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1. Introduction 

 

Due to the increasing development in science and 

technology, the use of intelligent materials such as piezo 

and porous has been developed by many researchers. In 

recent years, the studies have been carried out on the 

vibrations and buckling of plate at micro/nano scales that 

composed of piezo and porous materials, in which, some 

investigations have been presented in these researches. 

Mohammadimehr et al. (2014) studied the buckling and 

free vibration analysis of the double-bonded nanocomposite 

piezoelectric plate based on modified couple stress theory 

under electro-thermo-mechanical loadings surrounded by an 

elastic foundation that reinforced by a boron nitride 

nanotube. Also, based on Kirchhoff plate theory and the 

Eshelby-Mori-Tanaka method and employing Hamilton’s 

principle, the equations of motion are obtained. They 

concluded that with an increase in the aspect ratio and the 

dimensionless material length scale parameter, the 

dimensionless natural frequency increases. Based on the 

modified couple-stress theory and sinusoidal plate theories, 

bending and free vibration analysis of a functionally graded 

piezoelectric microplate under simply supported boundary 

conditions is studied by Li and Pan (2015). Their results 

showed that the magnitudes of the transverse central 

deflection, electric potential, stresses and electric 

displacement in the horizontal directions of microplate 

predicted by the modified couple-stress model are smaller 

than predicted by the classical plate model. 
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Razavi and Shooshtari (2015) investigated nonlinear 

free vibration of symmetric laminated rectangular plates 

based on first order shear deformation theory with 

considering the von Karman’s nonlinear strains and simply 

supported boundary condition. Also, for electric and 

magnetic model, the Maxwell's equations are used. Based 

on Euler–Bernoulli and modified couple stress theory, the 

effect of finite strain and Von Karman assumptions on the 

nonlinear free vibration and bending of the symmetrically 

micro and nano laminated composite beam under thermal 

environment is studied by Mohandes and Ghasemi (2016). 

Their results illustrated that the material properties have a 

remarkable influence on the behavior of the finite strain 

micro beam. Also, their bending results showed that there is 

a difference between the finite strain and Von Karman 

assumptions. Arefi and Zenkour (2016) studied the free 

vibration, tension analysis and wave propagation of a 

sandwich micro and nano rod made of piezoelectric 

materials under electric potential. The numerical results 

indicated that with increasing of the foundation parameters 

leads to increase in phase velocity of sandwich micro rod. 

In another work, they (2017b) investigated the analysis of 

sandwich beam curve with two piezo magnetic layer face 

sheet and elastic layer in core based on FSDT. That, they 

expressed the influence of the applied electric and magnetic 

potentials on the electro mechanical responses of the beam. 

The conductivity of carbon nano fiber or nano tube 

incorporated cement composite under static and dynamic 

conditions expressed by Sasmal et al. (2017). Also, they 

investigated the influence of external voltage and Gauge 

factors of the conductive cement. Mohammadimehr and 

Alimirzaei (2016) considered nonlinear static and vibration 

analysis of Euler-Bernoulli composite beam model 

reinforced by FG-SWCNT with initial geometrical 
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imperfection using FEM. Zhang et al. (2018) presented the 

nonlinear vibrations of composite laminated piezoelectric 

rectangular plate based on third-order shear deformation 

plate theory. To analyze the periodic and chaotic motions of 

the symmetric cross-ply composite laminated piezoelectric 

rectangular plate, the fourth-order Runge-Kutta algorithm is 

used. Abazid and Sobhy (2018) studied on the bending of 

piezoelectric functionally graded microplate under thermos-

electro-mechanical loadings. They used MCST and four-

variable shear deformation plate theory to derive the 

equilibrium equations. Also, based on higher-order shear 

deformation theory and a novel element-free IMLS-Ritz 

model, the impact analysis of carbon nano tube reinforced 

piezoelectric composite plate is carried out by Selim et al. 

(2018). 

Free vibration analysis of porous plate based on third-

order shear deformation plate theory is illustrated by Rezaei 

and Saidi (2015). They used the Levy-type solution to solve 

the equation of porous plate with arbitrary boundary 

conditions. Their results showed that with increasing of the 

porosity coefficient the natural frequency of fluid free plates 

decreases. Based on higher order shear deformation theory, 

the buckling analysis of the FG porous circular plate is 

presented by Mojahedin et al. (2016). The pre-buckling 

forces and critical buckling loads are determined by Sanders 

non-linear strain–displacement relation. Their results 

illustrated that with increasing of the coefficient of porosity, 

the critical buckling load reduces. Also, the obtained critical 

buckling load based on the CPT and FSDT are noticeably 

larger than the values obtained based on the HSDT. 

Mohammadimehr et al. (2017b) considered nonlinear 

vibration analysis of FG-CNTRC sandwich Timoshenko 

beam based on modified couple stress theory subjected to 

longitudinal magnetic field using generalized differential 

quadrature method (GDQM). Shojaeefard et al. (2017) 

investigated the free vibration and buckling analysis of 

micro temperature-dependent FG porous circular plates 

based on MCST, CPT and FSDT under nonlinear thermal 

load. The FGM layer composed from metal and ceramic 

materials that the top surface of the plate is metal-rich and 

the bottom surface is ceramic-rich. Their analysis indicated 

that the critical temperature change, decreases size 

dependency and increases the porosity. Mohammadimehr et 

al. (2018) presented free vibration analysis of magneto-

electro-elastic cylindrical composite panel reinforced by 

various distributions of CNTs with considering open and 

closed circuits boundary conditions based on first-order 

shear deformation theory (FSDT). The vibration behavior of 

thick functionally graded porous rectangular plates based on 

the three-dimensional elastic theory with arbitrary boundary 

conditions by elastic foundation is expressed by Zhao et al. 

(2018). They showed that the frequency parameter of the 

FGP plate decreases with increasing of the porosity 

coefficient. Also, the influence of elastic parameters on the 

vibration characteristics is investigated. 

Based on Donnell shell theory and von-Kármán strain-

displacement relation, the nonlinear primary resonance 

analysis of cylindrical shells made of functionally graded 

porous materials subjected to a uniformly distributed 

harmonic load is studied by Gao et al. (2018b). Based on 

first-order shear deformation theory, the buckling behavior 

of functionally graded graphene reinforced porous 

nanocomposite cylindrical shells with spinning motion and 

subjected to a combined action of external axial 

compressive force and radial pressure is presented by Dong 

et al. (2018). Gao et al. (2019) investigated nonlinear 

dynamic buckling of imperfect beams made of functionally 

graded metal foams subjected to a constant velocity with 

various boundary conditions based on von-Karman strain–

displacement relation. Mohammadimehr et al. (2017c) 

investigated dynamic stability of modified strain gradient 

theory sinusoidal viscoelastic piezoelectric polymeric 

functionally graded single-walled carbon nanotubes 

reinforced nanocomposite plate considering surface stress 

and agglomeration effects under hydro-thermo-electro-

magneto-mechanical loadings. Wang et al. (2019) 

considered the buckling and post buckling behaviors of 

graphene platelet reinforced dielectric composite beams 

based on Timoshenko beam theory and von Karman 

nonlinear strain-displacement relationship. They obtained 

the governing equations and then discretized numerically 

and solved by employing differential quadrature method. 

