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Abstract. In this research, buckling and free vibration of rectangular polymeric laminate reinforced by graphene sheets are
investigated. Various patterns are considered for augmentation of each laminate. Critical buckling load is evaluated for different
parameters, including boundary conditions, reinforcement pattern, loading regime, and laminate geometric states. Furthermore,
vibration analysis is investigated for square laminate. Elastic properties of the composite are calculated using a combination of both
molecular dynamics (MD) and the rule of mixture (MR). Kinematics of the plate is approximated based on the first shear
deformation theory (FSDT). The current analysis is performed based on the energy method. For the numerical investigation, Ritz
method is applied, and for shape functions, Chebyshev polynomials are utilized. It is found that the number of layers is effective on
the buckling load and natural frequency of laminates which made from non-uniform layers.
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1. Introduction

Today, applications of smart progressive material have
been changed significantly in design and manufacturing of
structures in different industries. For improve the efficiency
of systems, advanced materials are used in both nano and
macro scales (Akgoz and Civalek 2017, 2018, Ghobadi et
al. 2019, Mehralian et al. 2016a, b, Tadi Beni 2016,
Kheibari and Tadi Beni 2017, Mohtashami and Tadi Beni
2019). One particular type of these materials is composite
reinforced by nanofillers which provide superior
mechanical, chemical an electrical property (Zhang and
Park 2018, 2019, Zheng et al. 2018a, b). In order to increase
the efficiency of composite materials, it is more desirable to
utilize a kind of matrix which has a low cost and high
performance, simultaneously (Shen et al. 2017,
Mohammadimehr et al. 2018, Tam et al. 1019). Polymeric
laminates are one of the most widely used elements in the
various industrials such as aerospace, maritime and
automobile industries (Walter et al. 2016). These laminates
subjected to applied load maybe have buckled and
consequently, lose their performances. Therefore, study of
buckling behavior of them is important (Nemeth 1986, Tadi
and Mehralian 2017). On the beam and plane-like structures
which are subjected to a compressive load, the buckling
phenomenon occurs when the energy capacity of structures
to be full and the body intends to shape change (Tadi et al.
2017). Indeed, the buckling state is the separation point
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between the static equilibrium and post-buckling path. In
order to ensure the stability of structures, prediction of
buckling behavior of them is particularly important for
designers (Mehralian and Tadi Beni 2016, Huang and Atluri
1995, Alibeigi et al. 2018, Ebnali Samani and Tadi Beni
2018). Furthermore, resonance phenomenon may also occur
in the plate, where it oscillates with large amplitude. In
order to control the resonance of structures, free vibration
analysis of them is necessary (Aydogdu 2014, Soleimani
and Tadi Beni 2018, Besseghier et al. 2015, Tadi Beni et al.
2015). Today, functionally graded material (FGM) is one of
the most used materials in various systems. In this type of
material physical properties change along special direction
(Dastjerdi and Akgoz 2018, Shojaeian and Tadi Beni 2015).
Functionally graded reinforced laminates are one of the
newest structures. They are made from layers that each of
them has a specific volume fractions of fillers. According to
distribution schema of the fillers across the thickness of
laminates, several patterns are introduced for laminates
configuration (Song et al. 2017). The simplest type is U-
pattern which all the layers contain the same value of
reinforcements. Another form is O-pattern. In this pattern
both upper and bottom layers have a minimum value of
fillers and by the move towards the mid-surface, amount of
fillers increases, so that mid-layer has an extreme value of
reinforcement. On the contrary, in the X-pattern, upper and
bottom layers have a greatest value of fillers and by the
move towards mid-layer, the amount of fillers belittles, so
that mid-layer has a less amount of reinforcement.
Graphene sheet (GS) and carbon nanotube (CNT) are the
best nanofillers for polymeric matrix (Mittal et al. 2015).
Actually, it can be said GS is the substance of carbon based
nono-fillers such as CNT, graphite, fullerene, and graphene
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oxide sheet (GO) (Jia et al. 2018, Kaushik and Majumder
2015, Rodriguez-Perez et al. 2017). GS is one of the thinner
known materials which has 3.4 Angstroms thickness. It has
superior properties compared to other nano-fillers which
one can note to excellent surface contacts and reasonable
cost (Kocman ef al. 2014). Several investigations have
shown that conventional micromechanical theories cannot
present the real value of mechanical properties for
polymeric nanocomposites. According to the complexity
and price of the experimental procedure, Molecular
dynamics (MD) simulation can be a suitable approach for
calculation of the mechanical constant of materials (Jia and
Qingsheng 2009). Based on the MD method, Han and Eliot
(2007) determined the elastic properties of CNT reinforced
polymer composites. Li et al. (2019) investigated
mechanical properties of polymer composites reinforced by
CNT and GS. Temperature-dependent mechanical
properties of a polymeric composite reinforced by woven
graphene were studied by Lin et al. (2017). They
demonstrated MD results are dissimilar to the results
generated by conventional mixture rule. Shiu and Tsai
(2014) based on MD studied the mechanical properties of
the graphene-based polymeric composite. They considered
epoxy as matrix and also implemented GS, GO and
graphene flakes for reinforcements. Recently, several
studies have been conducted on the mechanical behavior of
FG-laminates (Ebrahimi and Habibi 2017, Fan et al. 2019,
Malekzadeh and Zarei 2014, Nguyen-Quang et al. 2018,
Shen and Xiang 2018, Shen ef al. 2018). Shen et al. (2017a,
b) analyzed buckling, bending and vibration of FG-
laminated. Kiani (2017) investigated buckling of
rectangular FG-CNT laminates subjected to a non-uniform
compression load. Karimi et al. studied buckling and post-
buckling of defected FG graphene/PMMA composite
(Karimi et al. 2019). The vibration of FG-CNT conical shell
studied by Kiani ef al. (2018b). They also investigated the
vibration of FG-CNT skew cylindrical shells (Kiani et al.
2018a). Shen and Xiang (2019) studied buckling and post-
buckling of cylindrical FG-GS laminated subjected to
torsional loads. Mirzaei and Kiani (2016) studied the
vibration of FG-CNT cylindrical laminates. They also
investigated thermal buckling of FG-GS laminates (Mirzaei
and Kiani 2017).

