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1. Introduction 

 

Magneto-electro-elastic materials (MEEMs) as one of 

the special sorts of smart materials have received much 

attention in engineering structures during the recent years. 

The two-phase composites of piezoelectric and piezo-

magnetic materials which is a strong magneto-electrical 

coupling effect was discovered in 1990s, which has 

potential practical application in many fields  and reported 

that this coupling effect cannot be found in a single-phase 

material. Furthermore, MEE materials shows some 

fascinating properties such as the piezo-electric, piezo-

magnetic and magneto-electric significance in which the 

elastic deformations may be produced directly by 

mechanical loading or indirectly by an application of 

electric or magnetic field. The mechanical behaviors of 

magneto-electro-elastic structures have received notable 

attention by many researchers in the recent years. Among 

them, analytical solutions for studying magneto-electro-

elastic responses of beams is presented by Jiang and Ding 

(Jiang and Ding 2004). Most recently, based on three-

dimensional elasticity theory and employing the state space 

approach, Xin and Hu (2015) presented semi-analytical 

evaluation of free vibration of arbitrary layered magneto- 
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electro-elastic beams. 

Functionally graded materials (FGMs) as a new class of 

composite structures have attracted many researchers in the 

smart materials and structures by minimizing or removing 

stress concentrations at the interfaces of the traditional 

composite materials. The material properties of FGMs have 

continual changes in one or more directions. Recently, 

FGMs have received wide applications as structural 

components in modern industries such as mechanical, civil, 

nuclear reactors, and aerospace engineering. Numerous 

studies have been conducted for investigation the 

mechanical responses of FG structures (Lu and Chen 2005, 

Tahouneh 2014). In the recent years, several researchers 

examined mechanical properties of structural elements 

made from magneto-electro-elastic functionally graded 

(MEE-FG) materials. Kattimani and Ray (2015) verified the 

large amplitude vibration responses of magneto electro 

elastic FGM plates. Static behavior of a circular MEE-FG 

plate is analyzed by Sladek et al. (2015) by using a 

meshless method. Analytical solutions for studying 

magneto-electro-viscoelastic responses of nanobeams is 

presented by Ebrahimi and Barati (2016b). In another 

survey, thermal buckling of embedded MEE-FG nano plate 

were inspected by Barati et al. (2016) based on a new 

refined trigonometric plate theory. In another research a 

pin-moment model of flexoelectric actuators was presented 

by Wang et al. (2018) and an electro-hydrostatic actuator 

for hybrid active-passive vibration isolation by Henderson 
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boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with 
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et al. (2018). Also, active vibration compensator on moving 

vessel by hydraulic parallel mechanism examined by 

Tanaka (2018). 

The recent developments in technology of structural 

elements, structures with graded porosity can be introduced 

as one of the latest development in FGMs. The structures 

consider pores into microstructures by taking the local 

density into account. Researches focus on development in 

preparation methods of FGMs such as powder metallurgy, 

vapor deposition, self-propagation, centrifugal casting, and 

magnetic separation (Khor and Gu 2000, Seifried et al. 

2001, Watanabe et al. 2001, Peng et al. 2007, Song et al. 

2007). These methods have their own ineffectiveness such 

as high costs and complexity of the technique. An efficient 

way to manufacture FGMs is sintering process in which due 

to difference in solidification of the material constituents, 

porosities or micro-voids through material can create (Zhu 

et al. 2001). Researchers investigated the existence of  

porosities in FGMs fabricated by a multi-step sequential 

infiltration technique (Wattanasakulpong et al. 2012). By 

keeping the available information about porosities in FGMs 

in mind, it is necessary to study the porosity impact when 

designing and analyzing FGM structures. Porous FG 

structures having the combination of high stiffness in 

conjunction with very law specific weight which leads an 

excellent mechanical properties (Rezaei and Saidi 2016). A 

few investigations on the mechanical responses of porous 

FG structures are available in literature. Wattanasakulpong 

and Ungbhakorn (2014) studied the linear and non-linear 

vibration of porous FGM beams with elastically restrained 

ends. Moreover, Yahia et al. (2015) study the porosity effect 

on the wave propagation of FG plates by using various 

higher-order shear deformation theories. Ebrahimi et al. 

(2016) suggested a model for thermo-mechanical vibration 

response of temperature-dependent porous FG beams 

subjected to various temperature risings based on Euler 

Bernoulli beam theory. Further, Ebrahimi and Mokhtari 

(2015) considered differential transform method for the 

vibration of rotating porous beam. Moreover, Ebrahimi and 

Hashemi (2015) have taken double taper effect on the 

vibration of rotating porous beam. In the other research 

Ebrahimi and Zia (2015) utilized Galerkin׳s method and the 

method of multiple scales to present nonlinear vibration 

behavior of FG Timoshenko beam with porosites. Recently, 

Mechab et al. (2016) developed a nonlocal elasticity model 

for free vibration of FG porous nanoplates resting on elastic 

foundations. Boutahar and Benamar (2016) presented a 

semi analytical method for non-linear vibration analysis of 

FGM porous annular plates resting on elastic foundations. 

Recently, it is well understood from the studies that 

classic beam theory (CBT) is not appropriate for thick 

beams and higher modes of vibration due to the lack in 

impact of shear deformation. Hereupon, first order shear 

deformation theory (FSDT) is suggested to overcome the 

defects of CPT with supposition a shear correction factor in 

the thickness direction of beam. As regards FSDT isn’t able 

to evaluate the zero-shear stress on the top and bottom 

surfaces of the beam, there appeared a need to develop 

higher order theory (HOT). This theory doesn’t need any 

shear correction factors and predict transverse shear stresses 

properly. Many published work has been utilized the HOT 

method to investigate mechanical response of FG structures 

(Kant and Swaminathan 2000, Yahia et al. 2015). Based on 

HOBT, Kadoli et al. (2008) verified the static response of 

FG beams under environment temperature. Larbi et al. 

(2013) developed an efficient shear deformation beam 

theory for investigating static and vibrational of FG beam. 

By developing a novel refined theory, Vo et al. 

