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1. Introduction 

 

Among the numerous smart materials available, an 

increased application of piezoelectric material can be 

witnessed due to its extensive beneficial coupling 

properties. The piezoelectric (PE) material can be 

incorporated in the smart structures in such a manner that its 

properties are varied layerwise or gradually along the 

thickness (Vinyas and Kattimani 2018a, Vinyas et al. 2018). 

More specifically, the researchers have found a significant 

usage of piezoelectric structures in the engineering 

applications involving hygrothermal environ-ments. 

However, the hazardous influence of external moisture and 

thermal fields can have a deteriorating effect on the 

structural performance by reducing the stiffness and finally 

resulting in the failure. Hence, it is very crucial from the 

designer’s view point to predict the structural response of 

functionally graded (FG) piezoelectric structures very 

precisely through different computational techniques. In 

this direction, the influence of loads due to external 

moisture and thermal fields on FG-PE structures was 

assessed by Akbarzadeh and Chen (2013). The post-

buckling response of FG plates in hygrothermal environ- 
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ment was investigated by Lee and Kim (2013). The effect of 

thermal and moisture environments on variation of the static 

parameters of exponentially graded plates was probed by 

Zenkour (2013). The stability characteristics of auxetic FG 

plates subjected to hygrothermal loads was studied by 

Mansouri and Shariyat (2015). Vinyas and Kattimani 

(2018b) derived a finite element formulation to assess the 

static behaviour and dynamic analysis (Vinyas and 

Kattimani 2018c) of FG magneto-electro-elastic plates and 

beams with different composition of piezoelectric material 

subjected to various forms of hygrothermal loading. Zghal 

et al. (2018) and Frikha et al. (2018) evaluated the stability 

and dynamic characteristics of FG-CNT composite curved 

panels, respectively. Meanwhile, Trabelsi et al. (2019) 

evaluated the effect of thermal environment on the stability 

behaviour of FGM plates and shells. Several papers have 

been studied the dynamic response of the structures, such as 

composite structures under seismic events and steel-storage 

upright sections (Shah et al. 2016a, b, Shariati et al. 2019a), 

also different types of loading scenarios as full-cyclic, half 

cyclic, reversed cyclic, and shack table have employed to 

evaluate structural behaviour of these specimens in full-

scale or half-scale tests (Shariati et al. 2012a, 2014, 

Khorramian et al. 2015, Khorami et al. 2017). 

Several researches have been centered only on the 

nonlocal elasticity theory (NET) in order to evaluate the 

mechanical response of nanoplates as a matter of fact that it 

is convenient to adopt small scale effects. However, the 

limitation of NET exists in the fact that it does not considers 

the stiffness increment as observed in experimental works 

and strain gradient elasticity (Zenkour et al. 2014). To 

overcome this hurdle, many researchers have attempted to 
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propose different versions of nonlocal strain gradient theory 

(NSGT). Among them, Lim (2010) and (Ebrahimi and 

Barati 2016a, b) was successful in incorporating two length 

scales parameters in NSGT to predict the mechanical 

response of nanostructures precisely. Further, according to 

the research on nanobeams by Ebrahimi and Barati (2017a, 

b), the nonlocal and strain gradient effects significantly 

influence the stiffness-softening and stiffness-hardening 

mechanism, respectively. Ebrahimi et al. (2016) also 

incorporated NSGT to nanoplates to probe the wave 

frequencies. Heidari et al. (2015) extended the NSGT and 

adopted it for the frequency response evaluation of 

nanoplate made of functionally graded carbon nanotubes 

(FG-CNT). At the nanoscale, Zhang and Wang (2012) 

