that in laminates with two free 

opposite edges, critical buckling loads are more close to 

each other for higher aspect ratios. 

 

 

2. Laminate configurations 
 

In the present study, there are two opinions to explore 

the influence of layers arrangement on the laminate 

configuration. The first view is the pattern of graphene 

distribution in layers. Accordingly, three patterns are 

considered including U-pattern, O-pattern, and X-pattern. 

Another view is the number of layers. It should be noted 

that in this study, volume fractions of reinforcement are 

identical in all of the samples. It is obvious that for the same 

volume fraction, number of layers could have an important 

role in body stiffness (Fig. 1). For each layer, the volume 

fraction of graphene is measured from the following 

formula 

 

*
: V (k) V

*
: V (k) 2 V (1 (2 1) / )

*
: V (k) 2 V (2 1) /

U
G G

O k N N
G G

X k N N
G G

=

= − − −

= − −

 (1) 

 

Where k represents the number of the corresponding 

layer, N signifies the total number of layers and VG
* is also 

total graphene volume fraction in each laminate. 

 

 

 

Fig. 1 Schematic of laminate section patterns: (a) U-pattern 

5 layers; (b) U-pattern 3 layers; (c) X-pattern 5 

layers; (d) X-pattern 3 layers; (e) O-pattern 5 layers; 

(f) O-pattern 3 layers 
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3. Elastic properties of the composite 
 

To determine the elastic properties of graphene/PMMA 

composite, molecular dynamic simulation is implemented. 

After modeling all of the components, the mechanical 

properties of each of them are measured which they have a 

good agreement with results coming in the literature 

(Jaiganesh et al. 2015, Reddy et al. 2005, Sakhaee-Pour 

2009, Van Krevelen and Te Nijenhuis 2009). 

The schematic of molecular models is presented in Fig. 

2. In this simulation COMPASS force-field is used (Chen et 

al. 2018). After optimization of the molecular model, the 

composite is subjected to the NVT ensemble with 500°C 

temperature for 100 picoseconds. Then, it is subjected to the 

NPT ensemble with 298°C temperature and 0.1 Gpa 

pressure for 100 picoseconds. After energy minimizing, by 

applying constant strain on the molecular model, the shear 

and Young’s moduli of the graphene/PMMA composite are 

obtained for different values of fillers (Table 2). In the 

present MD simulation, Graphene weight fractions (wt) is 

set equal to 0.05, 0.07, 0.10 and 0.12. It is revealed that for 

0.05 weight fraction of graphene, young modulus obtained 

 

 

 

 

 

 

from MD simulations (4.45) is predicted close to 

experimental data (4.7) (Ramanathan et al. 2007). It should 

be noted that due to a huge gap between graphene and 

PMMA elastic moduli, conventional mixture rule cannot 

predict the reasonable amounts of composite properties. For 

this reason, in order to improve the accuracy of this theory, 

corrective factors namely η1 and η2 are defined which η1 is 

related to in-plane Young’s moduli and η2 is related to the 

shear modulus. 

 

𝐸𝑥𝑥 = 𝐸𝑦𝑦 = 𝜂1𝑉𝐺𝐸𝐺 + 𝑉𝑃𝑀𝑀𝐴𝐸𝑃𝑀𝑀𝐴 
𝜂2
𝐺
=
𝑉𝐺
𝐺𝐺
+
𝑉𝑃𝑀𝑀𝐴
𝐺𝑃𝑀𝑀𝐴

 
(2) 

 

It has been shown that in order to evaluation of the 

poison’s ratio and density of laminates, one can use the 

simple form of mixture rule. 

 

𝜈𝑥𝑦 = 𝜈𝑦𝑥 = 𝑉𝐺𝜈𝐺 + 𝑉𝑃𝑀𝑀𝐴𝜈𝑃𝑀𝑀𝐴 (3) 

 

𝜌 = 𝑉𝐺𝜌𝐺 + 𝑉𝑃𝑀𝑀𝐴𝜌𝑃𝑀𝑀𝐴 (4) 

 

Fig. 2 Molecular model of (a) graphene/PMMA composite; (b) section view of composite; (c) graphene sheet 

Table 1 Mechanical properties (Gpa) of graphene and PMMA 

 
Graphene 

 
PMMA 

Ex Ey G υ ρ Ex Ey G υ ρ 

Present work 1120 1134 235 0.41 2.33 Present work 3.12 3.33 1.08 0.34 1.14 

Reddy et al. (2005) 1106-1201 - 288 0.44-0.46 - 
Van Krevelen and 

Te Nijenhuis (2009) 
3.2 - 1.10 0.4 1.17 

Sakhaee-Pour (2009) 1040 - 213-233 1.12 - Jaiganesh et al. (2015) 3.3 - 1.7 0.38-0.4 1.19 
 

Table 2 Mechanical properties and corrective factors graphene/PMMA composite 

 wt VG EComposite GComposite η1 η2 

Ramanathan et al. 