In the present work, the free vibration and buckling
behavior of FG-GS polymeric laminates are explored. In
structural ~stability analysis, boundary and physical
conditions have a vital rule in the response of structures
respected to external loads. The main purpose of this
research is to investigate the critical load and natural
frequency of functionally graded graphene/PMMA
laminates with arbitrary boundary conditions. In addition to
mechanical properties, it is revealed that boundary
conditions have an influential effect on body stiffness. As a
result, the effects of geometrical conditions are studied on
buckling and vibration of rectangular laminates. In buckling
analysis, composite laminates are subjected to uniaxial,
biaxial and shear loads. Also, the effects of geometrical
conditions are investigated on free vibration of square
laminate. Polymethyl methacrylate (PMMA) is considered
as a matrix. Elastic properties of graphene/PMMA
composite are predicted by MD simulation. Considering

that conventional mixture rule cannot present reasonable
data for polymeric nano-composites, by inserting MD
results into the rule of mixture, corrective factors are
calibrated for the aforementioned composite. For dynamic
analysis, Chebyshev-Ritz method is implemented. The
Chebyshev shape functions are selected in such a way that
the various boundary conditions be satisfied. Laminates are
considered in three U, O and X-pattern configurations.
Furthermore, the effect of the number of layers (N) is
investigated. It is revealed that the number of layers is
irrelevant on both buckling load and natural frequency of
U-pattern laminates. Moreover, it is shown that in all of the
boundary conditions, X-pattern presents higher natural
frequency and buckling load compared to U-pattern. As
well as, it is illustrated that in laminates with two free
opposite edges, critical buckling loads are more close to
each other for higher aspect ratios.