Mohammadimehr et al. (2015) depicted surface stress 

effect on the nonlocal biaxial buckling and bending analysis 

of polymeric piezoelectric nanoplate reinforced by CNT 

using eshelby-mori-tanaka approach. In the other work, 

they (2016) studied size-dependent effect on biaxial and 

shear nonlinear buckling analysis of nonlocal isotropic and 

orthotropic micro-plate based on surface stress and 

modified couple stress theories using differential quadrature 

method. Ghorbanporur Arani et al. (2016) illustrated 

surface stress and agglomeration effects on nonlocal biaxial 

buckling polymeric nanocomposite plate reinforced by CNT 

using various approaches. Cong et al. (2018) used the 

HSDT for the analysis of the nonlinear buckling and post-

buckling of the porous FGM plates resting on Winkler–

Pasternak model of elastic foundations under thermo-

mechanical loadings. Their results illustrated that the 

increasing of volume fractions, the ceramic constituent 

decreases, which lead to reduce the plate stiffness and so of 

the buckling and post buckling resistance capacity. Also, the 

influence of Pasternak shear layer of the plate is more 

significantly than the Winkler shears modulus. Arani and 

Zamani (2018) studied the free vibration of functionally 

graded porous piezo electric nano plate resting on silica 

aerogel foundation based on Vlasov’s model foundation 

based on sinusoidal shear and normal deformation theories. 

The numerical results indicated that with increasing of the 

porosity coefficient, the non-dimensional natural frequency 

decreases. Then, Gao et al. (2018a) illustrated the nonlinear 

free vibration of functionally graded porous nanocomposite 

plate resting on Winkler-Pasternak elastic foundations with 

various boundary conditions for different type of porosity 

distributions. They obtained the equations of motion based 

on Hamilton’s principle. Also, the differential quadrature 

method is used to solve these equations. The buckling and 

free vibration analysis of functionally graded porous nano 

composite plate based on a multiplayer model is expressed 

by Yang et al. (2018). Their numerical result is shown that 

with increasing of the porosity coefficient, the fundamental 
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natural frequency decreases. Also, based on MSCT, 

classical plate theory and first-order shear deformation plate 

theory, the free vibration, bending and buckling analysis of 

functionally graded porous micro plate is investigated by 

Kim et al. (2019). 

In this research, the effect of electric potential and 

magnetic fields on the free and forced vibration of piezo 

magneto-electric micro plate with porous core layer based 

on modified couple stress and first order shear deformation 

theory is illustrated. It is noted that the core layer is 

composed from balsa wood. Based on Hamilton’s principle, 

the equations of motion are obtained. Also, the Navier’s 

method for simply support boundary conditions is used to 

solve these equations. The effects of applied voltage, 

magnetic field, length to width ratio, types of porous, 

coefficient of porous and core layer thickness to micro plate 

thickness ratio on the natural frequency are investigated. 

 

 

2. Formulation 
 

Fig. 1 shows the micro sandwich plate with porous core 

and magneto-electric facesheets that a, b, he, hp, are length, 

width, thicknesses of core and facesheets, respectively. 

In this research, FSDT is used for relations 

displacements that are defined as (Reddy 2002) 

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜑𝑥(𝑥, 𝑦, 𝑡) 
𝑣(𝑥, 𝑦, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜑𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 
(1) 

 

where u, v, w, are the displacements along the x, y and z 

directions, respectively. Also, z is distance from the micro 

plate middle surface, and u0, v0, w0 are the displacement of 

the micro plate middle surface. Based on FSDT theory, the 

normal and shear strains are defined as follows 
 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕𝜑𝑥
𝜕𝑥

 

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
=
𝜕𝑣0
𝜕𝑦

+ 𝑧
𝜕𝜑𝑦
𝜕𝑦

 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
=
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

+ 𝑧
𝜕𝜑𝑥
𝜕𝑥

+ 𝑧
𝜕𝜑𝑦
𝜕𝑦

 

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜑𝑥 +

𝜕𝑤

𝜕𝑥
 

𝛾𝑦𝑧 =
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜑𝑦 +

𝜕𝑤

𝜕𝑦
 

(2) 

 

 

 

Fig. 1 A shematic view of micro sandwich plate with piezo 

magneto-electric facesheets and porous core 

Also, the constitutive equations for piezo electric and 

magnetic layers are expressed (Farajpour et al. 2016, Arefi 

and Zenkour 2017a) 
 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}
 
 

 
 

=

[
 
 
 
 
𝑐11 𝑐12 0 0 0
𝑐12 𝑐22 0 0 0
0 0 𝑐66 0 0
0 0 0 𝑐55 0
0 0 0 0 𝑐44]

 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

 

−

[
 
 
 
 
0 0 𝑒13
0 0 𝑒23
0 0 0
𝑒51 0 0
0 𝑒62 0 ]

 
 
 
 

[

𝐸𝑥
𝐸𝑦
𝐸𝑧

] −

[
 
 
 
 
0 0 𝑞13
0 0 𝑞23
0 0 0
𝑞51 0 0
0 𝑞62 0 ]

 
 
 
 

[

𝐻𝑥
𝐻𝑦
𝐻𝑧

] 

(3) 

 

where 𝑐𝑖𝑗 , 𝑒𝑖𝑗 , 𝑞𝑖𝑗  are stiffness coefficients of piezo 

electro magneto material, piezoelectric coefficients and 

piezo magnetic coefficients, respectively. Also, 𝐸𝑖 and 𝐻𝑖 
denote the electric and the magnetic fields, respectively. 

Also, electric displacement for electro mechanical system 

are defined (Farajpour et al. 2016, Arefi and Zenkour 

2017a) 
 

{

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [

0 0 0 𝑒15 0
0 0 0 0 𝑒26
𝑒31 𝑒32 0 0 0

]

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

 

+[
∈11 0 0
0 ∈22 0
0 0 ∈33

] [

𝐸𝑥
𝐸𝑦
𝐸𝑧

] + [
𝑚11 0 0
0 𝑚22 0
0 0 𝑚33

] [

𝐻𝑥
𝐻𝑦
𝐻𝑧

] 

(4) 

 

where ∈𝑖𝑖  is the dielectric coefficients and 𝑚𝑖𝑖  denotes 

the electromagnetic coefficients. The magnetic 

displacement for magnetic system are expressed (Arefi and 

Zenkour 2017a) 
 

{

𝐵𝑥
𝐵𝑦
𝐵𝑧

} = [

0 0 0 𝑞15 0
0 0 0 0 𝑞26
𝑞31 𝑞32 0 0 0

]

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

 

+[
𝑚11 0 0
0 𝑚22 0
0 0 𝑚33

] [

𝐸𝑥
𝐸𝑦
𝐸𝑧

] + [
𝜇11 0 0
0 𝜇22 0
0 0 𝜇33

] [

𝐻𝑥
𝐻𝑦
𝐻𝑧

] 

(5) 

 

where 𝜇𝑖𝑗 is the magnetic coefficients. Also, magnetic and 

electro fields are defined as the following form (Farajpour 

et al. 2016) 
 

𝐸𝑥 = −
𝜕𝜓
∧

𝜕𝑥
=
𝜕𝜓

𝜕𝑥
𝑐𝑜𝑠(

𝜋𝑧
∧

ℎ𝑝
) 

𝐸𝑦 = −
𝜕𝜓
∧

𝜕𝑦
=
𝜕𝜓

𝜕𝑦
𝑐𝑜𝑠(

𝜋𝑧
∧

ℎ𝑝
) 

𝐸𝑧 = −
𝜕𝜓
∧

𝜕𝑧
= −

2

ℎ𝑝
𝜓0 −

𝜋

ℎ𝑝

𝜕𝜓

𝜕𝑥
𝑐𝑜𝑠(

𝜋𝑧
∧

ℎ𝑝
) 