(2007) 

0.02 0.0098 3.70 - 0.057 - 

0.05 0.0249 4.70 - 0.060 - 

Current study (MD) 

0.05 0.0249 4.45 1.44 0.051 1.30 

0.07 0.0352 5.40 1.59 0.061 1.42 

0.10 0.0494 6.10 1.66 0.055 1.46 

0.12 0.0620 6.82 1.70 0.056 1.48 
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By inserting the results provided from MD simulation 

into the above equations, η1 and η2 coefficients are 

calibrated for Graphene/PMMA composite. It is shown that 

η1 coefficient resulting from the present study is in the range 

of η1 related to experimental data (Table 2). 

 

 

4. Problem formulation 
 
In order to extract the critical buckling load and natural 

frequency, one can use of energy method. In this work, 

numerical analysis is conducted based on the Ritz method 

(Emdadi et al. 2019). According to this approach, the total 

energy of a body is defined as follows 

 

𝛱 = 𝑈 −𝑊𝑒𝑥𝑡 − 𝐾 (5) 

 

Where U, Wext and K are laminate strain energy, the 

work done by external loads and laminate kinetic energy, 

respectively. Strain energy is a function of stress and strain 

tensors. Kinetic energy arises from the below equation. 

 

𝑈 =
1

2
∫𝜎𝑖𝑗𝜀𝑖𝑗
𝑉

𝑑𝑉 (6) 

 

𝐾 =
1

2
∬ [𝐼1 (

𝜕𝑢

𝜕𝑡

2

+
𝜕𝑣

𝜕𝑡

2

+
𝜕𝑤

𝜕𝑡

2

)
𝐴

 

         +𝐼2 (
𝜕𝑢

𝜕𝑡

𝜕𝜃𝑥
𝜕𝑡

+
𝜕𝑣

𝜕𝑡

𝜕𝜃𝑦
𝜕𝑡
) 

         +𝐼3 (
𝜕𝜃𝑥
𝜕𝑡

2

+
𝜕𝜃𝑦
𝜕𝑡

2

)] 𝑑𝑥𝑑𝑦 

(7) 

 

Which Ii are mass inertia terms which are defined as 

 

(
𝐼1
𝐼2
𝐼3

) =∑𝜌(𝑘)

(

 
 

𝑧(𝑘+1) − 𝑧(𝑘)
1

2
[𝑧(𝑘+1)

2 − 𝑧(𝑘)
2]

1

3
[𝑧(𝑘+1)

3 − 𝑧(𝑘)
3]
)

 
 

𝑁

𝑘=1

 (8) 

 

Where z(k) and z(k+1) are the heights of the bottom and top 

of k-th layer. Moreover, ρ(k) is the density of k-th layer. For 

general loading, external work arises from following 

equation. 
 

𝑊𝑒𝑥𝑡 =
1

2
∫ [𝑁𝑥𝑥

0 (
𝜕𝑤

𝜕𝑥
)

𝑉

2

+ 𝑁𝑦𝑦
0 (

𝜕𝑤

𝜕𝑦
)
2

 

              +2𝑁𝑥𝑦
0 (

𝜕𝑤

𝜕𝑥
) (
𝜕𝑤

𝜕𝑦
)] 𝑑𝑉 

(9) 

 

Where Nxx
0 and Nyy

0 represent the axial loads in the X 

and Y-directions, respectively. Moreover, Nxy
0 is shear load 

(Fig. 3). The intensity of distributed stress on plate domain 

has a vital role in buckling analysis. According to applying 

the uniform loads in the laminate edges, the distribution of 

in-plane stress in the laminate is equal to applied loads on 

the edges (Kiani 2017). For orthotropic behavior, stress-

strain relationships are expressed in the following matrix 

form 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑦
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄21 𝑄22 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66]