2. Laminate configurations

In the present study, there are two opinions to explore
the influence of layers arrangement on the laminate
configuration. The first view is the pattern of graphene
distribution in layers. Accordingly, three patterns are
considered including U-pattern, O-pattern, and X-pattern.
Another view is the number of layers. It should be noted
that in this study, volume fractions of reinforcement are
identical in all of the samples. It is obvious that for the same
volume fraction, number of layers could have an important
role in body stiffness (Fig. 1). For each layer, the volume
fraction of graphene is measured from the following
formula

U Vg (0 = Vg
0:Vg (k) =2V A-|(2k—N=1)/ N]) )
X :Vg () =2V |2k - N -2) /|

Where k represents the number of the corresponding

layer, N signifies the total number of layers and V5" is also
total graphene volume fraction in each laminate.

(a) (c) (e)

(b) (d) )

Fig. 1 Schematic of laminate section patterns: (a) U-pattern
5 layers; (b) U-pattern 3 layers; (c) X-pattern 5
layers; (d) X-pattern 3 layers; (e) O-pattern 5 layers;
(f) O-pattern 3 layers
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(a)

(b) (c)

Fig. 2 Molecular model of (a) graphene/PMMA composite; (b) section view of composite; (¢) graphene sheet

Table 1 Mechanical properties (Gpa) of graphene and PMMA

Graphene PMMA
Ex Ey G v p Ex Ey G v p
Present work 1120 1134 235 0.41 2.33 Present work 3.12 3.33 1.08 0.34 1.14
Reddy et al. (2005) 1106-1201 - 288 044046 - T\mijgmlse?zggg) 32 - 110 04 117
Sakhaee-Pour (2009) 1040 - 213-233 112 - Jaiganeshetal. (2015) 3.3 - 17 0.38-04 119
Table 2 Mechanical properties and corrective factors graphene/PMMA composite
wt Ve Ecomposite Gcomposite n n2
Ramanathan et al. 0.02 0.0098 3.70 - 0.057 -
(2007) 0.05 0.0249 4.70 - 0.060 -
0.05 0.0249 4.45 1.44 0.051 1.30
0.07 0.0352 5.40 1.59 0.061 1.42
Current study (MD)
0.10 0.0494 6.10 1.66 0.055 1.46
0.12 0.0620 6.82 1.70 0.056 1.48
3. Elastic properties of the composite from MD simulations (4.45) is predicted close to

To determine the elastic properties of graphene/PMMA
composite, molecular dynamic simulation is implemented.
After modeling all of the components, the mechanical
properties of each of them are measured which they have a
good agreement with results coming in the literature
(Jaiganesh et al. 2015, Reddy et al. 2005, Sakhaee-Pour
2009, Van Krevelen and Te Nijenhuis 2009).

The schematic of molecular models is presented in Fig.
2. In this simulation COMPASS force-field is used (Chen et
al. 2018). After optimization of the molecular model, the
composite is subjected to the NVT ensemble with 500°C
temperature for 100 picoseconds. Then, it is subjected to the
NPT ensemble with 298°C temperature and 0.1 Gpa
pressure for 100 picoseconds. After energy minimizing, by
applying constant strain on the molecular model, the shear
and Young’s moduli of the graphene/PMMA composite are
obtained for different values of fillers (Table 2). In the
present MD simulation, Graphene weight fractions (wt) is
set equal to 0.05, 0.07, 0.10 and 0.12. It is revealed that for
0.05 weight fraction of graphene, young modulus obtained

experimental data (4.7) (Ramanathan et al. 2007). It should
be noted that due to a huge gap between graphene and
PMMA elastic moduli, conventional mixture rule cannot
predict the reasonable amounts of composite properties. For
this reason, in order to improve the accuracy of this theory,
corrective factors namely #; and 7, are defined which #; is
related to in-plane Young’s moduli and 7, is related to the
shear modulus.