(6) 

 

𝐻𝑥 = −
𝜕𝜑
∧

𝜕𝑥
=
𝜕𝜑

𝜕𝑥
𝑐𝑜𝑠(

𝜋𝑧
∧

ℎ𝑝
) (7a) 
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𝐻𝑦 = −
𝜕𝜑
∧

𝜕𝑦
=
𝜕𝜑

𝜕𝑦
𝑐𝑜𝑠(

𝜋𝑧
∧

ℎ𝑝
) (7b) 

 

𝐻𝑧 = −
𝜕𝜑
∧

𝜕𝑧
= −

2

ℎ𝑝
𝜑0 −

𝜋

ℎ𝑝

𝜕𝜑

𝜕𝑥
𝑐𝑜𝑠(

𝜋𝑧
∧

ℎ𝑝
) (7c) 

 

where 𝜓 and 𝜑 are the electric and magnetic potentials, 

respectively, and expressed as follows: (Arefi and Zenkour 

2017a, c, Ebrahimi and Barati 2019) 
 

𝜓
∧

(𝑥, 𝑦, 𝑧, 𝑡) = −
2𝑧
∧

ℎ𝑝
𝜓0 − 𝜓(𝑥, 𝑦, 𝑡) 𝑐𝑜𝑠(

𝜋𝑧
∧

ℎ𝑝
) 

𝜑
∧
(𝑥, 𝑦, 𝑧, 𝑡) = −

2𝑧
∧

ℎ𝑝
𝜑0 − 𝜑(𝑥, 𝑦, 𝑡) 𝑐𝑜𝑠(

𝜋𝑧
∧

ℎ𝑝
) 

𝑧
∧
= 𝑧 −

ℎ𝑐 + ℎ𝑝
2

, 𝑧
∧
= 𝑧 +

ℎ𝑐 + ℎ𝑝
2

 

(8) 

 

In this study, four types distributions of porosity for 

porous core layer are considered as follows (Chen et al. 

2016, Gao et al. 2018b, Ghasemi and Meskini 2019) 
 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠: 

{

𝐸(𝑧) = 𝐸1 − (1 − 𝑒0𝜒)

𝐺(𝑧) = 𝐺1 − (1 − 𝑒0𝜒)

𝜌(𝑧) = 𝜌1 −√(1 − 𝑒0𝜒)

 
(9a) 

 

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠: 

{
 
 

 
 𝐸(𝑧) = 𝐸1 − (1 − 𝑒0 𝑐𝑜𝑠(

𝜋𝑧

ℎ
))

𝐺(𝑧) = 𝐺1 − (1 − 𝑒0 𝑐𝑜𝑠(
𝜋𝑧

ℎ
))

𝜌(𝑧) = 𝜌1 − (1 − 𝑒0 𝑐𝑜𝑠(
𝜋𝑧

ℎ
))

 
(9b) 

 

𝑁𝑜𝑛 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑡𝑖𝑓𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠: 

{
 
 

 
 𝐸(𝑧) = 𝐸1 − (1 − 𝑒0 𝑐𝑜𝑠(

𝜋𝑧

2ℎ
+
𝜋

4
))

𝐺(𝑧) = 𝐺1 − (1 − 𝑒0 𝑐𝑜𝑠(
𝜋𝑧

2ℎ
+
𝜋

4
))

𝜌(𝑧) = 𝜌1 − (1 − 𝑒0 𝑐𝑜𝑠(
𝜋𝑧

2ℎ
+
𝜋

4
))

 
(9c) 

 

𝑁𝑜𝑛 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑜𝑓𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠: 

{
 
 

 
 𝐸(𝑧) = 𝐸1 − (1 − 𝑒0 𝑠𝑖𝑛(

𝜋𝑧

2ℎ
+
𝜋

4
))

𝐺(𝑧) = 𝐺1 − (1 − 𝑒0 𝑠𝑖𝑛(
𝜋𝑧

2ℎ
+
𝜋

4
))

𝜌(𝑧) = 𝜌1 − (1 − 𝑒0 𝑠𝑖𝑛(
𝜋𝑧

2ℎ
+
𝜋

4
))

 
(9d) 

 

where 𝑒0 is porosity coefficients and 𝑒𝑚 is mass density 

coefficients, in which, 𝑒0 , 𝑒𝑚  and 𝜒  coefficients are 

written as follows (Barati and Zenkour 2017, Emdadi et al. 

2019) 

𝑒0 = 1 −
𝐸2
𝐸1
= 1 −

𝐺2
𝐺1

 

𝑒𝑚 = 1 −
𝜌2
𝜌1

 

𝐸2
𝐸1
= (

𝜌2
𝜌1
)
2

 

(10) 

𝑒𝑚 = 1 − √1 − 𝑒0 

𝜒 =
1

𝑒0
−
1

𝑒0
(
2

𝜋
√1 − 𝑒0 −

2

𝜋
+ 1)

2

 
(10) 

 

The Hamilton’s principle is used to obtain the relations 

of micro sandwich plate that is defined as follows (Reddy 

2002, Mao and Zhang 2018) 
 

∫𝛿(𝑇 − 𝑈 +𝑊)𝑑𝑡 = 0 (11) 

 

where T, U and W are kinetic energy, strain energy and 

external work, respectively. The kinetic energy and external 

work are defined as follows (Liu et al. 2013) 
 

𝛿𝑇 = ∫𝜌𝑣𝛿𝑣
→
𝑑𝑣

𝑣

 

𝛿𝑊 = ∫𝑁𝑝 ((
𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑦
)
2

)𝑑𝐴 

𝑁𝑝 = −2𝑒31𝜓0 − 2𝑞31𝜑0 

(12) 

 

Also, strain energy based on modified couple stress 

theory is considered as (Ke et al. 2012, Thai and Vo 2013) 

 

𝛿𝑈 =
1

2
∫(𝜎𝑖𝑗𝛿𝜀𝑖𝑗 +𝑚𝑖𝑗𝛿𝜒𝑖𝑗 − 𝐷𝑖𝛿𝐸𝑖 − 𝐵𝑖𝛿𝐻𝑖)𝑑𝑉 (13) 

 

in which 𝜎𝑖𝑗,𝜀𝑖𝑗,𝑚𝑖𝑗 ,𝜒𝑖𝑗,𝐷𝑖,𝐸𝑖 ,𝐵𝑖 ,𝐻𝑖  are the components 

of the stress tensor, the strain tensor, the deviatoric part of 

the symmetric couple stress tensor, the symmetric curvature 

tensor, the electric displacement, the electric fields, 

magnetic displacement and the magnetic fields, 

respectively. Also 𝑚𝑖𝑗 and𝜒𝑖𝑗are defined as follows (Sek et 

al. 2015, Mohammadimehr et al. 2017, Farokhi and 

Ghayesh 2018) 
 

𝑚𝑖𝑗 = 2𝜇𝑙
2𝜒𝑖𝑗 

𝜒𝑖𝑗 =
1

2
(𝛻𝜃𝑖 + 𝛻𝜃𝑖

𝑇) 
(14) 

 

where 𝑙 is the material length scale parameter and 


is 

Lame constant and 𝜃𝑖 are the components of the rotation 

vector related to the displacement field, that are defined as 

(Ghyesh et al. 2017) 
 

𝜃𝑖 =
1

2
(𝑐𝑢𝑟𝑙𝑢)𝑖 

𝜇 =
𝐸(𝑧)

2(1 + 𝜈)
 

(15) 

 

where Poisson’s ratio is a constant. 