 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑧𝑦
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

 (10) 

 

That Qij
’s are components of stiffness matrix which for 

each layer are defined as follows 

 

𝑄11
(𝑘) =

𝐸𝑥𝑥
(𝑘)

(1 − 𝜈𝑥𝑦𝜈𝑥𝑦)
,     𝑄22

(𝑘) =
𝐸𝑦𝑦
(𝑘)

(1 − 𝜈𝑥𝑦𝜈𝑥𝑦)
 

𝑄12
(𝑘) = 𝑄21

(𝑘) =
𝜈𝑥𝑦𝐸𝑥𝑥

(𝑘)

(1 − 𝜈𝑥𝑦𝜈𝑥𝑦)
 

𝑄44
(𝑘) = 𝐺𝑦𝑧

(𝑘),        𝑄55
(𝑘) = 𝐺𝑥𝑧

(𝑘),         𝑄66
(𝑘) = 𝐺𝑥𝑦

(𝑘)
 

(11) 

 

Where Eij and Gij are young and shear moduli. Also, υij 

represents the poison’s ratio. Besides, strain components are 

defined as follows 

 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
,          𝜀𝑦𝑦 =

𝜕𝑣

𝜕𝑥
,          𝛾𝑧𝑦 =

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
 

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
,          𝛾𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

(12) 

 

Where u, v and w represents displacement components 

in X, Y, and Z directions, respectively. According to the 

FSDT model, displacement of each point in the body 

domain may be defined as the following form 
 

𝑢 = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑥(𝑥, 𝑦, 𝑡)  
𝑣 = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑦(𝑥, 𝑦, 𝑡) 

𝑤 = 𝑤0(𝑥, 𝑦, 𝑡) 
(13) 

 

Where u0, v0, and w0 are mid-plane dislocations in X, Y, 

and Z -axis, respectively. θx and θy are also rotation around 

Y and X-axis. By inserting Eqs. (6)-(13) into Eq. (5), one 

can write 
 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

/2 /21 2 2
,11 0, 111/2 /22

2 2 2
2y,y y, x5522 0,y 22 22 0,y

2 2 2, ,12 0, 0,y 12 0, 12 0,y

2 2
2 , ,12 66 0,y 66 0,

2
2 2y, ,y66 66 0,y 66 0,y

a b N k k
A u D x xxka b

k k k k
A v D B v Ax

k k k
A u v B u B vy y x xx x

k k k
D A u A vx x y y x

k k k
D B u B ux x



  

 

 

  

 = + 
=− −

+ + + +

+ + +

+ + +

+ + +




( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

y,x

2 2 2,y ,66 0,y 0, 66 0,x 66 0,x

2
2 2,y ,55 550, 66 0,

2 2 2
2 ,y44 0,y 44 0,y 44 66

2 2 2

2 ,11 0, 1

2

2 3

k k k
A u v B v B vx y xx

k k k
A w D A wx y x xx x

k k k k
A w A w A Dy y x

u v wk
B u Ix xx

t t t

u v yx x
I I

t t t t t

 

  

  



 

+ + +

+ + +

+ + + +

  
+ − + +

  

  
− + −

    

 
  
 

 
 
 

2

0 2 0 0 2
20, 0, 0,y 0,y

y

t

N w N w w N w dxdy dxdyxx xy yyx x


+



− − −

 
 
 

 




 

(14) 
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( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

/2 /21 2 2
,11 0, 111/2 /22

2 2 2
2y,y y, x5522 0,y 22 22 0,y

2 2 2, ,12 0, 0,y 12 0, 12 0,y

2 2
2 , ,12 66 0,y 66 0,

2
2 2y, ,y66 66 0,y 66 0,y

a b N k k
A u D x xxka b

k k k k
A v D B v Ax

k k k
A u v B u B vy y x xx x

k k k
D A u A vx x y y x

k k k
D B u B ux x



  

 

 

  

 = + 
=− −

+ + + +

+ + +

+ + +

+ + +




( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

y,x

2 2 2,y ,66 0,y 0, 66 0,x 66 0,x

2
2 2,y ,55 550, 66 0,

2 2 2
2 ,y44 0,y 44 0,y 44 66

2 2 2

2 ,11 0, 1

2

2 3

k k k
A u v B v B vx y xx

k k k
A w D A wx y x xx x

k k k k
A w A w A Dy y x

u v wk
B u Ix xx

t t t

u v yx x
I I

t t t t t

 