Exx = Eyy = 7)1V(;EG + VPMMAEPMMA
T2 _ Ve | Vemma &)
G GG GPMMA

It has been shown that in order to evaluation of the
poison’s ratio and density of laminates, one can use the
simple form of mixture rule.

Viy = Vyx = VgVe + VpumaVemma 3)

P =Vepe + VommaPrmma 4)
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By inserting the results provided from MD simulation
into the above equations, #1 and 7, coefficients are
calibrated for Graphene/PMMA composite. It is shown that
n; coefficient resulting from the present study is in the range
of 7, related to experimental data (Table 2).

4. Problem formulation

In order to extract the critical buckling load and natural
frequency, one can use of energy method. In this work,
numerical analysis is conducted based on the Ritz method
(Emdadi et al. 2019). According to this approach, the total
energy of a body is defined as follows

N=U-Wy,u —K (5)

Where U, W, and K are laminate strain energy, the
work done by external loads and laminate kinetic energy,
respectively. Strain energy is a function of stress and strain
tensors. Kinetic energy arises from the below equation.

1
U= _J-O-i]'gij av (6)
2 14

_1J‘f | 6u2+6v2+6W2
2J),["\at "ot oot
dudg, dvao,
’2(5?*5?)

aex2+ae ed
ac ot )|

Which /; are mass inertia terms which are defined as

(7

Z(k+1) ~ Z(k)

11 N 1 2 2
(12> = Z P | 2 [Z(k+1) Z(k) ] (8)
1

376’ = 200°]

Where z) and z+ ) are the heights of the bottom and top
of k-th layer. Moreover, p) is the density of k-th layer. For
general loading, external work arises from following

equation.
2
ND <_6 )
YY\ay

W = 1f [NO <6W)2
ext — 2 v XX ax
+2N0 (aW) (aW)] av
Y \ox/)\oy

Where N..’and N,,’ represent the axial loads in the X
and Y-directions, respectively. Moreover, Ny’ is shear load
(Fig. 3). The intensity of distributed stress on plate domain
has a vital role in buckling analysis. According to applying
the uniform loads in the laminate edges, the distribution of
in-plane stress in the laminate is equal to applied loads on
the edges (Kiani 2017). For orthotropic behavior, stress-
strain relationships are expressed in the following matrix
form

)

Oxx Qi1 @2 O 0 0 7 (&xx
Oyy Q21 Q2 O 0 0 ||éy
oyb=l0 0 Qu 0 0Hvatd (0
Oz 0 0 0 Qs O0||7e
Ty 0 0 0 0 Qellry

That Qy's are components of stiffness matrix which for
each layer are defined as follows

w__ EY  w_  E by

o (1- nyvxy), 2 (1- nyvxy)

© = o = a
1= ViyVyy)

W =g, M = ), ® _ 600

Where E; and G are young and shear moduli. Also, v;
represents the poison’s ratio. Besides, strain components are
defined as follows

_ du _ av _ v + aw
Bx Ty W Ty YTy b
_ou_ ow ou ov (12)
Ve = 5, " ox” Vay = ay 0x

Where u, v and w represents displacement components
in X, Y, and Z directions, respectively. According to the
FSDT model, displacement of each point in the body
domain may be defined as the following form

u=uy(x,y,t) +2z60,(x,y,1t)
v =vy(x,y,t) +20,(x,y,t) (13)
w = wy(x,y,t)

Where ug, vy, and wy are mid-plane dislocations in X, ¥,
and Z -axis, respectively. 6, and 6, are also rotation around
Y and X-axis. By inserting Eqs. (6)-(13) into Eq. (5), one
can write

(k) 2

1 al2 b/2|: (K) 2

n=— ] ] { Un . + D1, 6
2 —al2-b/2| k=1 A1 'bo,x + P11 Oxx
(k),

(k)2 (k) (k) 2

2
+A22 0y + D22 '9yy +2822 ) yeyx + A55 Oy
(k

) (k), (k)
+2Ap Ug xVo,y +2B1o "y yUg x T 2B1p Vo yOx x

(k) (k) 2 (k) 2

+2Dyp Oy x0y y + Aes g,y * P66 V0,x
+D(k)¢92 +ZB(k)u [ +ZB(k)u [
66 “y,X 66 “0,y“X,y 66 “0,y"Y,X (14)
(k)