(2014)investigated static and vibration behavior of FG 

beams. In another study, Vo et al. (2015) has taken a quasi-

3D theory to study vibration and buckling behavior of FG 

sandwich beams. Atmane et al. (2015) used a more efficient 

beam theory to study the effects of thickness stretching and 

porosity on mechanical responses of bedded FGM beams 

resting on elastic foundation. One of the main mechanical 

characteristics of FG structures is the buckling response 

which play a notable role on the safety of engineering 

structures, and accordingly has received intense attention by 

several researchists (Liew et al. 2004, Yang et al. 2006, Ke 

et al. 2012, Şimşek and Yurtcu 2013). In addition, as it is 

obviously known one of the most important features of FG 

materials is thermal insulations, hence it is essential to 

assume changing porous material properties due to thermal 

environment, for example, under a high temperature 

environment the materials become softer, Young’s modulus 

and thermal expansion often will be decrease with rising 

temperature. So, it is necessary to consider changes in 

material properties (Ebrahimi and Barati 2016b, Ebrahimi 

and Jafari 2016a, b). Therefore, With the wide application 

of magneto electro porous FG structures, understanding 

buckling of MEE-FG porous beam subjected to different 

thermal loadings becomes an important task. 

From the literature reviewed above, it is evident that no 

paper published in the title of thermo-mechanical buckling 

of MEE-FG porous beam. According to wide application of 

magneto electro elastic porous FG structures, understanding 

buckling behavior of MEE-FG porous beam exposed to 

different thermal loadings becomes important issue in 

engineering structures. The aim of this study is to develop 

an analytical solution for check the buckling behavior of 

smart FG porous beam under thermal, magnetic and electric 

field with various boundary conditions via refined beam 

theory. Three types environmental conditions namely, 

uniform, linear and sinusoidal temperature rises trough the 

thickness direction are considered. Two kinds of porosity 

distribution namely even and uneven through the thickness 

directions are considered. The modified power-law model is 

exploited to describe gradual variation of magneto electro 

mechanical material characteristics of porous MEE-FG 

beam. Governing equations of higher order MEE-FG beam 

are obtained together via Hamilton’s equation and four-

variable refined shear deformation theory and they are 

solved applying an analytical solution method. Several 

numerical exercises are presented investigating the 

influences of porosity, type of porous distribution, thermal 

effect, external electric voltage, magnetic potential, material 

graduation index and boundary condition on the thermos-

mechanical buckling behavior of MEE-FG porous beam. 
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2. Theoretical formulations 
 

2.1 The material properties of porous magneto-
electro-elastic FG beam 

 

A magneto-electro-elastic functionally graded beam 

with two different porosity distribution and rectangular 

cross-section of width𝑏and thicknessℎis taken for this study 

(Fig. 1). MEE-FG beam is composed of BaTio3  and 

CoFe2𝑂4 materials with the material properties presented in 

Table 1 and exposed to a magnetic potential 𝛾(𝑥, 𝑧, 𝑡) and 

electric potential 𝛷(𝑥, 𝑧, 𝑡).  The effective material 

properties of MEE-FG beam change continuously in the 

thickness direction according to modified power-law 

distribution. The effective material properties (𝑃𝑓) of porous 

FGM beam by using the modified rule of mixture can be 

expressed by Wattanasakulpong and Ungbhakorn (2014) 
 

𝑃𝑓 = 𝑃𝑢(𝑉𝑢 −
𝛼

2
) + 𝑃𝑙(𝑉𝑙 −

𝛼

2
) (1) 

 

In which 𝛼, 𝑃𝑢 and 𝑃𝑙 represents the volume fraction 

of porosities, the material properties of top and bottom 

sides, respectively. 𝑉𝑢 and 𝑉𝑙are the volume fraction of top 

and bottom surfaces, respectively and are related by 
 

𝑉𝑢 + 𝑉𝑙 = 1 (2) 
 

Then the volume fraction of upper side (𝑉𝑢) is defined 

as follows 

𝑉𝑢 = (
𝑧

ℎ
+

1

2
) 𝑃 (3) 

 

According to Eqs. (1)-(2), the effective material 

properties of porous MEE-FG(I) beam with even porosities 

 

 

 

 

are variable across the thickness direction with following 

form 
 

𝑃(𝑧) = (𝑃𝑢 − 𝑃𝑙) (
𝑧

ℎ
+

1

2
)

 𝑝

+ 𝑃𝑙 − (𝑃𝑢 + 𝑃𝑙)
𝛼

2
 (4) 

 

The MEE-FG (II) beam has porosity phases spreading 

frequently nearby the middle zone of the cross-section and 

the amount of porosity seems to be linearly decrease to zero 

at the top and bottom of the cross-section. Fig. 1 

demonstrates cross-section areas of FGM-I and-II with 

porosities phases. For uneven distribution of porosities, the 

effective material properties are replaced by following 

form. 

𝑃(𝑧) = (𝑃𝑢 − 𝑃𝑙) (
𝑧

ℎ
+

1

2
)

 𝑝

 

               +𝑃𝑙 −
𝛼

2
(𝑃𝑢 + 𝑃𝑙)(1 −

2|𝑧|

ℎ
) 

(5) 

 

2.2 Kinematic relations 
 

In view of new tangential-exponential refined shear 

deformation theory, the displacement field at any point of 

the beam can be expressed as 
 

𝑢1(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠

𝜕𝑥
 (5) 

 

𝑢3(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) (6) 
 

where 𝑢 is displacement of mid-plane along x and 𝑤𝑏 , 𝑤𝑠 

are the bending and shear components of transverse 

displacement of a point on the mid-plane of the beam. The 

shape function assessing the shear stress variation across the 

beam thickness is taken as 𝑓(𝑧). 𝑓(𝑧) is considered to 

Table 1 Magneto-electro-elastic coefficients of material properties 

Properties BaTiO𝟑 CoFe𝟐𝑶𝟒 Properties BaTiO𝟑 CoFe𝟐𝑶𝟒 

𝒄𝟏𝟏 = 𝒄𝟐𝟐 (GPa) 166 286 𝒆𝟏𝟓 11.6 0 

𝒄𝟑𝟑 162 269.5 𝒒𝟑𝟏 (N/Am) 0 580.3 

𝒄𝟏𝟑 = 𝒄𝟐𝟑 78 170.5 𝒒𝟑𝟑 0 699.7 

𝒄𝟏𝟐 77 173 𝒒𝟏𝟓 0 550 

𝒄𝟓𝟓 43 45.3 𝒔𝟏𝟏 (𝟏𝟎−𝟗𝑪𝟐𝒎-2𝑵-1) 11.2 0.08 

𝒄𝟔𝟔 44.5 56.5 𝒔𝟑𝟑  12.6 0.093 

𝒆𝟑𝟏 (𝑪𝒎-2) -4.4 0 𝝌𝟏𝟏(𝟏𝟎−𝟔𝑵𝒔𝟐𝑪−𝟐/2) 5 -590 

𝒆𝟑𝟑 18.6 0 𝝌𝟑𝟑
 

10 157 

𝝆 (𝒌𝒈𝒎-3)
 