  

  



 

+ + +

+ + +

+ + + +

  
+ − + +

  

  
− + −

    

 
  
 

 
 
 

2

0 2 0 0 2
20, 0, 0,y 0,y

y

t

N w N w w N w dxdy dxdyxx xy yyx x


+



− − −

 
 
 

 




 
(14) 

 

In the above equation, Aij is stretching stiffness matrix, 

Bij indicates bending-stretching matrix and Dij represents 

bending stiffness matrix which they are defined as follows 

 

𝐴𝑖𝑗
(𝑘) = 𝑄𝑖𝑗

(𝑘)[𝑧(𝑘+1) − 𝑧(𝑘)] 

𝐵𝑖𝑗
(𝑘) =

1

2
𝑄𝑖𝑗
(𝑘)[𝑧(𝑘+1)

2 − 𝑧(𝑘)
2 ] 

𝐷𝑖𝑗
(𝑘) =

1

3
𝑄𝑖𝑗
(𝑘)[𝑧(𝑘+1)

3 − 𝑧(𝑘)
3 ] 

(15) 

 

According to Chebyshev-Ritz method, the components 

of displacement variables are defined as follows 

 

𝑢0 = 𝑅
𝑢𝑒𝑖𝜔𝑡∑∑𝛵𝑖𝑗

𝑢𝑝𝑖𝑗(𝑥, 𝑦)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝑣0 = 𝑅
𝑣𝑒𝑖𝜔𝑡∑∑𝛵𝑖𝑗

𝑣𝑝𝑖𝑗(𝑥, 𝑦)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝑤0 = 𝑅
𝑤𝑒𝑖𝜔𝑡∑∑𝛵𝑖𝑗

𝑤𝑝𝑖𝑗(𝑥, 𝑦)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝜃𝑥 = 𝑅
𝜃𝑥𝑒𝑖𝜔𝑡∑∑𝛵𝑖𝑗

𝜃𝑥𝑝𝑖𝑗(𝑥, 𝑦)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝜃𝑦 = 𝑅
𝜃𝑦𝑒𝑖𝜔𝑡∑∑𝛵

𝑖𝑗

𝜃𝑦𝑝𝑖𝑗(𝑥, 𝑦)

𝑚

𝑗=1

𝑛

𝑖=1

 

(16) 

 

Which, Rα and Tij
α (α = u, v, w, θx, θy) represent the 

auxiliary functions and unknown amplitudes, respectively. 

ω is also natural frequency of laminate. n and m are the 

numbers of Chebyshev approximation function in X and Y-

direction. As well as, pij is the in-plane Chebyshev function 

which is defined as follows 

 

𝑝𝑖𝑗(𝑥, 𝑦) = (cos [(𝑖 − 1) 𝑎𝑟𝑐𝑐𝑜𝑠(
2𝑥

𝑎
)]) 

                     (cos [(𝑗 − 1) 𝑎𝑟𝑐𝑐𝑜𝑠(
2𝑦

𝑏
)]) 

(17) 

 

As you know, in the Ritz method shape functions must 

satisfy the essential boundary conditions. Therefore, 

auxiliary functions Rα must be chosen in the way that 

boundary conditions to be established. In this study, several 

boundary conditions are considered. It should be noted that 

in buckling analysis, clamped and simply supported 

boundaries are allowable for in-plane displacement (in-

plane movable boundary). While, in free vibration analysis 

clamped and simply supported boundaries are constrained 

(in-plane immovable boundary). For example, for laminate 

with CSCS boundary condition, the auxiliary functions for 

buckling analysis selected as follows 

𝑅𝑥 = 𝑅𝑦 = 1, 𝑅𝜃𝑦 = (1 −
2𝑥

𝑎
) (1 +

2𝑥

𝑎
) 

𝑅𝑤 = 𝑅𝜃𝑥 = (1 −
2𝑥

𝑎
) (1 +

2𝑥

𝑎
) (1 −

2𝑦

𝑏
) (1 +

2𝑦

𝑏
) 

(18) 

 

While, for free vibration analysis auxiliary functions are 

consider as follows 

 

𝑅𝑥 = (1 −
2𝑥

𝑎
) (1 +

2𝑥

𝑎
) (1 −

2𝑦

𝑏
) (1 +

2𝑦

𝑏
) 