(k) (k
+2Agg Ug Vo x +2Bgg Vo, xIx,y * 2Bgg Vo,x %y, x

(k)2 (k)

(k)
+A55 WO’X + 2D66 exyyay’x + 2A55 WO,xgx

(k) 2 (k) (k) 2 (k) 2
+A44 WO,y + 2A44 W0,y9y + A44 Qy + D66 9x,y
2 2 2
ZB(k)u o | o + o + ow
+ — [— — J—
11 0,xVX,x 1 ot at ot
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2 2
ou 06y ov 00y o0, 90y
ot ot ot ot ot ot (14)
0 0 0 2
—NXXW()’X - 2nyW0,xW0,y - NyyWO,dedy] dxdy

In the above equation, A; is stretching stiffness matrix,
Bj; indicates bending-stretching matrix and D;; represents
bending stiffness matrix which they are defined as follows

k
A( )= Q 2 zae1) — 20
1
(k) _ (k) 2
B’ = 2 [Z(k+1) Z(k)] (15)
k) _
Dij = l.j [Z(3k+1) _Z(Sk)]

According to Chebyshev-Ritz method, the components
of displacement variables are defined as follows

= R%e “"tzz T (6, y)

Vo = Rveiwtz Tl]pl](x y)

J

3 |
3

1l
g

L

M
Wy :RweithZlep”(X,y) (16)
i=1 j=1
nm
gx — Rexeiwt Z Z Tlexpl] (X y)
i=1 j=1
n’'m
6, = ROvelot Z Z Tl?ypij(x' )

i=

-
-
Il
-

Which, R*and T;* (& = u, v, w, 6, 6,) represent the
auxiliary functions and unknown amplitudes, respectively.
 is also natural frequency of laminate. » and m are the
numbers of Chebyshev approximation function in X and Y-
direction. As well as, pj;;is the in-plane Chebyshev function
which is defined as follows

pij(x,y) = (cos [(i -1 arccos(%)])

(cos [(j -1) arccos(z%)]) )

As you know, in the Ritz method shape functions must
satisfy the essential boundary conditions. Therefore,
auxiliary functions R* must be chosen in the way that
boundary conditions to be established. In this study, several
boundary conditions are considered. It should be noted that
in buckling analysis, clamped and simply supported
boundaries are allowable for in-plane displacement (in-
plane movable boundary). While, in free vibration analysis
clamped and simply supported boundaries are constrained
(in-plane immovable boundary). For example, for laminate
with CSCS boundary condition, the auxiliary functions for
buckling analysis selected as follows

0 2x 2x
R"=R3’=1,RY=(1—;)(1+ )

== (12 (1+2)(1-2) (1+2)

While, for free vibration analysis auxiliary functions are
consider as follows

v=(-H)0 203 (2)

2x 2x
R* =RY = R¥ = R%,R% = (1 ——)(1 +—)
a a

(18)

(19)

In order to minimize the total energy, derivation of
energy function /7 respected to amplitude parameters (7;%)
should be equal to zero, which cause to produce 5xnxm
equations.

oIl

ot

=0 (20)

It should be noted, regardless of terms corresponded to
kinetic energy, energy function will be calculate for
buckling analysis, and by omitting the external loads,
energy function will be set for free vibration analysis.
Finally, following Eigen value problems are created.

[K,{T&} = (N 3K, [{TE (1)
[KL]{TiC; ={w2}[M]{T{}9 (22)

In this equations K is the linear stiffness of laminate, K,
represents geometrical stiffness matrix and M is mass
stiffness matrix. Also, N, and @’ denote Eigen value. By
solving Egs. (21) and (22), the critical buckling load and
square of laminate natural frequency can be obtained.