Also, the component of 𝜃𝑖  and 𝜒𝑖𝑗  are defined in 

Appendix A. By substituting Eqs. (12), (13), (14), (15) into 

Eq. (11), the equilibrium equations are obtained as follows 

 

𝛿𝑢0 :     
𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

+
1

2
[
𝜕2𝑄𝑥𝑧
𝜕𝑥𝜕𝑦

+
𝜕2𝑄𝑦𝑧
𝜕𝑦2

] 

              = 𝐼1
𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝜑𝑥
𝜕𝑡2

 

(16) 
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𝛿𝑣0 :     
𝜕𝑁𝑥𝑦
𝜕𝑥

+
𝜕𝑁𝑦𝑦
𝜕𝑦

−
1

2
[
𝜕2𝑄𝑥𝑧
𝜕𝑥2

+
𝜕2𝑄𝑦𝑧
𝜕𝑥𝜕𝑦

] 

              = 𝐼1
𝜕2𝑣

𝜕𝑡2
+ 𝐼2

𝜕2𝜑𝑦
𝜕𝑡2

 

𝛿𝑤𝑏:     𝑘𝑠
𝜕𝑁𝑥𝑧
𝜕𝑥

+ 𝑘𝑠
𝜕𝑁𝑦𝑧
𝜕𝑦

 

              −
1

2
[
𝜕2𝑄𝑥𝑥
𝜕𝑥𝜕𝑦

−
𝜕2𝑄𝑦𝑦
𝜕𝑥𝜕𝑦

+
𝜕2𝑄𝑥𝑦
𝜕𝑦2

−
𝜕2𝑄𝑥𝑦
𝜕𝑥2

] 

              = 𝐼1
𝜕2𝑤

𝜕𝑡2
 

𝛿𝜑𝑥 :     
𝜕𝑀𝑥𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑘𝑠𝑁𝑥𝑧 

              −
1

2
[−
𝜕𝑄𝑦𝑦
𝜕𝑦

+
𝜕𝑄𝑧𝑧
𝜕𝑦

−
𝜕𝑄𝑥𝑦
𝜕𝑥

−
𝜕2𝑂𝑥𝑧
𝜕𝑥𝜕𝑦

−
𝜕2𝑂𝑦𝑧
𝜕𝑦2

] 

               = 𝐼3
𝜕2𝜑𝑥
𝜕𝑡2

𝐼2
𝜕2𝑢

𝜕𝑡2
 

𝛿𝜑𝑦 :     
𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦𝑦

𝜕𝑦
− 𝑘𝑠𝑁𝑦𝑧 

              −
1

2
[
𝜕𝑄𝑥𝑥
𝜕𝑥

−
𝜕𝑄𝑧𝑧
𝜕𝑥

+
𝜕𝑄𝑥𝑦
𝜕𝑦

+
𝜕2𝑂𝑥𝑧
𝜕𝑥2

+
𝜕2𝑂𝑦𝑧
𝜕𝑥𝜕𝑦

] 

              = 𝐼3
𝜕2𝜑𝑦
𝜕𝑡2

𝐼2
𝜕2𝑣

𝜕𝑡2
 

𝛿𝜓:      
𝜕𝑃𝑥
𝜕𝑥

+
𝜕𝑃𝑦
𝜕𝑦

+ 𝑃𝑧 = 0 

𝛿𝜑:      
𝜕𝑅𝑥
𝜕𝑥

+
𝜕𝑅𝑦
𝜕𝑦

+ 𝑅𝑧 = 0 

(16) 

 

where 
 

∫𝜎𝑖𝑗𝑑𝑧 = 𝑁𝑖𝑗      (𝑖, 𝑗 = 𝑥, 𝑦) 

∫𝜎𝑖𝑗𝑧𝑑𝑧 = 𝑀𝑖𝑗      (𝑖, 𝑗 = 𝑥, 𝑦) 

∫𝐷𝑖𝑐𝑜𝑠 (
𝜋𝑧̂

ℎ𝑝
)𝑑𝑧 = 𝑃𝑖     (𝑖 = 𝑥, 𝑦) 

∫𝐵𝑖𝑐𝑜𝑠 (
𝜋𝑧̂

ℎ𝑝
)𝑑𝑧 = 𝑅𝑖      (𝑖 = 𝑥, 𝑦) 

∫𝐵𝑖
𝜋

ℎ𝑝
𝑠𝑖𝑛 (

𝜋𝑧̂

ℎ𝑝
)𝑑𝑧 = 𝑅𝑖     (𝑖 = 𝑧) 

∫𝑚𝑖𝑗𝑑𝑧 = 𝑄𝑖𝑗      (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧) 

∫𝑚𝑖𝑗𝑧𝑑𝑧 = 𝑂𝑖𝑗      (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧) 

𝐼1, 𝐼2, 𝐼3 = ∫𝜌(1, 𝑧, 𝑧
2)𝑑𝑧 

(17) 

 

By substituting Eq. (17) into Eq. (16), the governing 

equations of motion for micro sandwich plate are obtained 

as follows 
 

𝛿𝑢:     𝐴11
𝜕2𝑢

𝜕𝑥2
+ 𝐵11

𝜕2𝜑𝑥
𝜕𝑥2

+ 𝐴12
𝜕2𝑣

𝜕𝑥𝜕𝑦
 

           +𝐵12
𝜕2𝜑𝑦
𝜕𝑥𝜕𝑦

+ 𝐸13
𝜕𝜓

𝜕𝑥
+ 𝐹13

𝜕𝜑

𝜕𝑥
 

          +𝐴66
𝜕2𝑢

𝜕𝑦2
 + 𝐴66

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝐵66

𝜕2𝜑𝑥
𝜕𝑦2

 

           +𝐵66
𝜕2𝜑𝑦
𝜕𝑥𝜕𝑦

+
1

4
𝑆1 (

𝜕4𝑣

𝜕𝑥3𝜕𝑦
−

𝜕4𝑢

𝜕𝑥2𝜕𝑦2
) 

(18a) 

           +
1

4
𝑆2 (

𝜕4𝜑𝑦
𝜕𝑥3𝜕𝑦

−
𝜕4𝜑𝑥
𝜕𝑥2𝜕𝑦2

) 

           +
1

4
𝑆1 (

𝜕4𝑣

𝜕𝑥𝜕𝑦3
−
𝜕4𝑢

𝜕𝑦4
) 

           +
1

4
𝑆2 (

𝜕4𝜑𝑦
𝜕𝑥𝜕𝑦3

−
𝜕4𝜑𝑥
𝜕𝑦4

) 

           = 𝐼1
𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝜑𝑥
𝜕𝑡2

 

(18a) 

 

𝛿𝑣:     𝐴66
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐴66

𝜕2𝑣

𝜕𝑥2
+ 𝐵66

𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

 

           +𝐵66
𝜕2𝜑𝑦
𝜕𝑥2

+ 𝐴12
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐵12

𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

 

           +𝐴22
𝜕2𝑣

𝜕𝑦2
+ 𝐵22

𝜕2𝜑𝑦
𝜕𝑦2

+ 𝐸23
𝜕𝜓

𝜕𝑦
+ 𝐹23

𝜕𝜑

𝜕𝑦
 

           +
1

4
𝑆1 (−

𝜕4𝑣

𝜕𝑥4
+

𝜕4𝑢

𝜕𝑥3𝜕𝑦
) 

           +
1

4
𝑆2 (−

𝜕4𝜑𝑦
𝜕𝑥4

+
𝜕4𝜑𝑥
𝜕𝑥3𝜕𝑦

) 