incorporate the surface effect and assessed the vibrations of 

PE nanofilms through a sandwich-plate model. The 

influence of elastic foundation on the frequency response of 

double layered viscoelastic graphene sheets was probed by 

Hashemi et al. (2015). The thermal effect on the frequency 

of double-viscoelastic FG nanoplates was investigated by 

Hosseini and Jamalpoor (2015). Among the very limited 

researches on investigating the hygrothermal effects on 

nanostructures, Alzahrani et al. (2013) studied the static 

response of nanoplates in hygrothermal environment via 

NET. Analogously, Sobhy (2015a) studied the dynamic 

characteristics of graphene sheets subjected to hygrothermal 

load which was later extended to orthotropic nanoplates 

(2015b). Also, Active vibration compensator on moving 

vessel by hydraulic parallel mechanism examined by 

Tanaka (2018). Through NET, the bending and buckling 

response of FG nanobeams was studied by Şimşek and 

Yurtcu (2013) and Mahmoud et al. (2015). Rahmani and 

Pedram (2014) proposed a nonlocal Timoshenko beam 

model to investigate the vibration response of FG 

nanobeams. Ebrahimi and Salari (2015a) evaluated the 

influence of thermal fields on the mechanical response of 

FG nanobeams considering temperature-dependent 

properties. Similar investigation was done by Zemri et al. 

(2015) through nonlocal shear deformable refined theory. 

Ebrahimi and Barati (2015b) also investigated the 

frequencies of FG nanobeams through the analytical 

formulation developed on the basis of nonlocal third order 

beam model. Using NSGT, Li et al. (2015) performed wave 

frequency response analysis for FG nanobeams. Very 

recently, realizing the benefits of viscoelastic materials and 

elastic mediums in vibration damping Lei et al. (2013) 

analyzed vibrations of size-dependent Kelvin–Voigt 

viscoelastic damped nanobeams. However, to the best 

knowledge of the authors, no study has focused on hygro-

thermal vibrational response of two-variable sinusoidal 

shear deformation viscoelastic nanoplates resting on three-

parameter viscoelastic foundation based on nonlocal strain 

gradient theory. Numerous techniques have been conducted 

for data validations and predictions such as employing 

artificial neural networks (Safa et al. 2016, 2020, Sedghi et 

al. 2018, Xu et al. 2019, Trung et al. 2019, Shariati et al. 

2020), Finite element method (Shariati et al. 2012b, 2019b, 

Shahabi et al. 2016), Finite strip method (Daie et al. 2011, 

Jalali et al. 2012, Zandi et al. 2018). Finite element method 

which is generally carried out by FE programs as ABAQUS 

and ANSYS performed as a reliable technique for empirical 

data validation and response prediction. 

In this paper the transient damping vibration of 

magneto-electro-viscoelastic-hygro-thermal (MEVHT) 

nanobeams accommodated in viscoelastic foundation based 

on nonlocal strain gradient elasticity. To this end, Higher-

order refined beam theories used for the displacement 

components. The viscoelastic foundation is made of 

Winkler-Pasternak layer. Power-law model is adopted to 

describe the continuous variation of temperature-dependent 

material properties of nanobeam. The governing equations 

of nonlocal strain gradient viscoelastic nanobeam are 

obtained by Hamilton’s principle and solved through an 

analytical solution for different boundary conditions. A 

parametric study is presented to inquire the effect of the 

nonlocal strain gradient parameter, hygro-thermo-magneto-

electro-mechanical loadings on the vibration characteristics 

of MEVHT nanobeams. The influence of the mechanical 

loading, electric loading and magnetic loading; power-law 

exponent and slenderness ratio on the frequency response of 

viscoelastic nanobeams are studied thoroughly. Moreover, 

the tricky empirical experiments have always been a barrier 

in front of the new explorations; however, employing 

intelligence solutions are one of the practical ways to 

address these issues. Whereas, artificial intelligence 

techniques have perfomed on a variety of experimental 

studies and proved to be reliable not only in case of 

parameters estimation but also the prediction of crucial 

design characteristics (Shao et al. 2018, Li et al. 2019, Luo 

et al. 2019, Milovancevic et al. 2019, Shi et al. 2019a, b, 

Suhatril et al. 2019). Different kind of algorithms has 

introduced which have their traits and advantages 

(Mansouri et al. 2019, Xu et al. 2019). Using the relevant 

algorithms in order to analytical assessment has been 

carried out on different types of studies (Safa et al. 2016, 

Sedghi et al. 2018). That being the case, performing the 

artificial intelligence algorithms is a potential method to 

avoid non-linearity and sophisticated analysis of the 

nanoscale problems. 
 