5. Results and discussions

In this section, numerical results are presented for
critical buckling load and natural frequency of the
Graphene/PMMA laminates. First, the critical buckling load
is investigated. Uniform and biaxial compression in
addition to shear loads are applied to laminates. Several
boundary conditions are considered for laminate. Each of
them is introduced by four letters, which from left to right
are corresponded to x = -a/2, y =-b/2, x =a/2, and y = b/2
boundaries. All of the boundary conditions are
demonstrated by special symbols which made from three
letters C, S, and F which represents clamped, simply
supported and free edges, respectively. For instance, CSCS
related to the laminate with simply support edges in y =
+b/2 and clamped edges in x = +a/2. For the comparison
study, thin isotropic steel plates with simply supported
boundary conditions are considered. In the Table 3, the
results obtained from the present solving method are
compared with those of both FSDT and Kirchhoff (classic)
plates (Sayyad and Ghugal 2014). In this table, non-
dimensional critical load Ny are presented for various
thickness and side to length ratios (#/a, b/a). The number of
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N°
EEEEE g e on Table 3 Comparison of buckling load (No = Nera?/Ehd) for
= T e v AY t different geometrical ratios (b/a, a/h) for SSSS steel
Nl s e ! X |t plate (b = 1m, E = 210 Gpa, v = 0.3, G = E/2[1+ V]
»le ' a o " A Gpa)
A ‘4 A A A “« < -« - bla
(a) () a/h 1 2 3
Fig. 3 Schematic of a laminate model subjected to various No Error No Error No Error

loads: (a) biaxial compression load; (b) shear load Classic 3.6152 559% 14122 353% 11158 3.10%

10 FSDT 3.4222 0.27% 1.3641 0.12% 1.0819 0.06%

Chebyshev function n and m are set equal to 8. As Present 3.4131 - 13624 - 10812 -
mentioned in the previous section, in this study kinematics Classic 3.6152 1.53% 1.4122 0.94% 1.1158 0.82%

of the laminated corr}pos1te p}ate are con51dered' a(;cordlng 20 ESDT 35649 0.14% 13999 0.07% 1.1071 0.04%
to FSDT model which provides accurate predictions for

moderately thick plates. Indeed, the classic model does not Present 3.5600 -  1.3989 - 11067 -
have adequate sensitivity to laminate thickness. Classic 3.6152 0.28% 1.4122 0.18% 1.1158 0.15%

As seen in Table 3, for thinner plates (a/h = 50) the 50 FSDT 3.6071 0.06% 1.4103 0.04% 1.1145 0.04%
results related to both classic and FSDT models are very

R . Present 3.6050 - 1.4097 - 1.1141 -
close to each other, while for a/h = 20 and 10 there is a
significant difference between aforementioned models.
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Fig. 4 Variation of uniaxial buckling load (MN/m) with aspect ratio for various laminate
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Moreover, it is revealed that results obtained from present
work have a good agreement by those of other FSDT
simulation and maximum of errors is 0.27%.

In this section, a numerical study is considered for 0.1
total graphene volume fraction. The width to thickness (b/h)
ratio of laminates is set equal to 20.

Furthermore, mechanical properties of each layer
defined by advanced mixture rule, which corrective factors
n1 and 7, are considered equal to 0.05 and 1.35,
respectively. Fig. 4 presents the variation of critical
buckling load respected to laminate aspect ratios (a/b) for
uniaxial compression. In this section, the number of layers

is considered equal to N =9. Each of the graphs is related to
special boundary conditions. It is obvious that in all of the
boundary conditions, X-pattern laminate has provided
higher buckling load compared to U-pattern. On the
contrary, O-pattern laminate presents lower buckling load
rather than U-pattern. Furthermore, it is clear that in CFCF
and SFSF laminates for higher aspect ratios the effect of
distribution pattern on the buckling load is less. As well as,
by comparing the graphs, it has been clear that in all of the
patterns, the minimum buckling load is related to SFSF and
the maximum one happen for CCCC laminate. Also, it is
revealed that CSCS treats near to the CCCC case for lower