𝑅𝑥 = 𝑅𝑦 = 𝑅𝑤 = 𝑅𝜃𝑥 , 𝑅𝜃𝑦 = (1 −
2𝑥

𝑎
) (1 +

2𝑥

𝑎
) 

(19) 

 

In order to minimize the total energy, derivation of 

energy function П respected to amplitude parameters (Tij
α) 

should be equal to zero, which cause to produce 5×n×m 

equations. 
𝜕𝛱

𝜕𝑇𝑖𝑗
𝛼 = 0 (20) 

 

It should be noted, regardless of terms corresponded to 

kinetic energy, energy function will be calculate for 

buckling analysis, and by omitting the external loads, 

energy function will be set for free vibration analysis. 

Finally, following Eigen value problems are created. 

 

[𝐾𝐿]{𝑇𝑖𝑗
𝛼} = {𝑁𝑐𝑟}[𝐾𝑔]{𝑇𝑖𝑗

𝛼} (21) 

 

[𝐾𝐿]{𝑇𝑖𝑗
𝛼} = {𝜔2}[𝑀]{𝑇𝑖𝑗

𝛼} (22) 

 

In this equations KL is the linear stiffness of laminate, Kg 

represents geometrical stiffness matrix and M is mass 

stiffness matrix. Also, Ncr and ω2 denote Eigen value. By 

solving Eqs. (21) and (22), the critical buckling load and 

square of laminate natural frequency can be obtained. 

 

 

5. Results and discussions 
 

In this section, numerical results are presented for 

critical buckling load and natural frequency of the 

Graphene/PMMA laminates. First, the critical buckling load 

is investigated. Uniform and biaxial compression in 

addition to shear loads are applied to laminates. Several 

boundary conditions are considered for laminate. Each of 

them is introduced by four letters, which from left to right 

are corresponded to x = -a/2, y = -b/2, x = a/2, and y = b/2 

boundaries. All of the boundary conditions are 

demonstrated by special symbols which made from three 

letters C, S, and F which represents clamped, simply 

supported and free edges, respectively. For instance, CSCS 

related to the laminate with simply support edges in y = 

±b/2 and clamped edges in x = ±a/2. For the comparison 

study, thin isotropic steel plates with simply supported 

boundary conditions are considered. In the Table 3, the 

results obtained from the present solving method are 

compared with those of both FSDT and Kirchhoff (classic) 

plates (Sayyad and Ghugal 2014). In this table, non-

dimensional critical load N0 are presented for various 

thickness and side to length ratios (h/a, b/a). The number of 
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Fig. 3 Schematic of a laminate model subjected to various 

loads: (a) biaxial compression load; (b) shear load 

 

 

Chebyshev function n and m are set equal to 8. As 

mentioned in the previous section, in this study kinematics 

of the laminated composite plate are considered according 

to FSDT model which provides accurate predictions for 

moderately thick plates. Indeed, the classic model does not 

have adequate sensitivity to laminate thickness. 

As seen in Table 3, for thinner plates (a/h = 50) the 

results related to both classic and FSDT models are very 

close to each other, while for a/h = 20 and 10 there is a 

significant difference between aforementioned models. 

 

 

 

 

Table 3 Comparison of buckling load (N0 = Ncra2/Eh3) for 

different geometrical ratios (b/a, a/h) for SSSS steel 

plate (b = 1m, E = 210 Gpa, v = 0.3, G = E/2[1+ v] 

Gpa) 

a/h 

 b/a 

 
1 2 3 

N0 Error N0 Error N0 Error 

10 

Classic 3.6152 5.59% 1.4122 3.53% 1.1158 3.10% 

FSDT 3.4222 0.27% 1.3641 0.12% 1.0819 0.06% 

Present 3.4131 - 1.3624 - 1.0812 - 

20 

Classic 3.6152 1.53% 1.4122 0.94% 1.1158 0.82% 

FSDT 3.5649 0.14% 1.3999 0.07% 1.1071 0.04% 

Present 3.5600 - 1.3989 - 1.1067 - 

50 

Classic 3.6152 0.28% 1.4122 0.18% 1.1158 0.15% 

FSDT 3.6071 0.06% 1.4103 0.04% 1.1145 0.04% 

Present 3.6050 - 1.4097 - 1.1141 - 
 

 

 

 

 

Fig. 4 Variation of uniaxial buckling load (MN/m) with aspect ratio for various laminate 
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Moreover, it is revealed that results obtained from present 

work have a good agreement by those of other FSDT 

simulation and maximum of errors is 0.27%. 