5800 5300 𝒅𝟏𝟏 = 𝒅𝟐𝟐 = 𝒅𝟑𝟑 0 0 
 

  

Fig. 1 Geometry and cross section of porous FGM beam under magneto-electrical field 
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satisfy the stress-free boundary conditions on the top and 

bottom sides of the beam. So, it is not required to use any 

shear correction factor. The present theory has a function in 

the form (Mantari et al. 2014) 
 

𝑓(𝑧𝑛𝑠) = 𝑡𝑎𝑛 [(
𝜋(𝑧𝑛𝑠 + 𝑐)

2ℎ
)] 𝑟𝑠𝑒𝑐[(

𝜋(𝑧𝑛𝑠+𝑐)

2ℎ
)], 

𝑟 = 0.03 

(8) 

 

The electric potential and magnetic potential 

distributions across the thickness are approximated via a 

combination of a cosine and linear variation to satisfy 

Maxwell’s equation in the quasi-static approximation as 

follows (Ke and Wang 2014) 
 

𝛷(𝑥, 𝑧, 𝑡) = −𝑐𝑜𝑠( 𝜉(𝑧))𝜙(𝑥, 𝑡) +
2𝑧

ℎ
𝑉 (9) 

 

ϒ(𝑥, 𝑧, 𝑡) = −𝑐𝑜𝑠( 𝜉(𝑧))𝛾(𝑥, 𝑡) +
2𝑧

ℎ
𝛺 (10) 

 

where 𝜉 = 𝜋/ℎ. 𝑉 and 𝛺 are the external electric voltage 

and magnetic potential applied to the MEE-FG beam. 

Nonzero strains of the four-variable beam model are written 

as 
 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝜅𝑥

𝑏 + 𝑓𝜅𝑥
𝑠 , 

𝛾𝑥𝑧 = 𝑔𝛾𝑥𝑧
𝑠 , 𝑔 = 1 −

𝜕𝑓

𝜕𝑧
 

(11) 

 

where 
 

𝜀𝑥
0 =

𝜕𝑢

𝜕𝑥
,               𝜅𝑥

𝑏 = −
𝜕2𝑤𝑏

𝜕𝑥2
, 

𝜅𝑥
𝑠 = −

𝜕2𝑤𝑠

𝜕𝑥2
,       𝛾𝑥𝑧

𝑠 =
𝜕𝑤𝑠

𝜕𝑥
 

(12) 

 

According to Eq. (9), the relation between electric field 

(𝐸𝑥, 𝐸𝑦, 𝐸𝑧) and electric potential (𝛷), can be obtained as 

 

𝐸𝑥 = −𝛷,𝑥 = 𝑐𝑜𝑠( 𝜉𝑧)
𝜕𝜙

𝜕𝑥
, (13) 

 

𝐸𝑧 = −𝛷,𝑧 = −𝜉 𝑠𝑖𝑛( 𝜉(𝑧))𝜙 −
2𝑉

ℎ
 (14) 

 

Also, the relation between magnetic field (𝐻𝑥, 𝐻𝑦, 𝐻𝑧) 

and magnetic potential (ϒ) can be expressed from Eq. (10) 

as 

𝐻𝑥 = −ϒ,𝑥 = 𝑐𝑜𝑠( 𝜉𝑧)
𝜕𝛾

𝜕𝑥
, (15) 

 

𝐻𝑧 = −ϒ,𝑧 = −𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝛾 −
2𝛺

ℎ
 (16) 

 

Through extended Hamilton’s principle, the equation of 

motion can be viwed by 
 

∫ 𝛿(𝛱𝑆 + 𝛱𝑊)𝑑𝑡 = 0
𝑡

0

 (17) 

 

where 𝛱𝑆 is strain energy, 𝛱𝑊 is work done by external 

forces. The following Euler–Lagrange equations are 

obtained by using the virtual work principle and setting the 

coefficients of 𝛿𝑢, 𝛿𝑤𝑏, 𝛿𝑤𝑠 , 𝛿𝜙 and 𝛿𝛾 to zero 
 

𝜕𝑁𝑥

𝜕𝑥
= 0 (18) 

 

𝜕2𝑀𝑥
𝑏

𝜕𝑥2
− 𝑁̄𝛻2(𝑤𝑏 + 𝑤𝑠) = 0 (19) 

 

𝜕2𝑀𝑥
𝑠

𝜕𝑥2
+

𝜕𝑄𝑥𝑧

𝜕𝑥
− 𝑁̄𝛻2(𝑤𝑏 + 𝑤𝑠) = 0 (20) 

 

∫ (𝑐𝑜𝑠( 𝜉𝑧)
𝜕𝐷𝑥

𝜕𝑥
+ 𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝐷𝑧)𝑑𝑧 = 0

ℎ/2−𝐶

−ℎ/2−𝐶

 (21) 

 

∫ (𝑐𝑜𝑠( 𝜉𝑧)
𝜕𝐵𝑥

𝜕𝑥
+ 𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝐵𝑧)𝑑𝑧 = 0

ℎ/2−𝐶

−ℎ/2−𝐶

 (22) 

 

In which the variables introduced (𝑁,𝑀𝑏, 𝑀𝑠, 𝑄), mass 

moment of inertias (𝐼0, 𝐼1, 𝐼2, 𝐽1, 𝐽2, 𝑘2)  and in-plane 

applied load 𝑁𝑥
0 at the last expression are expressed by 

 

(𝑁,𝑀𝑏, 𝑀𝑠) = ∫𝜎𝑥𝑥(1, 𝑧, 𝑓)
𝐴

𝑑𝐴,  (𝑄) = ∫𝜎𝑥𝑧(𝑔)
𝐴

𝑑𝐴 (23) 

 

For a linear MEE porous FG beam exposed to magneto-

electro-thermo-mechanical loading, the coupled constitutive 

relations may be rewritten as 
 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑚𝑖𝑗𝐸𝑚 − 𝑞𝑛𝑖𝑗𝐻𝑛 (24) 

 

𝐷𝑖 = 𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑘𝑖𝑚𝐸𝑚 + 𝑑𝑖𝑛𝐻𝑛 (25) 

 

𝐵𝑖 = 𝑞𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑑𝑖𝑚𝐸𝑚 + 𝜒𝑖𝑛𝐻𝑛 (26) 
 

in which 𝜎𝑖𝑗 , 𝐷𝑖 , 𝐵𝑖  explains the components of stress, 

electric displacement and magnetic induction, 𝜀𝑘𝑙 , 𝐸𝑚 and 

𝐻𝑛 are the components of linear strain, electric field and 

magnetic field. Further, 𝐶𝑖𝑗𝑘𝑙 , 𝑘𝑖𝑚  and 𝜒𝑖𝑛 are the 

components of elastic stiffness, dielectric permittivity and 

magnetic permittivity coefficients; Finally, 𝑒𝑚𝑖𝑗 , 𝑞𝑛𝑖𝑗, and 

𝑑𝑖𝑛  are the piezoelectric, piezo-magnetic, and magneto-

electric-elastic coefficients, respectively. By integrating Eq. 