Table 4 Critical buckling load (MN/m) for different layers number N

U-Type O-Type X-Type
N 3 5 9 3 5 9 3 5 9
SSSS 3.2458  3.2458 3.2458 27717 25414 24494  3.7189 3.9476  4.0388
CCCC 83327 83327 83327 7.0617 6.4254 6.1695 95700 10.1653 10.4010
CCSS 51503 51503 51503 43778 39901 3.8365 59180 6.2883  6.4355
CSCS  5.6491 5.6491 5.6491 47805  4.3520  4.1802 6.5039 6.9157 7.0792
cccce SSSS
30 30
h s - Pattern = 1]-Pattern
—_ ., = =0-Paitern — = =0-Paltern
E N (YT Xrl‘.:sm‘n '73 L N T f\;-lf:u::cm
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Fig. 5 Variation of shear buckling load (MN/m) with aspect ratio for various laminate configurations
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aspect ratio, and behaves same to CCSS laminates in higher
aspect ratio.

As mentioned in the introduction, the number of layers
can affect the stiffness of laminates and it can change the
critical loads. It is noted that in this section the total volume
fraction of graphene is independent of layers number, and in
all of the cases, total volume fraction is equal to 0.1. In
Table 4, the buckling load is presented for laminates
containing 3, 5 and 9 layers. It should be noted that the
results are presented for five digits. As you can see the
number of the layers doesn’t have significant effects on the
critical load for U-pattern laminates. While, on the X and
and O-patterns increase in the number of layers cause to

Mehran Karimi Zeverdejani and Yaghoub Tadi Beni

grow and reduce the buckling load, respectively. Indeed, it
can be said in X-pattern, the increase in layer number
makes the stiffer laminates, whereas, in O-pattern, it
causing the laminate to be weaker.

This section regards to investigate the buckling under
biaxial loads. In Table 5, critical loads are presented for
biaxial loading. By considering the laminates with SSSS,
CCCC, CCSS, and CSCS boundary conditions, results are
evaluated for various load parameter R which defined as the
ratio of X-axis to Y-axis load (R = N."/N,,’). It is revealed
that the influence of variation of load parameter R on the
critical load, is more for lower aspect ratio. Furthermore, by
comparing the results displayed in the following table with

Table 5 Critical buckling load for various load parameter R

a U-Type O-Type X-Type
b R=05 R=1 R=15 R=05 R=1 R=15 R=05 R=1 R=15
” 05 69177 41509 29650 51403 3.0844 22031 8.6452 5.1877  3.7055
ﬁ 1 21642 16232 12985 1.6332 1.2249 09799 2.6930 2.0198 1.6158
15 14352 12144 1.0525 1.0686 09042 0.7837 18005 15236 1.3204
O 0.5 16.0461 11.8003 8.4903 12.3920 8.9230  6.4011 19.3406 14.3903 10.3760
8 1 59081 4.4653 35619 43533 3.2882 2.6236  7.4099 5.6038  4.4689
© 15 42306 35805 3.0702 3.0822 2.6120 2.2445 53458 45208  3.8705
o 0.5 11.2720 7.1531 51048 85632 53349 3.8027 13.7142 8.8569  6.3227
3 1 3.5877 27043 21594 26684 2.0110 1.6059 4.4903 3.3854  2.7030
O
15 24749 21024 18166 1.8164 15446 13365 3.1234 2.6516  2.2889
o 0.5 149433 10.8832 8.2082 115204 8.3850 6.1789 17.9735 13.1600 10.0358
8 1 44368 3.2045 25035 3.2858  2.3717 1.8524 55548  4.0148 3.1374
O
15 2.0729 1.7052 1.4453 15335 1.2616 1.0696  2.6061  2.1441 1.8173
cccce SSSS
10 - N
===+= U-pattern
s ()-pattern
| | = X-pattern
B :
v 0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
h/a h/a
CCSS CSCS
10 10
soees U-pattern| || e U-pattern
m— ()-pattern e ()- paittern
8 - | === =X-pattern 8 I |m=m==X-pattern
:

0.02 0.04 0.06

h/a

0.08 0.1

0.02 0.04 0.06

h/a

0.08 0.1

Fig. 6 Varaition of natural frequency with nondimension thickness
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the results presented for uniaxial buckling (Fig. 3), as
expected, it is known that laminate subjected to biaxial
compression mostly provides lower critical load respected
to uniaxial compression. It should be noted that if the
compression loads ignored from Eq. (14), the explanation of
energy function will be dedicated for shear buckling
problem. In Fig. 5, critical shear loads are predicted for
different conditions. As can be seen, similar to uniaxial
loading, in all of the boundary conditions, higher and lower
critical buckling loads are corresponded to X and O-
templates, respectively. Besides, by comparing Figs. 4 and 5
it is obvious that for the same conditions (same aspect ratio
and same laminate configuration), shear loading has been
presented larger critical load respected to uniaxial
compression. Moreover, by accurate investigation of graphs
related to laminates with two free opposite edges (SFSF and
CFCF), it is found that for the aspect ratio a/b > 1.5, the

role of laminate configuration is almost negligible. In the
following, free vibration analysis is presented for square
laminate. Fig. 6 represents the variation of fundamental
frequency with dimensionless thickness ratio (A/a). It is
observed that, for all of the boundary conditions, the highest
and the lowest frequencies are corresponded to X and O-
patterns, respectively. As expected in the laminate with
higher #/a, the influence of reinforcement pattern is more
severe.

In Table 6, natural frequencies are presented for
laminates made from different layers. In this section, the
laminate thickness ratio is equal to 0.05. According to this
table, one can say in U-pattern, the number of layers does
not play a significant role in the laminate frequencies.
Whereas for O-pattern (in all of the boundary conditions),
increasing the number of layers decreases the frequency and
vice versa for X-pattern. In the end, the first forth mode

Table 6 Fundamental frequency (Hz) for various layers number N

U-Type O-Type X-Type
N 3 5 7 3 5 7 3 5 7
SSSS 22551 22551 22551 20839 19954 19697 24139 24871 25073
CCCC 41600 41600 41600 38271 36492 35971 44608 45986 46364
CCSS 31292 31292 31292 28818 27518 27138 33555 34593 34879
CSCS 33416 33416 33416 30769 29367 28957 35820 36923 37227

1 mode 41600 Iz 2 mode 8241011z

3 mode 82592 H: 4 mode 115947 H:

1 mode 22551 Hz 2 mode 56891 Hz

,v,-:’"/“ .\ e,

3 mode 57034 H: 4 mode 86716 H:

I mode 31292 H: 2mode 69117 H:

3 mode 69475 Hz 4 mode 100931 H:

1 mode 33416 Hz 2 mode 62567 Iz

3 mode 78267 Iz 4 mode 102351 Hz

Fig. 7 Laminate mode shapes for various boundary conditions
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shapes of lateral vibration of U-pattern square laminates
with 0.1 graphene volume fraction are presented in Fig. 7.

6. Conclusions

In the present work, the buckling and free vibration
analysis of Graphene/PMMA laminates have been studied.
For this aim, the first shear deformation theory is used.
Three patterns are used for distribution of Graphene in the
laminate. Mechanical properties of the composite are
predicted by molecular dynamics simulation. By inserting
MD results into the rule of mixture, corrective factors are
calibrated, therefore Young’s and shear modulus are
calculated for each layer. Ritz-Chebyshev method is
implemented for the prediction of buckling load. After
solving the eigenvalue problem, the critical load and natural
frequency are obtained for various geometrically and
physically conditions. The results showed that X and O-
patterns present the higher and lower buckling loads and
natural frequency compared to U-pattern laminates. As well
as, it is shown that the number of layers does not have an
effect on U-pattern laminates, while it is not right for other
patterns.
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