           +
1

4
𝑆1 (−

𝜕4𝑣

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑢

𝜕𝑥𝜕𝑦3
) 

           +
1

4
𝑆2 (−

𝜕4𝜑𝑦
𝜕𝑥2𝜕𝑦2

−
𝜕4𝜑𝑥
𝜕𝑥𝜕𝑦3

) 

           = 𝐼1
𝜕2𝑣

𝜕𝑡2
+ 𝐼2

𝜕2𝜑𝑦
𝜕𝑡2

 

(18b) 

 

𝛿𝑤:     𝑘𝑠𝐴55
𝜕2𝑤

𝜕𝑥2
+ 𝑘𝑠𝐴55

𝜕𝜑𝑥
𝜕𝑥

− 𝑘𝑠𝐺51
𝜕2𝜓

𝜕𝑥2
 

           −𝑘𝑠𝐻51
𝜕2𝜑

𝜕𝑥2
+ 𝑘𝑠𝐴44

𝜕2𝑤

𝜕𝑦2
+ 𝑘𝑠𝐴44

𝜕𝜑𝑦
𝜕𝑦

 

           −𝑘𝑠𝐺52
𝜕2𝜓

𝜕𝑦2
− 𝑘𝑠𝐻52

𝜕2𝜑

𝜕𝑦2
 

           +
1

2
𝑆1 (−

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕3𝜑𝑦
𝜕𝑥2𝜕𝑦

) 

           +
1

2
𝑆1 (

𝜕3𝜑𝑥
𝜕𝑥𝜕𝑦2

−
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
) 

           +
1

4
𝑆1 (−

𝜕4𝑤

𝜕𝑦4
+

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕3𝜑𝑦
𝜕𝑦3

−
𝜕3𝜑𝑥
𝜕𝑥𝜕𝑦2

) 

           +
1

4
𝑆1 (

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
−
𝜕4𝑤

𝜕𝑥4
−
𝜕3𝜑𝑦
𝜕𝑥2𝜕𝑦

+
𝜕3𝜑𝑥
𝜕𝑥3

) 

           = 𝐼1
𝜕2𝑤

𝜕𝑡2
 

(18c) 

 

𝛿𝜑𝑥 :     − 𝑘𝑠𝐴55
𝜕𝑤

𝜕𝑥
− 𝑘𝑠𝐴55𝜑𝑥 + 𝑘𝑠𝐺51

𝜕𝜓

𝜕𝑥
 

               +𝑘𝑠𝐻51
𝜕𝜑

𝜕𝑥
+
1

2
𝑆1 (

𝜕2𝜑𝑥
𝜕𝑦2

−
𝜕3𝑤

𝜕𝑥𝜕𝑦2
) 

               +
1

2
𝑆1 (−

𝜕2𝜑𝑦
𝜕𝑥𝜕𝑦

+
𝜕2𝜑𝑥
𝜕𝑦2

) 

               +
1

4
𝑆1 (

𝜕3𝑤

𝜕𝑥𝜕𝑦2
−
𝜕3𝑤

𝜕𝑥3
−
𝜕2𝜑𝑦
𝜕𝑥𝜕𝑦

+
𝜕2𝜑𝑥
𝜕𝑥2

) 

               +
1

4
𝑆2 (

𝜕4𝑣

𝜕𝑥3𝜕𝑦
−

𝜕4𝑢

𝜕𝑥2𝜕𝑦2
) 

(18d) 
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               +
1

4
𝑆3 (

𝜕4𝜑𝑦
𝜕𝑥3𝜕𝑦

−
𝜕4𝜑𝑥
𝜕𝑥2𝜕𝑦2

) 

               +
1

4
𝑆2 (

𝜕4𝑣

𝜕𝑥𝜕𝑦3
−
𝜕4𝑢

𝜕𝑦4
) 

               +
1

4
𝑆3 (

𝜕4𝜑𝑦
𝜕𝑥𝜕𝑦3

−
𝜕4𝜑𝑥
𝜕𝑦4

) 

              − = 𝐼2
𝜕2𝑢

𝜕𝑡2
+ 𝐼3

𝜕2𝜑𝑥
𝜕𝑡2

 

(18d) 

 

𝛿𝜑𝑦:     𝐵12
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐷12

𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

+ 𝐵22
𝜕2𝑣

𝜕𝑦2
 

               +𝐷22
𝜕2𝜑𝑦
𝜕𝑦2

+ 𝐽23
𝜕𝜓

𝜕𝑦
+ 𝐾23

𝜕𝜑

𝜕𝑦
+ 𝐵66

𝜕2𝑢

𝜕𝑥𝜕𝑦
 

               +𝐵66
𝜕2𝑣

𝜕𝑥2
+ 𝐷66

𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

+ 𝐷66
𝜕2𝜑𝑦
𝜕𝑥2

 

               −𝑘𝑠𝐴44
𝜕𝑤

𝜕𝑦
− 𝑘𝑠𝐴44𝜑𝑦 + 𝑘𝑠𝐺62

𝜕𝜓

𝜕𝑦
 

               +𝑘𝑠𝐻62
𝜕𝜑

𝜕𝑦
+
1

2
𝑆1 (−

𝜕3𝑤

𝜕𝑥2𝜕𝑦
+
𝜕2𝜑𝑦
𝜕𝑥2

) 

               +
1

2
𝑆1 (

𝜕2𝜑𝑦
𝜕𝑥2

−
𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

) 

               +
1

4
𝑆1 (−

𝜕3𝑤

𝜕𝑦3
+

𝜕3𝑤

𝜕𝑥2𝜕𝑦
+
𝜕2𝜑𝑦
𝜕𝑦2

−
𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

) 

               +
1

4
𝑆2 (−

𝜕4𝑣

𝜕𝑥4
+

𝜕4𝑢

𝜕𝑥3𝜕𝑦
) 

               +
1

4
𝑆3 (−

𝜕4𝜑𝑦
𝜕𝑥4

+
𝜕4𝜑𝑥
𝜕𝑥3𝜕𝑦

) 

               +
1

4
𝑆2 (−

𝜕4𝑣

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑢

𝜕𝑥𝜕𝑦3
) 

               +
1

4
𝑆3 (−

𝜕4𝜑𝑦
𝜕𝑥2𝜕𝑦2

+
𝜕4𝜑𝑥
𝜕𝑥𝜕𝑦3

) 

               = 𝐼2
𝜕2𝑢

𝜕𝑡2
+ 𝐼3

𝜕2𝜑𝑦
𝜕𝑡2

 

(18e) 

 

𝛿𝜑:     𝐺51
𝜕2𝑤

𝜕𝑥2
+ 𝐺51

𝜕𝜑

𝜕𝑥
+ 𝐿11

𝜕2𝜓

𝜕𝑥2
+𝑁11

𝜕2𝜑

𝜕𝑥2
 

            +𝐺62
𝜕2𝑤

𝜕𝑦2
+ 𝐺62

𝜕𝜑𝑦
𝜕𝑦

+ 𝐿22
𝜕2𝜓

𝜕𝑦2
 

            +𝑁22
𝜕2𝜑

𝜕𝑦2
+ 𝐸31

𝜕𝑢

𝜕𝑥
+ 𝐽31

𝜕𝜑𝑥
𝜕𝑥

+ 𝐸32
𝜕𝑣

𝜕𝑦
 

            +𝐽32
𝜕𝜑𝑦
𝜕𝑦

− 𝐿33
1 − 𝐿33𝜓 − 𝑁33

1 −𝑁33𝜑 = 0 

(18f) 