(24)-(26) over the area of MEE porous FG beam cross-

section, the following relations for the force-strain and the 

moment-strain and other necessary relation of the refined 

FG beam can be obtained 
 

𝑁𝑥 = 𝐴11

𝜕𝑢

𝜕𝑥
− 𝐵11

𝜕2𝑤𝑏

𝜕𝑥2
− 𝐵11

𝑠
𝜕2𝑤𝑠

𝜕𝑥2
+ 𝐴31

𝑒 𝜙 + 𝐴31
𝑚 𝛾 (27) 

 

𝑀𝑥
𝑏 = 𝐵11

𝜕𝑢

𝜕𝑥
− 𝐷11

𝜕2𝑤𝑏

𝜕𝑥2
− 𝐷11

𝑠
𝜕2𝑤𝑠

𝜕𝑥2
+ 𝐸31

𝑒 𝜙 + 𝐸31
𝑚𝛾 (28) 

 

𝑀𝑥
𝑠 = 𝐵11

𝑠
𝜕𝑢

𝜕𝑥
− 𝐷11

𝑠
𝜕2𝑤𝑏

𝜕𝑥2
− 𝐻11

𝑠
𝜕2𝑤𝑠

𝜕𝑥2
+ 𝐹31

𝑒 𝜙 + 𝐹31
𝑚𝛾 (29) 

 

𝑄𝑥𝑧 = 𝐴44
𝑠

𝜕𝑤𝑠

𝜕𝑥
− 𝐴15

𝑒
𝜕𝜙

𝜕𝑥
− 𝐴15

𝑚
𝜕𝛾

𝜕𝑥
 (30) 
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∫ 𝐷𝑥 𝑐𝑜𝑠( 𝜉𝑧)𝑑𝑧 = 𝐸15
𝑒

ℎ/2−𝐶

−ℎ/2−𝐶

𝜕𝑤𝑠

𝜕𝑥
+ 𝐹11

𝑒
𝜕𝜙

𝜕𝑥
+ 𝐹11

𝑚
𝜕𝛾

𝜕𝑥
 (31) 

 

∫ 𝐷𝑧𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝑑𝑧

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 

= 𝐴31
𝑒 (

𝜕𝑢

𝜕𝑥
) − 𝐸31

𝑒 𝛻2𝑤𝑏 − 𝐹31
𝑒 𝛻2𝑤𝑠 − 𝐹33

𝑒 𝜙 − 𝐹33
𝑚𝛾 

(32) 

 

∫ 𝐵𝑥 𝑐𝑜𝑠( 𝜉𝑧)𝑑𝑧

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 

= 𝐸15
𝑚

𝜕𝑤𝑠

𝜕𝑥
+ 𝐹11

𝑚
𝜕𝜙

𝜕𝑥
+ 𝑋11

𝑚
𝜕𝛾

𝜕𝑥
 

(33) 

 

∫ 𝐵𝑧𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝑑𝑧

ℎ

2
−𝐶

−
ℎ

2
−𝐶

 

= 𝐴31
𝑚 (

𝜕𝑢

𝜕𝑥
) − 𝐸31

𝑚𝛻2𝑤𝑏 − 𝐹31
𝑚𝛻2𝑤𝑠 − 𝐹33

𝑚𝜙 − 𝑋33
𝑚𝛾 

(34) 

 

in which the cross-sectional rigidities are defined as follows 

 

(𝐴11, 𝐵11, 𝐵11
𝑠 , 𝐷11, 𝐷11

𝑠 , 𝐻11
𝑆 )

= ∑ ∫ 𝐶11(1, 𝑧, 𝑓, 𝑧2, 𝑧𝑓, 𝑓2)
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

𝑑𝑧, 𝐴44
𝑠

= ∑ ∫ 𝑐55𝑔
2𝑑𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 

(35) 

 
{𝐴31

𝑒 , 𝐸31
𝑒 , 𝐹31

𝑒 , 𝐴31
𝑚 , 𝐸31

𝑚 , 𝐹31
𝑚}

= ∑ ∫ 𝜉 𝑠𝑖𝑛( 𝜉𝑧) {
𝑒31, 𝑒31𝑧, 𝑒31𝑓,
𝑞31, 𝑞31𝑧, 𝑞31𝑓

}
ℎ𝑛

−ℎ𝑛−1

𝑑𝑧

3

𝑛=1

 
(36) 

 
{𝐴15

𝑒 , 𝐸15
𝑒 , 𝐴15

𝑚 , 𝐸15
𝑚}

= ∑ ∫ 𝑐𝑜𝑠( 𝜉𝑧){𝑒15, 𝑒15𝑔, 𝑞15, 𝑞15𝑔}
ℎ𝑛

−ℎ𝑛−1

𝑑𝑧

3

𝑛=1

 
(37) 

 
{𝐹11

𝑒 , 𝐹33
𝑒 , 𝐹11

𝑚, 𝐹33
𝑚}

= ∑ ∫ {
𝑘11 𝑐𝑜𝑠2( 𝜉𝑧), 𝑘33𝜉

2 𝑠𝑖𝑛2( 𝜉𝑧),

𝑑11 𝑐𝑜𝑠2( 𝜉𝑧), 𝑑33𝜉
2 𝑠𝑖𝑛2( 𝜉𝑧)

}
ℎ𝑛

−ℎ𝑛−1

3

𝑛=1

𝑑𝑧 
(38) 

 
{𝑋11

𝑚 , 𝑋33
𝑚}

= ∑ ∫ {𝜒11 𝑐𝑜𝑠2( 𝜉𝑧), 𝜒33𝜉
2 𝑠𝑖𝑛2( 𝜉𝑧)}

ℎ𝑛

−ℎ𝑛−1

𝑑𝑧

3

𝑛=1

 
(39) 

 