In this section, a numerical study is considered for 0.1 

total graphene volume fraction. The width to thickness (b/h) 

ratio of laminates is set equal to 20. 

Furthermore, mechanical properties of each layer 

defined by advanced mixture rule, which corrective factors 

η1 and η2 are considered equal to 0.05 and 1.35, 

respectively. Fig. 4 presents the variation of critical 

buckling load respected to laminate aspect ratios (a/b) for 

uniaxial compression. In this section, the number of layers 

 

 

 

 

is considered equal to N = 9. Each of the graphs is related to 

special boundary conditions. It is obvious that in all of the 

boundary conditions, X-pattern laminate has provided 

higher buckling load compared to U-pattern. On the 

contrary, O-pattern laminate presents lower buckling load 

rather than U-pattern. Furthermore, it is clear that in CFCF 

and SFSF laminates for higher aspect ratios the effect of 

distribution pattern on the buckling load is less. As well as, 

by comparing the graphs, it has been clear that in all of the 

patterns, the minimum buckling load is related to SFSF and 

the maximum one happen for CCCC laminate. Also, it is 

revealed that CSCS treats near to the CCCC case for lower 

 

 

 

 

Table 4 Critical buckling load (MN/m) for different layers number N 

 U-Type O-Type X-Type 

N 3 5 9 3 5 9 3 5 9 

SSSS 3.2458 3.2458 3.2458 2.7717 2.5414 2.4494 3.7189 3.9476 4.0388 

CCCC 8.3327 8.3327 8.3327 7.0617 6.4254 6.1695 9.5700 10.1653 10.4010 

CCSS 5.1503 5.1503 5.1503 4.3778 3.9901 3.8365 5.9180 6.2883 6.4355 

CSCS 5.6491 5.6491 5.6491 4.7805 4.3520 4.1802 6.5039 6.9157 7.0792 
 

 

Fig. 5 Variation of shear buckling load (MN/m) with aspect ratio for various laminate configurations 
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aspect ratio, and behaves same to CCSS laminates in higher 

aspect ratio. 

As mentioned in the introduction, the number of layers 

can affect the stiffness of laminates and it can change the 

critical loads. It is noted that in this section the total volume 

fraction of graphene is independent of layers number, and in 

all of the cases, total volume fraction is equal to 0.1. In 

Table 4, the buckling load is presented for laminates 

containing 3, 5 and 9 layers. It should be noted that the 

results are presented for five digits. As you can see the 

number of the layers doesn’t have significant effects on the 

critical load for U-pattern laminates. While, on the X and 

and O-patterns increase in the number of layers cause to 

 

 

 

 

grow and reduce the buckling load, respectively. Indeed, it 

can be said in X-pattern, the increase in layer number 

makes the stiffer laminates, whereas, in O-pattern, it 

causing the laminate to be weaker. 

This section regards to investigate the buckling under 

biaxial loads. In Table 5, critical loads are presented for 

biaxial loading. By considering the laminates with SSSS, 

CCCC, CCSS, and CSCS boundary conditions, results are 

evaluated for various load parameter R which defined as the 

ratio of X-axis to Y-axis load (R = Nxx
0/Nyy

0). It is revealed 

that the influence of variation of load parameter R on the 

critical load, is more for lower aspect ratio. Furthermore, by 

comparing the results displayed in the following table with 

 

 

 

 