 

𝛿𝜓:     𝐻51
𝜕2𝑤

𝜕𝑥2
+𝐻51

𝜕𝜑𝑥
𝜕𝑥

+ 𝑁11
𝜕2𝜓

𝜕𝑥2
+ 𝑂11

𝜕2𝜑

𝜕𝑥2
 

            +𝐻62
𝜕2𝑤

𝜕𝑦2
+ 𝐻62

𝜕𝜑𝑦
𝜕𝑦

+ 𝑁22
𝜕2𝜓

𝜕𝑦2
 

            +𝑂22
𝜕2𝜑

𝜕𝑦2
+ 𝐹31

𝜕𝑢

𝜕𝑥
+ 𝐾31

𝜕𝜑𝑥
𝜕𝑥

+ 𝐹32
𝜕𝑣

𝜕𝑦
 

            +𝐾32
𝜕𝜑𝑦
𝜕𝑦

− 𝑁33
2 −𝑁33𝜓 − 𝑂33

1 − 𝑂33𝜑 = 0 

(18g) 

 

where 

 

∫𝑐𝑖𝑗(1, 𝑧, 𝑧
2)𝑑𝑧 = 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 

∫(𝑒𝑖𝑗 , 𝑞𝑖𝑗)
𝜋

ℎ𝑝
𝑠𝑖𝑛 (

𝜋𝑧̂

ℎ𝑝
)𝑑𝑧 = 𝐸𝑖𝑗 , 𝐹𝑖𝑗  

∫(𝑒𝑖𝑗 , 𝑞𝑖𝑗)𝑐𝑜𝑠 (
𝜋𝑧̂

ℎ𝑝
)𝑑𝑧 = 𝐺𝑖𝑗 , 𝐻𝑖𝑗 

∫(𝑒𝑖𝑗 , 𝑞𝑖𝑗)
𝜋

ℎ𝑝
𝑠𝑖𝑛 (

𝜋𝑧̂

ℎ𝑝
) 𝑧𝑑𝑧 = 𝐽𝑖𝑗 , 𝐾𝑖𝑗 

∫(∈𝑖𝑖 𝑚𝑖𝑖 , 𝜇𝑖𝑖) (𝑐𝑜𝑠 (
𝜋𝑧̂

ℎ𝑝
))

2

𝑑𝑧 = 𝐿𝑖𝑖 , 𝑁𝑖𝑖 , 𝑂𝑖𝑖 , 

                                                                 (𝑖 = 1), 

∫𝜇𝑖𝑖 (
𝜋

ℎ𝑝
𝑠𝑖𝑛 (

𝜋𝑧̂

ℎ𝑝
))

2

𝑑𝑧 = 𝑂𝑖𝑖 ,      (𝑖 = 3) 

(19) 

 

In this study, the Navier’s method is used to solve the 

equations of motion for simply support boundary 

conditions, that these boundary conditions are expressed as 

(Farajpour et al. 2016, Arefi and Zenkour 2017a) 

 

𝑣0 = 𝑤0 = 𝜑𝑥 = 𝜑𝑦 = 𝑁𝑥 = 𝑀𝑥 = 0     𝑎𝑡     𝑥 = 0, 𝑎 

𝑢0 = 𝑤0 = 𝜑𝑥 = 𝜑𝑦 = 𝑁𝑦 = 𝑀𝑦 = 0     𝑎𝑡     𝑦 = 0, 𝑏 
(20) 

 

Also, based on Navier’s method for simply support 

boundary condition, the displacements are defined 

(Farajpour et al. 2016, Arefi and Zenkour 2017a) 

 

𝑢(𝑥, 𝑦, 𝑡) = ∑∑𝑈𝑚𝑛 𝑐𝑜𝑠( 𝛼𝑥) 𝑠𝑖𝑛( 𝜆𝑦)𝑒
𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 

𝑣(𝑥, 𝑦, 𝑡) = ∑∑𝑉𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑐𝑜𝑠( 𝜆𝑦)𝑒
𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 

𝑤(𝑥, 𝑦, 𝑡) = ∑∑𝑊𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛( 𝜆𝑦)𝑒
𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 

𝜑𝑥(𝑥, 𝑦, 𝑡) = ∑∑𝜙𝑥𝑚𝑛 𝑐𝑜𝑠( 𝛼𝑥) 𝑠𝑖𝑛( 𝜆𝑦)𝑒
𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 

𝜑𝑦(𝑥, 𝑦, 𝑡) = ∑∑𝜙𝑦𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑐𝑜𝑠( 𝜆𝑦)𝑒
𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 

𝜓(𝑥, 𝑦, 𝑡) = ∑∑𝜓𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛( 𝜆𝑦)𝑒
𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 

𝜑(𝑥, 𝑦, 𝑡) = ∑∑𝜙𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛( 𝜆𝑦)𝑒
𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 

𝛼 =
𝑚𝜋

𝑎
,     𝜆 =

𝑛𝜋

𝑏
 

(21) 

 

where 𝑚, 𝑛, 𝜔 are the axial and transverse wave numbers 

and natural frequency of vibration, respectively. Also, 

𝑈 , 𝑉 , 𝑊 , 𝜙𝑥 , 𝜙𝑦 , 𝜑 , 𝜓  are unknown amplitudes. By 

substituting Eq. (21) into Eq. (18), the matrix form of 

equations for free vibration of micro sandwich plate is 

derived as follows 

 

   ( )2

7 7 7 17 7
0K M X  

− =  (22) 
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Table 2 Property of balsa wood 

𝑬𝒙𝒙(𝑴𝑷𝒂) 𝑬𝒚𝒚(𝑴𝑷𝒂) 𝑬𝒛𝒛(𝑴𝑷𝒂) 𝑮𝒙𝒚(𝑴𝑷𝒂) 𝑮𝒚𝒛(𝑴𝑷𝒂) 

688.03 32.60 32.60 72.78 12.50 

𝑮𝒙𝒛(𝑴𝑷𝒂) 𝜈𝑥𝑦 𝜈𝑥𝑧 𝜈𝑦𝑧 𝜌(𝑘𝑔/𝑚3) 

72.80 0.007 0.007 0.4797 90.987 
 

 

 

The components of stiffness and mass matrices are 

presented in Appendix B. Also, for forced vibration analysis 

of micro sandwich plate, the external load can be illustrated 

as follows (Mohammadimehr and Rostami 2017) 

 

𝑝(𝑥, 𝑦, 𝑡) = ∑∑𝑝0 𝑠𝑖𝑛(𝛺𝑡)

∞

𝑛=1

∞

𝑚=1

𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛( 𝜆𝑦) (23) 

 

where 𝛺  is the frequency of forced vibration of micro 

plate. The deflection of micro sandwich plate for the micro 

sandwich plate is obtained as follows (Mohammadimehr 

and Rostami 2017) 

 

{𝑈𝑚𝑛, 𝑉𝑚𝑛,𝑊𝑚𝑛, 𝜑𝑥𝑚𝑛 , 𝜑𝑦𝑚𝑛}
𝑇

 

=
1

𝜔𝑛
2 − 𝛺2

𝑀−1[0 0 𝑝0 0 0]𝑇 
(24) 

 

The properties of piezo electro-magnetic material are 

presented in Table 1 that used in this research (Arefi and 

Zenkour 2017a). 

Also, the property of balsa wood is presented in Table 2 

(Newaz et al. 2016). 