The displacement equation motion through refined four-

variable shear deformation MEE porous FG beam can be 

derived by substituting Eqs. (27)-(34), into Eqs. (18)-(22) as 

follows 

 

𝐴11

𝜕2𝑢

𝜕𝑥2
− 𝐵11

𝜕3𝑤𝑏

𝜕𝑥3
− 𝐵11

𝑠
𝜕3𝑤𝑠

𝜕𝑥3
 

+𝐴31
𝑒

𝜕𝜙

𝜕𝑥
+ 𝐴31

𝑚
𝜕𝛾

𝜕𝑥
= 0 

(40) 

 

𝐵11

𝜕3𝑢

𝜕𝑥3
− 𝐷11

𝜕4𝑤𝑏

𝜕𝑥4
+ 𝐸31

𝑒
𝜕2𝜙

𝜕𝑥2
 

−𝐷11
𝑠

𝜕4𝑤𝑠

𝜕𝑥4
+ 𝐸31

𝑚
𝜕2𝛾

𝜕𝑥2
− (𝑁̄)

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
= 0 

(41) 

 

𝐵11
𝑠

𝜕3𝑢

𝜕𝑥3
− 𝐷11

𝑠
𝜕4𝑤𝑏

𝜕𝑥4
+ 𝐴55

𝑠
𝜕2𝑤𝑠

𝜕𝑥2
 

−𝐻11
𝑠

𝜕4𝑤𝑠

𝜕𝑥4
+ 𝐹31

𝑒
𝜕2𝜙

𝜕𝑥2
+ 𝐹31

𝑚
𝜕2𝛾

𝜕𝑥2
 

−(𝑁̄)
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
− 𝐴15

𝑒
𝜕2𝜙

𝜕𝑥2
− 𝐴15

𝑚
𝜕2𝛾

𝜕𝑥2
= 0 

(42) 

 

𝐴31
𝑒 (

𝜕𝑢

𝜕𝑥
) − 𝐸31

𝑒
𝜕2𝑤𝑏

𝜕𝑥2
− 𝐹31

𝑒
𝜕2𝑤𝑠

𝜕𝑥2
+ 𝐸15

𝑒
𝜕2𝑤𝑠

𝜕𝑥2
 

+𝐹11
𝑒

𝜕2𝜙

𝜕𝑥2
+ 𝐹11

𝑚
𝜕2𝛾

𝜕𝑥2
− 𝐹33

𝑒 𝜙 − 𝐹33
𝑚𝛾 = 0 

(43) 

 

𝐴31
𝑚 (

𝜕𝑢

𝜕𝑥
) − 𝐸31

𝑚
𝜕2𝑤𝑏

𝜕𝑥2
− 𝐹31

𝑚
𝜕2𝑤𝑠

𝜕𝑥2
+ 𝐸15

𝑚
𝜕2𝑤𝑠

𝜕𝑥2
 

+𝐹11
𝑚

𝜕2𝜙

𝜕𝑥2
+ 𝑋11

𝑚
𝜕2𝛾

𝜕𝑥2
− 𝐹33

𝑚𝜙 − 𝑋33
𝑚𝛾 = 0 

(44) 

 

In this study, it is assumed that the porous MEE-FG 

beam is under temperature rising and external electric 

voltage, magnetic potential and the shear loading is ignored. 

So 𝑁̄ is the normal forces induced by temperature rising, 

external  electric voltage𝑉and external magnetic potential 

𝛺, respectively and are defined as 
 

{𝑁𝐸 , 𝑁𝐻} = −∫ {𝑒̃31𝑉, 𝑞̃31𝛺}
2

ℎ
𝑑𝑧

ℎ/2

−ℎ/2

 (45) 

 

𝑁𝑇 = ∫ 𝐸(𝑧)𝛼(𝑧)𝛥𝑇𝑑𝑧
ℎ/2

−ℎ/2

 (46) 

 

𝑁̄ = 𝑁𝐸 + 𝑁𝐻 + 𝑁𝑇 (47) 
 

 

3. Thermal environment and temperature 
distributions 
 

For a MEE porous FG beam in thermal environment, 

temperature is assumed vary along the thickness directions 

at three ways as: 
 

3.1 Uniform temperature rise (UTR) 
 

Consider a porous FG that is at reference temperature 

equal to 𝑇0 = 300 and beam is free of stresses at 𝑇0 and 

temperature of beam is uniformly raised to final 

temperature with the difference of 𝛥𝑇 as 
 

𝛥𝑇 = 𝑇 − 𝑇0 (48) 

 

3.2 Linear temperature rise (LTR) 
 

Consider the temperature of the top surface of the 

porous FG beam is 𝑇𝑡 and vary linearly from 𝑇𝑡 to 𝑇𝑏, 

the bottom surface temperature finally the temperature rise 
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is given as (Kiani and Eslami 2013) 

 

𝑇 = 𝑇𝑚 + 𝛥𝑇 (
1

2
+

𝑧

ℎ
) (49) 

 

𝛥𝑇 = 𝑇𝑡 − 𝑇𝑏 

 
(50) 

 

3.3 Sinusoidal temperature rise (STR) 
 

The temperature field when FG beam is exposed to 

sinusoidal temperature rise across the thickness can be 

defined as 

 

𝑇 = 𝑇𝑚 + 𝛥𝑇 (1 − 𝐶𝑜𝑠
𝜋

2
(
1

2
+

𝑧

ℎ
)) (51) 

 

where 𝛥𝑇 = 𝑇𝑐 − 𝑇𝑚 is temperature change. 

 

 

4. Solution procedure 
 
As given in Sobhy (2013), an exact solution of the 

governing equations for free vibration of a MEE porous FG 

beam with simply-supported (S), clamped (C) edges or 

combinations of these boundary conditions is presented as 

 

Simply-

supported (S): 

𝑤𝑏 = 𝑤𝑠 = 𝑁𝑥 = 𝑀𝑥 = 0 
at     𝑥 = 0, 𝐿 

(52) 

 

Clamped (C): 
𝑢 = 𝑤𝑏 = 𝑤𝑠 =

𝜕𝑤𝑏

𝜕𝑥
=

𝜕𝑤𝑠

𝜕𝑥
= 0 

at     𝑥 = 0, 𝐿 

(53) 

 

To satisfy above-mentioned boundary conditions, the 

displacement quantities are presented in the following form 

 

𝑈 = ∑ 𝑈𝑚

𝜕𝑋𝑚(𝑥)

𝜕𝑥

∞

𝑚=1

𝑒𝑖𝑤𝑚𝑡 (54) 

 