Table 5 Critical buckling load for various load parameter R 

 
𝒂

𝒃
 

U-Type O-Type X-Type 

R = 0.5 R = 1 R = 1.5 R = 0.5 R = 1 R = 1.5 R = 0.5 R = 1 R = 1.5 

S
S

S
S

 0.5 6.9177 4.1509 2.9650 5.1403 3.0844 2.2031 8.6452 5.1877 3.7055 

1 2.1642 1.6232 1.2985 1.6332 1.2249 0.9799 2.6930 2.0198 1.6158 

1.5 1.4352 1.2144 1.0525 1.0686 0.9042 0.7837 1.8005 1.5236 1.3204 

C
C

C
C

 0.5 16.0461 11.8003 8.4903 12.3920 8.9230 6.4011 19.3406 14.3903 10.3760 

1 5.9081 4.4653 3.5619 4.3533 3.2882 2.6236 7.4099 5.6038 4.4689 

1.5 4.2306 3.5805 3.0702 3.0822 2.6120 2.2445 5.3458 4.5208 3.8705 

C
C

S
S

 0.5 11.2720 7.1531 5.1048 8.5632 5.3349 3.8027 13.7142 8.8569 6.3227 

1 3.5877 2.7043 2.1594 2.6684 2.0110 1.6059 4.4903 3.3854 2.7030 

1.5 2.4749 2.1024 1.8166 1.8164 1.5446 1.3365 3.1234 2.6516 2.2889 

C
S

C
S

 0.5 14.9433 10.8832 8.2082 11.5204 8.3850 6.1789 17.9735 13.1600 10.0358 

1 4.4368 3.2045 2.5035 3.2858 2.3717 1.8524 5.5548 4.0148 3.1374 

1.5 2.0729 1.7052 1.4453 1.5335 1.2616 1.0696 2.6061 2.1441 1.8173 
 

 

Fig. 6 Varaition of natural frequency with nondimension thickness 
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the results presented for uniaxial buckling (Fig. 3), as 

expected, it is known that laminate subjected to biaxial 

compression mostly provides lower critical load respected 

to uniaxial compression. It should be noted that if the 

compression loads ignored from Eq. (14), the explanation of 

energy function will be dedicated for shear buckling 

problem. In Fig. 5, critical shear loads are predicted for 

different conditions. As can be seen, similar to uniaxial 

loading, in all of the boundary conditions, higher and lower 

critical buckling loads are corresponded to X and O-

templates, respectively. Besides, by comparing Figs. 4 and 5 

it is obvious that for the same conditions (same aspect ratio 

and same laminate configuration), shear loading has been 

presented larger critical load respected to uniaxial 

compression. Moreover, by accurate investigation of graphs 

related to laminates with two free opposite edges (SFSF and 

CFCF), it is found that for the aspect ratio a/b > 1.5, the 

 

 

 

 

role of laminate configuration is almost negligible. In the 

following, free vibration analysis is presented for square 

laminate. Fig. 6 represents the variation of fundamental 

frequency with dimensionless thickness ratio (h/a). It is 

observed that, for all of the boundary conditions, the highest 

and the lowest frequencies are corresponded to X and O-

patterns, respectively. As expected in the laminate with 

higher h/a, the influence of reinforcement pattern is more 

severe. 

In Table 6, natural frequencies are presented for 

laminates made from different layers. In this section, the 

laminate thickness ratio is equal to 0.05. According to this 

table, one can say in U-pattern, the number of layers does 

not play a significant role in the laminate frequencies. 

Whereas for O-pattern (in all of the boundary conditions), 

increasing the number of layers decreases the frequency and 

vice versa for X-pattern. In the end, the first forth mode 

 

 

 

 

Table 6 Fundamental frequency (Hz) for various layers number N 

 U-Type O-Type X-Type 

N 3 5 7 3 5 7 3 5 7 

SSSS 22551 22551 22551 20839 19954 19697 24139 24871 25073 

CCCC 41600 41600 41600 38271 36492 35971 44608 45986 46364 

CCSS 31292 31292 31292 28818 27518 27138 33555 34593 34879 

CSCS 33416 33416 33416 30769 29367 28957 35820 36923 37227 
 

 

Fig. 7 Laminate mode shapes for various boundary conditions 
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shapes of lateral vibration of U-pattern square laminates 

with 0.1 graphene volume fraction are presented in Fig. 7. 

 

 

6. Conclusions 
 

In the present work, the buckling and free vibration 

analysis of Graphene/PMMA laminates have been studied. 

For this aim, the first shear deformation theory is used. 

Three patterns are used for distribution of Graphene in the 

laminate. Mechanical properties of the composite are 

predicted by molecular dynamics simulation. By inserting 

MD results into the rule of mixture, corrective factors are 

calibrated, therefore Young’s and shear modulus are 

calculated for each layer. Ritz-Chebyshev method is 

implemented for the prediction of buckling load. After 

solving the eigenvalue problem, the critical load and natural 

frequency are obtained for various geometrically and 

physically conditions. The results showed that X and O-

patterns present the higher and lower buckling loads and 

natural frequency compared to U-pattern laminates. As well 

as, it is shown that the number of layers does not have an 

effect on U-pattern laminates, while it is not right for other 

patterns. 
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