 

 

3. Numerical results and discussions 
 

In this section, the result of the free vibration of micro 

sandwich plate with porous core layer and magneto-electric 

face sheets based on MCST and FSDT is presented. In the 

first, the obtained results by present study for FGM micro 

plate are compared with other research. The properties of 

FGM material for comparison between this research and the 

another articles are considered as 𝐸 = 1.44 𝐺𝑃𝑎, 𝜌 =
1220 (𝑘𝑔/𝑚3), 𝑙 = 17.6 × 10−6, 𝜈 = 0.3. Also, the non-

dimensional natural frequency 𝜔∗ = 𝜔𝑎2/ℎ√𝜌/𝐸 is used 

to comparison the results of this study and other works. 

Table 3 indicates comparison of non-dimensional natural 

 

 

frequencies of micro plate in terms of various aspect ratio 

a/h and material length scale parameter to thickness ratio l/h 

based on the present and the obtained results by Ke et al. 

(2012) and Thai and Vo (2013). This comparison shows that 

the present numerical results are in good agreement with the 

obtained results by Ke et al. (2012) and Thai and Vo (2013). 

Also, the result is shown that with increasing of length to 

thickness ratio a/h, the non-dimensional natural frequencies 

increases and also, with an increase in the material length 

scale parameter to thickness ratio, the non-dimensional 

frequency enhances. 

The effect of the thickness core layer to the total 

thickness of micro sandwich plate ratio (hc/h) and side ratio 

(a/b) on the non-dimensional natural frequency of micro 

sandwich plate are presented in Fig. 2. The result indicates 

that with increasing of hc/h, the non-dimensional frequency 

increases. Also, with an increase in the side ratio the non -

dimensional frequency increases. 

Fig. 3 shows the influence of hc/h and aspect ratio (b/h) 

on the non-dimensional natural frequency of micro plate. 

The non- dimensional frequency increases with an increase 

in aspect ratio. Also, with increasing of the thickness of 

hc/h, the non-dimensional frequency enhances. The results 

illustrated that with increasing of b/h and hc/h ratio, the 

stiffness of the plate becomes less and thus the natural 

frequency decreases; while the non-dimensional frequency 

is inversely proportional to aspect ratio, then it increases. 
 

 

 

Table 3 Comparison of fundamental non dimensional 

frequency 𝜔∗ of micro plates with simply support 

boundary conditions 

a/h l/h Present 
Thai and Vo      

(2013) 

Ke et al. 

(2012) 

5 

0.4 6.79 6.89 7.03 

0.8 9.63 10.02 10.67 

1 11.12 11.65 12.74 

10 

0.4 7.47 7.47 7.52 

0.8 10.77 11.01 11.23 

1 12.62 12.98 13.36 

20 

0.4 7.69 7.65 7.67 

0.8 11.16 11.34 11.41 

1 13.16 13.45 13.55 
 

 

Table 1 Properties of piezo electromagnetic (BiTiO3-CoFe2O4) material 

𝒄𝟏𝟏(𝑮𝑷𝒂) 𝒄𝟐𝟐(𝑮𝑷𝒂) 𝒄𝟑𝟑(𝑮𝑷𝒂) 𝒄𝟏𝟐(𝑮𝑷𝒂) 𝒄𝟏𝟑(𝑮𝑷𝒂) 𝒄𝟐𝟑(𝑮𝑷𝒂) 𝒄𝟒𝟒(𝑮𝑷𝒂) 

226 226 216 125 125 124 44.2 

𝒄𝟓𝟓(𝑮𝑷𝒂) 𝑐66(𝐺𝑃𝑎) 𝑒31(𝐶/𝑚
2) 𝑒32(𝐶/𝑚

2) 𝑒51(𝐶/𝑚
2) 𝑒62(𝐶/𝑚

2) ∈11 (𝐶/𝑉𝑚) 

44.2 50.5 -2.2 -2.2 5.8 5.8 6.5 × 10−9 

∈𝟐𝟐 (𝑪/𝑽𝒎) ∈33 (𝐶/𝑉𝑚) 𝑞13 𝑞23 𝑞51 𝑞62 𝑚11 

𝟔. 𝟓 × 𝟏𝟎−𝟗 6.5 × 10−9 290.1 290.1 275 275 5.367 × 10−12 

𝒎𝟐𝟐 𝑚33 𝜇11 𝜇22 𝜇33 𝜌(𝑘𝑔/𝑚3)  

𝟓. 𝟑𝟔𝟕 × 𝟏𝟎−𝟏𝟐 5.367 × 10−12 −297 × 10−6 −297 × 10−6 83.5 × 10−6 5550  
 

75



 

Mehdi Mohammadimehr and Mohammad Meskini 

 

Fig. 2 Effect of hc/h ratio and a/b ratio on the non-

dimensional natural frequency of micro sandwich 

plate 

 

 

 

Fig. 3 Effect of hc/h ratio and b/h ratio on the non-

dimensional natural frequency of micro sandwich 

plate 

 

 

The influence of hc/h and thickness of micro plate to 

material length scale parameter ratio (h/l) on the non-

dimensional natural frequency of micro sandwich plate are 

expressed in Fig. 4. It can be concluded that with the 

increasing of h/l for micro sandwich plate, the non- 

dimensional frequency decreases. On the other hands, it is 

seen that with an increase in the thickness of micro plate to 

material length scale parameter ratio (h/l), the stiffness of 

the plate become more and while the non-dimensional 

frequency is inversely proportional to aspect ratio, then it 

decreases. 

Fig. 5 illustrates the effect of applied voltage 𝜓 on the 

non-dimensional natural frequency of micro sandwich plate. 

With increasing of the electric potential, the stiffness of 

micro structures decreases then it leads to decrease the 

 

Fig. 4 Effect of hc/h ratio and h/l ratio on the non-

dimensional natural frequency of micro sandwich 

plate 

 

 

 

Fig. 5 Effect of hc/h ratio and applied voltage on the non-

dimensional natural frequency of micro sandwich 

plate 

 

 
natural frequency. The influence of applied magnetics 

potential 𝜑 on the non-dimensional natural frequency of 

micro sandwich plate is expressed in Fig. 6. It is observed 

that the non-dimensional frequency increases with 

increasing of the magnetic potential. Furthermore, with an 

increase in the thickness of piezo to thickness of the micro 

plate, the non-dimensional frequency increases. With 

increasing of the magnetic potential, the stiffness of micro 

structures increases then it leads to enhance the natural 

frequency. Fig. 7 presents the influence of porous 

coefficient on the non-dimensional natural frequency of 

micro sandwich plate. The numerical results are shown that 

with increasing of the porous coefficient, the non-

dimensional frequency increases. Also, the non-dimensional 

frequency increases with increasing of the hc/h ratio that 
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Fig. 6 Effect of hc/h ratio and magnetic potentials on the 

non-dimensional natural frequency of micro 

sandwich plate 

 

 

 

Fig. 7 Effect of hc/h ratio and porous coefficient on the 

non-dimensional natural frequency of micro 

sandwich plate 

 

 

difference between non dimensional frequencies with 

increasing of the hc/h ratio increases. 

Table 4 shows the influence of the type of porous with 

various hc/h ratios on the non-dimensional frequency of 

micro sandwich plate. The result indicates that with 

 

 

 

 

Fig. 8 Effect of length to width ratio (a/b) on the maximum 

deflection of micro sandwich plate 

 

 

increasing of the hc/h ratio, the non-dimensional frequency 

increases. Also, for symmetric distributions of porous type, 

the non- dimensional frequency is larger than others 

distributions type of porous. 