{𝑊𝑏,𝑊𝑠, 𝜙, 𝛾} = ∑{𝑊𝑏𝑚,𝑊𝑠𝑚, 𝛷𝑚, 𝑌𝑚}𝑋𝑚(𝑥)

∞

𝑚=1

𝑒𝑖𝑤𝑚𝑡 (55) 

 

where (𝑈𝑚𝑛, 𝑊𝑏𝑚𝑛, 𝑊𝑠𝑚𝑛, 𝛷𝑚𝑛, 𝛾𝑚𝑛) are the unknown 

coefficients and the function 𝑋𝑚and are tabulated in detail 

in Table 2 for different boundary conditions (𝛼 = 𝑚𝜋/𝑎 , 

𝛽 = 𝑛𝜋/𝑏). Inserting Eqs. (66)-(70) into Eqs. (54)-(58) 

respectively, leads to 

 
[𝐴11𝑟3]𝑈𝑚 − [𝐵11𝑟3]𝑊𝑏 − [𝐵11

𝑠 𝑟3]𝑊𝑠 
+[𝐴31

𝑒 𝑟1]𝛷𝑚 + [𝐴31
𝑚 𝑟1]𝑌𝑚 = 0 

(56) 

 

[𝐵11𝑟9]𝑈𝑚 − [𝐷11𝑟9 + 𝑁̄𝑟75
]𝑊𝑏𝑚 

−[𝐷11
𝑠 𝑟9 + 𝑁̄𝑟7]𝑊𝑠𝑚 + [𝐸31

𝑒 𝑟7]𝛷𝑚 + [𝐸31
𝑚𝑟7]𝑌𝑚 = 0 

(57) 

 

[𝐵11
𝑠 𝑟9]𝑈𝑚 + [−𝐷11

𝑠 𝑟95
− 𝑁̄𝑟7]𝑊𝑏𝑚 

+[−𝐻11
𝑠 𝑟9 + (𝐴55

𝑠 − 𝑁̄)𝑟7]𝑊𝑠𝑚 
+[(𝐹31

𝑒 − 𝐴15
𝑒 )𝑟7]𝛷𝑚 + ([𝐹31

𝑚 − 𝐴15
𝑚 )𝑟7]𝑌𝑚 = 0 

(58) 

 

Table 2 The admissible functions 𝑋𝑚(𝑥) (Sobhy 2013) 

 
Boundary conditions 

The functions 

𝑿𝒎 

At x = 0, a 𝑋𝑚(𝑥) 

SS 
𝑥𝑚(0) = 𝑥𝑚

″ (0) 
= 𝑥𝑚(𝑎) = 𝑥𝑚

″ (𝑎) = 0 
𝑆𝑖𝑛(𝛼𝑥) 

CS 
𝑥𝑚(0) = 𝑥𝑚

′ (0) 
= 𝑥𝑚(𝑎) = 𝑥𝑚

″ (𝑎) = 0 
𝑆𝑖𝑛(𝛼𝑥)[𝐶𝑜𝑠(𝛼𝑥) − 1] 

CC 
𝑥𝑚(0) = 𝑥𝑚

′ (0) 
= 𝑥𝑚(𝑎) = 𝑥𝑚

′ (𝑎) = 0 
Sin2(αx) 

 

 

 

𝐴31
𝑒 𝑟7𝑈𝑚 − 𝐸31

𝑒 𝑟7𝑊𝑏𝑚 + (𝐸15
𝑒 − 𝐹31

𝑒 )𝑟7𝑊𝑠𝑚 
+(𝐹11

𝑒 𝑟7 − 𝐹33
𝑒 𝑟5)𝛷𝑚 + (𝐹11

𝑚𝑟7 − 𝐹33
𝑚𝑟5)𝑌𝑚 = 0 

(59) 

 

𝐴31
𝑚 𝑟7𝑈𝑚 − 𝐸31

𝑚𝑟7𝑊𝑏𝑚 + (𝐸15
𝑚 − 𝐹31

𝑚)𝑟7𝑊𝑠𝑚 
+(𝐹11

𝑚𝑟7 − 𝐹33
𝑚𝑟5)𝛷𝑚 + [𝑋11

𝑚𝑟7 − 𝑋33
𝑚𝑟5]𝑌𝑚 = 0 

(60) 

 

where 
 

(𝑟3, 𝑟1) = ∫ (
𝜕3𝑋𝑚

𝜕𝑥3
,
𝜕𝑋𝑚

𝜕𝑥
)
𝜕𝑋𝑚

𝜕𝑥

𝐿

0

 (61) 

 

(𝑟5, 𝑟7, 𝑟9) = ∫ (𝑋𝑚,
𝜕2𝑋𝑚

𝜕𝑥2
,
𝜕4𝑋𝑚

𝜕𝑥4
)𝑋𝑚

𝐿

0

 (62) 

 

By finding determinant of the coefficient matrix of the 

following equations and setting this multinomial to zero, we 

can find critical buckling temperature 𝛥𝑇𝑐𝑟. 
 

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15

𝑘21 𝑘22 𝑘23 𝑘24 𝑘25

𝑘31 𝑘32 𝑘33 𝑘34 𝑘35

𝑘41 𝑘42 𝑘43 𝑘44 𝑘45

𝑘51 𝑘52 𝑘53 𝑘54 𝑘55]
 
 
 
 

[
 
 
 
 
𝑈𝑚𝑛

𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛

𝜓𝑚𝑛

𝛾𝑚𝑛 ]
 
 
 
 

= 0 (63) 

 

 

5. Numerical results and discussions 
 

In this section, numerical and graphical examples are 

presented to examine magneto-electro-thermo-mechanical 

buckling behavior of MEE-FG beam subjected to various 

thermal loadings with porosities employing a higher order 

refined beam theory. So, the influences of temperature 

rising, porosity volume fraction, FG material graduation, 

magnetic and electric fields, different types of porosity 

distributions and various boundary conditions on the critical 

buckling temperatures of the MEE porous FG beam will be 

provided as dispersion curves. It evident that the present 

beam model and solution procedure can accurately predict 

buckling loads of FGM beam. For comparison study, the 

material properties are selected as: 𝐸𝑐 = 380 GPa, 𝐸𝑚 = 70 

GPa and 𝜈 = 0.3 .The non-dimensional buckling load 

(𝑁̄𝑐𝑟) can be calculated by the relation in Eq. (64) as 
 

𝑁𝑐𝑟 = 𝑁
𝐿2

𝑐11
𝑢 𝐼

 (64) 

 

In Table 4, the effect of porosity volume fraction, 

temperature rising and electric voltage on the critical 
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buckling temperature of the MEE-porous FG beam are 

listed for various boundary conditions (S-S, C-S, C-C), 

different porosity parameters(𝛼 = 0, 0.2), external electric 

voltage (V = -250, 0, 250) and two porosity distributions 

(even, uneven) at Ω = 0, p = 1. Also, Table 5 present the 

critical buckling temperature of smart FG porous beam for 

different boundary conditions (S-S, C-S, C-C), magnetic 

potentials (-25, 0, 25), porosity volume fraction (𝛼 = 0, 𝛼 = 

0.2) and two porosity distributions (even, uneven) at V = 0 

and p=1. From the results of these tables, it is found that the 

porosity leads substantial growth on the critical buckling 

temperature of MEE-FG (I) & (II) beam for all of the 

boundary conditions and thermal loadings. It is seen that 

external electric voltage and magnetic field has an 

 

 

 

 

 

 

important role on the buckling behavior of the structure, 

where the effect of them depends on the sign of electric 

voltage and magnetic potential, in other words negative 

values of electric voltage leads to increase the critical 

buckling temperature of the smart FG porous beam while, 

positive values of electric voltage have reverse trend. On 

the opposite side, magnetic field has an opposite behavior. 

This means that negative and positive values of magnetic 

field are cause of tensile and compressive of critical 

buckling temperature, respectively. Comparing the critical 

buckling temperature of smart FG beam for different 

boundary conditions expresses that the greatest critical 

buckling temperature is obtained for MEE-porous FG beam 

with C-C boundary condition followed with other boundary 

Table 3 Comparison of non-dimensional buckling load of FGM beam for various power-law exponents 

L/h  p = 0 p = 0.5 p = 1 p = 2 p = 5 p = 10 

5 
 48.8406 32.0013 24.6894 19.1577 15.7355 14.1448 

Present 48.835 31.967 24.6870 19.1605 15.7401 14.13 

10 
 52.3083 34.0002 26.1707 20.3909 17.1091 15.5278 

Present 52.3082 34.0087 26.1727 20.3936 17.1118 15.5291 
 

Table 4 The variation of the critical buckling temperature (𝛥𝑇𝑐𝑟) of MEE FG beam subjected to different temperature 

loadings for various external electric voltage and boundary conditions (𝐿/ℎ = 20, 𝛺 = 0, 𝑝 = 1) 

 Type of FG 
S-S C-S C-C 

V = -250 V = 0 V = +250 V = -250 V = 0 V = +250 V = -250 V = 0 V = +250 

UTR 

Perfect 30.4372 30.0508 29.6645 74.3944 74.008 73.6217 117.263 116.876 116.49 

α = 0.2, even 35.7459 35.2575 34.769 87.213 86.7246 86.2361 137.3 136.811 136.323 

α = 0.2, uneven 35.5979 35.1684 34.7389 87.0365 86.607 86.1775 137.197 136.767 136.338 

LTR 

Perfect 50.1296 49.3682 48.6068 136.757 135.996 135.234 221.239 220.477 219.716 

α = 0.2, even 60.3581 59.3992 58.4403 161.395 160.436 159.477 259.721 258.762 257.803 

α = 0.2, uneven 60.1473 59.303 58.4587 161.262 160.417 159.573 259.864 259.019 258.175 

STR 

Perfect 68.7455 67.7014 66.6572 187.542 186.498 185.454 303.397 302.353 301.309 

α = 0.2, even 82.7789 81.4638 80.1488 221.347 220.032 218.717 356.198 354.883 353.567 

α = 0.2, uneven 80.7211 79.588 78.4549 216.422 215.289 214.156 348.752 347.619 346.486 
 

Table 5 The variation of the critical buckling temperature (𝛥𝑇𝑐𝑟) of MEE FG beam subjected to different temperature 

loadings for various magnetic potential and boundary conditions (𝐿/ℎ = 20, 𝛺 = 0, 𝑝 = 1) 

 Type of FG 
S-S C-S C-C 

Ω = -25 Ω = 0 Ω = +25 Ω = -25 Ω = 0 Ω = +25 Ω = -25 Ω = 0 Ω = +25 

UTR 

Perfect 24.9553 30.0508 35.1464 68.9125 74.008 79.1035 111.781 116.876 121.972 

α = 0.2, even 28.8155 35.2575 41.6994 80.2826 86.7246 93.1665 130.369 136.811 143.253 

α = 0.2, uneven 29.5039 35.1684 40.833 80.9424 86.607 92.2715 131.103 136.767 142.432 

LTR 

Perfect 39.3263 49.3682 59.4101 125.954 135.996 146.037 210.435 220.477 230.519 

α = 0.2, even 46.7528 59.3992 72.0456 147.789 160.436 173.082 246.116 258.762 271.408 

α = 0.2, uneven 48.168 59.303 70.4379 149.282 160.417 171.552 247.884 259.019 270.154 

STR 

Perfect 53.9304 67.7014 81.4723 172.727 186.498 200.269 288.582 302.353 316.124 

α = 0.2, even 64.1198 81.4638 98.8079 202.688 220.032 237.376 337.538 354.883 372.227 

α = 0.2, uneven 64.6443 79.588 94.5317 200.345 215.289 230.233 332.675 347.619 362.562 
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(a) UTR-FGM (I) (b) LTR-FGM (I) 

 

(c) STR-FGM (I) 

Fig. 2 The variation of the critical buckling temperature of S-S MEE-FG (I) & (II) beam with respect to material 

graduation and porosity parameter for different temperature risings (𝛺 = 0, 𝑉 = 0) 

  

(a) UTR-FGM (I) (b) LTR-FGM (I) 

 

(c) STR-FGM (I) 

Fig. 3 The effect of porosity volume index on the critical buckling temperature of MEE-FG (I) & (II) beam with 

respect to temperature rising and for different boundary conditions (𝑝 = 1, 𝛺 = 0, 𝑉 = 0) 
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conditions. Comparing results of different temperature field 

reveals that sinusoidal temperature rising (STR) provide 

highest critical buckling temperature and UTR present 

lowest temperature. 