The influence of side ratio on the maximum deflection 

of micro sandwich plate is illustrated in Fig. 8. The 

maximum deflection decreases with increasing of side ratio. 

Also, with increasing of the frequency ratio, the maximum 

deflection in the first step increases and then decreases that 

maximum value of deflection occurs at frequency ratio 

equal to 1, which indicates a resonance phenomenon. Also 

with increasing of side ratio (a/b), micro sandwich plate 

will become a beam. It is known that the stiffness of plate is 

more than beam. 

Fig. 9 presents the influence of the frequency ratio and 

width to thickness of piezo ratio on the maximum deflection 

of micro sandwich plate. The result indicates that maximum 

deflection with increasing of the aspect ratio decreases. 

Furthermore, with increasing of the frequency ratio, the 

maximum deflection increases and then decreases. That the 

peak of deflection occurs in the frequency ratio equal to 1. 

It is seen that with increasing of aspect ratio, the structure 

becomes softer. 

The influence of thickness of micro sandwich plate to 

material length scale parameter ratio (h/l) and frequency 

ratio on the maximum deflection is considered in Figure 10. 

That with increasing of h/l, the maximum deflection of 

micro sandwich plate decreases. Also, with an increase in 

 

 
 

Table 4 Effect type of porous on fundamental non dimensional frequency 𝛺 of micro sandwich 

plates with various of hc/h 

Type of porous 0.2 0.4 0.6 0.8 

Uniform 16.90736010 17.68935294 18.46355255 19.03821119 

Symmetric 16.90740473 17.68952663 18.4640913 19.04000798 

Non symmetric stiff 16.90739907 17.68947677 18.46388669 19.03924360 

Non symmetric soft 16.90739450 17.68946421 18.46385781 19.03916761 
 

77



 

Mehdi Mohammadimehr and Mohammad Meskini 

 

Fig. 9 Effect of width to thickness of piezo ratio (b/h) on the 

maximum deflection of micro sandwich plate 

 

 

 

Fig. 10 Effect of width to thickness of piezo ratio (h/l) on 

the maximum deflection of micro sandwich plate 
 

 

the frequency ratio, the maximum deflection in the first 

increases and then decreases that when the frequency ratio 

is equal to 1, the resonance phenomenon is occurred. 

The effect of hc/h and frequency ratio on the maximum 

deflection of micro sandwich plate is shown in Fig. 11. It is 

observed that with increasing of the thickness ratio, the 

maximum deflection increases. Also, the resonance is 

occurred at frequency ratio equal to 1. With increasing of 

the frequency ratio, the maximum deflection increases and 

then decreases. It can be seen from the figure that with 

increasing of hc/h ratio, the stiffness of the plate becomes 

less. Moreover, increasing of thickness ratio leads to soft 

structures and thus the deflection of micro sandwich plate 

enhances. 

Fig. 12 shows the influence of electric potential on the 

maximum deflection of micro sandwich plate. The result 

indicates that the maximum deflection of micro sandwich 

plate increases with increasing of the electric potential. 

 

Fig. 11 Effect of hc/h ratio on the maximum deflection of 

micro sandwich plate 

 

 

 

Fig. 12 Effect of electric potential and frequency ratio on 

the maximum deflection of micro sandwich plate 

 

 

With increasing of the electric potential, the stiffness of 

micro structures decreases then it leads to increase the 

deflection of sandwich plate. The influence of applied 

magnetics potential 𝜑  on the non-dimensional natural 

frequency of micro sandwich plate is expressed in Figure 6. 

It is observed that the non-dimensional frequency increases 

with increasing of the magnetic potential. Furthermore, with 

an increase in the thickness of piezo to thickness of the 

micro plate, the non-dimensional frequency increases. With 

increasing of the magnetic potential, the stiffness of micro 

structures increases then it leads to reduce the deflection of 

sandwich plate. 

The effect of magnetic potential on the maximum 

deflection of micro sandwich plate is given in Fig. 13. With 

increasing of the magnetic potential, the maximum 

deflection decreases. 
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Fig. 13 Effect of magnetic potential and frequency ratio on 

the maximum deflection of micro sandwich plate 

 

 

4. Conclusions 
 

In this research, the influence of the electric potential 

and magnetic fields on the free and forced vibration of 

piezo magneto-electric micro sandwich plate with porous 

core layer is studied. Based on the FSDT and MCST, and 

using Hamilton’s principle, the governing equations for 

micro sandwich plate are extracted. Then, for the simply 

support boundary condition, the Navier's solution is used to 

solve these equations. The result of this research are 

expressed as follows: 

 

(1) The result indicates that with increasing of the 

thickness of core layer to total thickness of micro 

plate ratio, the non-dimensional frequency 

increases. Also with increasing of side ratio, the non 

-dimensional frequency increases. The results 

illustrated that with increasing of b/h and hc/h ratio, 

the stiffness of the plate becomes less and thus the 

natural frequency decreases; while the non-

dimensional frequency is inversely proportional to 

aspect ratio, then it increases. 

(2) With an increase in the thickness of core layer to 

thickness of micro plate ratio, the non-dimensional 

frequency increases. It can be concluded that with 

the increasing of the thickness of micro plate to 

material length scale parameter ratio, the non- 

dimensional frequency decreases. The numerical 

results are shown that with increasing of the porous 

coefficient, the non-dimensional frequency 

increases. 

(3) Based on the results the maximum deflection 

decreases with increasing of side ratio. Also, the 

maximum deflection with increasing of the aspect 

ratio decreases. 

(4) With increasing of the thickness of core layer to 

total thickness of piezo ratio, the maximum 

deflection increases. Also, the resonance 

phenomenon has been occurred in the frequency 

ratio equal to 1. 

(5) The result indicates that the maximum deflection of 

micro sandwich plate increases with increasing of 

the electric potential and vice versa for the magnetic 

potential. On the other hands, with an increase in 

the electric potential the micro structures becomes 

softer thus the deflection of sandwich plate 

increases and vice versa for magnetic potetials. 
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Nomenclature 
 

𝑎  : length of plate 

𝑏  : width of plate 

ℎ𝑐    : thickness of core layer 

ℎ𝑝   : thickness of piezo layers 

𝑐𝑖𝑗 : stiffness coefficients 

𝑒𝑖𝑗 : piezoelectric coefficients 

𝑞𝑖𝑗 : piezo magnetic coefficients 

𝜇𝑖𝑗 : magnetic coefficients 

∈𝑖𝑖   : dielectric coefficients  

𝑚𝑖𝑖   : electromagnetic coefficients 

𝐸𝑖   : electric fields 

𝐻𝑖    : magnetic fields 

𝜓  : electric potentials 

𝜑  : magnetic potentials 

𝐸  : modulus of elasticity 

𝐺  : shear modulus 

𝑒0    : porosity coefficients 

𝑒𝑚   : mass density coefficients 

𝑇  : kinetic energy 

𝑈  : strain energy 

𝑊  : external work 

𝜎𝑖𝑗   : stress tensor 

𝜀𝑖𝑗 : strain tensor 

𝑚𝑖𝑗    : symmetric couple stress tensor 

𝜒𝑖𝑗   : symmetric curvature tensor 

𝐷𝑖     : electric displacement 

𝐵𝑖     : magnetic displacement 

𝑙  : material length scale parameter 

𝜇  : Lame constant (shear modulus) 

𝑚  : number of axial wave 

𝑛  : number of transverse wave 

𝜌  : Beam density 

𝜔  : natural frequency 

𝐾  : stiffness matrix 

𝑀  : mass matrix 
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