In order to peruse the effect of the porosity volume 

fraction and thermal loading type on the critical buckling 

temperatures of the smart SS MEE porous FG (I) beam, 

critical buckling temperatures (𝛥𝑇𝑐𝑟), versus the power-

law index (p) for different volume fractions of porosity (𝛼 = 

0, 0.1, 0.2) magnetic potential (Ω = 0) and electric voltage 

(V = 0) is plotted in Fig. 2. From the dispersion curves, it is 

seen that growing of the power-law exponents is cause of 

reduction in the critical buckling temperatures of both 

porosity distributions. As one can see, the critical buckling 

temperatures decreases more intensity where the material 
 

 

graduation is in range from 0 to 2 than that where the 

material graduation is in range between 2 and 10. In fact, 

when p = 0 beam is made from fully CoFe2𝑂4 and has the 

greatest critical buckling temperatures. Increasing the 

material graduation exponent from 0 to 10 changes the 

composition of the MEE-FG beam from a fully CoFe2𝑂4 

beam to a beam with a combination of CoFe2𝑂4 and 

BaTio3. So, by increasing the metal percentage and having 

the lower value of Young's modulus of BaTio3 with 

respect to CoFe2𝑂4, the stiffness of system diminishes. 

Thus, critical buckling temperatures decay as the stiffness 

of a structure decreasing. Moreover, it is found that the 

porosity effect on the buckling behavior of smart FG beam 

is as follow: The critical buckling temperatures grow as the 

porosity parameter (𝛼) increases for each of power-law 
 

 

 

  

(a) UTR, S-S (b) LTR, S-S 
 

  

(c) STR, S-S (d) UTR, C-C 
 

  

(e) LTR, C-C (f) STR, C-C 

Fig. 4 The influence of electric voltage and porosity parameter on the critical buckling temperature of MEE-FG (I) 

beam subjected to different temperature rising (UTR, LTR, STR) &(𝑝 = 1, 𝛺 = 0) 
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index values. So, it is clear that the porosity effect becomes 

outstanding for MEE-FG beam. Comparing the results of 

different temperature risings divulges the critical buckling 

temperature of MEE-FG beam exposed to sinusoidal 

temperature rise (STR) is highest temperature. Whereas 

UTR provide the lower values of critical buckling 

temperature. To display the influence of boundary 

conditions on the critical buckling temperature of MEE-FG 

(I) & (II) beam for different temperature field (UTR, LTR, 

STR), Fig. 3 demonstrates the critical buckling temperature 

results versus porosity parameters via three boundary 

conditions (SS, CS, CC) at constant value of power-law 

index (p = 1) electric voltage (V = 0) and magnetic potential 

(𝛺 = 0). As can be seen, increment of porosity parameter 

leads to increasing of critical buckling temperature of MEE-

FG for all of the boundary conditions. Here, the critical 

buckling temperature of porous MEE-FGM beam with CC 

boundary conditions is greatest, followed by CS and SS 

respectively. The impact of electric voltage on the critical 

buckling temperature of smart MEE-FG (I) beam subjected 

to different temperature fields (UTR, LTR, STR) with S-S 

and C-C boundary conditions is illustrated in Fig. 4, 

respectively. The porosity volume fractions (𝛼 = 0, 0.1, 0.2) 

at 𝛺 = 0 and p = 1 is taken. It is obvious that when the 

intensity of external electric voltage increases from negative 

to positive value, the critical buckling temperature of MEE- 

FG porous beam reduce for all of the thermal loadings. Also, 

it is observed that the impact of the external electric voltage 

on the critical buckling temperature of S-S MEE-FG beam 

 

 

is more eminent than that of the C-C MEE-FG beam. So, it 

is very momentous to attention the type of boundary 

conditions of MEE-FG porous beam. Also, the greatest 

buckling temperature of MEE-FG beam is obtained for the 

beam subjected to STR temperature rising followed by LTR 

and UTR respectively. Fig. 5 discuss the variations of 

critical buckling temperature of S-S MEE-FG porous beam 

versus magnetic potential via different thermal loadings 

(UTR, LTR, STR) for perfect and imperfect FGM (even and 

uneven) at p = 1, V = 0. It is pointed that increasing of the 

external magnetic potential is cause of increment in critical 

buckling temperature when their values vary from negative 

to positive one at a fixed value of porosity volume fraction 

which highlights the notability of the magnitude and sign of 

magnetic potential. So, it is very important to regard the 

magnetic field in the analysis of MEE-FG beam with 

porosity. Furthermore, according to these results the critical 

buckling temperature increases as the porosity value 

increases for all values of magnetic potential. By comparing 

the porosity distributions, it is concluded that at first MEE-

FG beam with uneven porosity presents higher critical 

buckling temperature. Then, with the increasing of external 

magnetic potential, it is seen that MEE-FG with even 

porosity provided higher temperature. 

 

 

6. Conclusions 
 

Based on four-variable higher order shear deformation 

  

(a) UTR, S-S (b) LTR, S-S 

 

(c) STR, S-S 

Fig. 5 The influence of magnetic potential on the critical buckling temperature of MEE perfect and imperfect FG 

beam subjected to different temperature rising (UTR, LTR, STR) &(𝑝 = 1, 𝑉 = 0) 
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beam theory, an analytical method solution is developed for 

buckling behavior of porous magneto-electro-elastic 

functionally graded beam in the view of different thermal 

loadings via different boundary conditions. Refined shear 

deformation theory predicts shear deformation effect 

without any shear correction factors. Two model of porosity 

distributions, namely even and uneven are considered. 

Magneto-electro-thermo-mechanical characteristics of the 

smart porous MEE-FG beam are gradually grow in the 

thickness direction via modified rule of mixture. The 

equations of motion and boundary conditions are derived by 

using Hamilton principle. An analytical solution method is 

used to solve governing partial differential equations for 

various boundary conditions. It is observed from the result 

that the critical buckling temperature of porous MEE-FGM 

beam are affected by thermal loading, magnetic field, 

external electric voltage, volume fraction of porosity, 

material graduation, various boundary conditions and 

porosity distributions. Numerical results show that: 

 

✓ By increasing the material graduation index value, 

the critical buckling temperature of porous MEE-FG 

beam are found to decrease. 

✓ For MEE-FGM beam with porosities, increasing the 

volume fraction of porosity yields increment in 

critical buckling temperature for both types of 

porosity distribution. 

✓ Increasing magnetic potential from negative to 

positive values yields increment of critical buckling 

temperature of porous MEE-FGM beam. However, 

for the external electric voltage this behavior is 

opposite. 

✓ The critical buckling temperature of porous MEE-

FGM beam with C-C boundary conditions is 

greatest, followed by C-S and S-S. 

✓ MEE-FG porous beam subjected to sinusoidal 

temperature rising (STR) provide highest critical 

buckling temperature and UTR present lowest 

temperature. 
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