 

2. Theory and formulation 
 

2.1 Kinematic relations 
 

The kinematics displacements of MEVHT nanobeam 

can be expressed through refined shear deformable model 

by 

𝒖𝒙(𝒙, 𝒛𝒏𝒔) = 𝒖(𝒙) − 𝒛𝒏𝒔

𝝏𝒘𝒃

𝝏𝒙
− 𝒇(𝒛𝒏𝒔)

𝝏𝒘𝒔

𝝏𝒙
 (1) 

 

𝒖𝒛(𝒙, 𝒛𝒏𝒔) = 𝒘𝒃(𝒙) + 𝒘𝒔(𝒙) (2) 
 

in which, 𝑢,𝑤𝑏 , 𝑤𝑠 are the axial mid-plane displacement, 

bending and shear components of transverse displacement, 

respectively. 
 

𝑓(𝑧𝑛𝑠) = 𝑧𝑛𝑠 + ℎ0 − 𝑡𝑎𝑛[𝑚(𝑧𝑛𝑠 + ℎ0)],𝑚 = 0.03 (3) 
 

where, 𝑓(𝑧𝑛𝑠) is the shape function. In the present study,  

𝑓(𝑧𝑛𝑠) signifies the distribution of shear stress/strain across 

50



 

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading 

the beam thickness. Since, a trigonometric variation is 

assumed in the current work, the necessity of shear 

correction factor can be eliminated (Sobhy 2015b). 

For the proposed beam model, the non-zero strains are 

represented as follows 
 

휀xx =
𝜕𝑢

𝜕𝑥
− 𝑧𝑛𝑠

𝜕2𝑤𝑏

𝜕𝑥2
− 𝑓(𝑧𝑛𝑠)

𝜕2𝑤𝑠

𝜕𝑥2
 (4) 

 

𝛾𝑥𝑧 = 𝑔(𝑧𝑛𝑠)
𝜕𝑤𝑠

𝜕𝑥
 (5) 

 

Where 𝑔(𝑧𝑛𝑠) = 1 −
𝑑𝑓(𝑧𝑛𝑠)

𝑑𝑧𝑛𝑠
. Also, the Hamilton’s 

principle states that 
 

∫ 𝛿(𝛱𝑆 − 𝛱𝐾 + 𝛱𝑊)d𝑡
𝑡

0

= 0 (6) 

 

where 𝛱𝑆  is the total strain energy, 𝛱𝐾  is the kinetic 

energy and 𝛱𝑊  is the work done by external applied 

forces. The first variation of strain energy 𝛱𝑆  can be 

calculated as 
 

𝛿𝛱𝑆 = ∫𝜎𝑖𝑗𝛿휀𝑖𝑗𝑑𝑣 = ∫𝜎𝑥𝛿휀𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛿𝛾𝑦𝑧 (7) 

 

Substituting Eqs. (1)-(2) into Eq.(6) yields 

 

𝛿𝛱𝑆 = ∫ (𝑁
𝜕𝛿𝑢

𝜕𝑥

𝑙

0

− 𝑀𝑏

𝜕2𝛿𝑤𝑏

𝜕𝑥2
− 𝑀𝑠

𝜕2𝛿𝑤𝑠

𝜕𝑥2
 

             +𝑄
𝜕𝛿𝑤𝑠

𝜕𝑥
)𝑑𝑥 

(8) 

 

In which the forces and moments expressed in the above 

equation are defined as follows 
 

(𝑁,𝑀𝑏, 𝑀𝑠) = ∫ (1, 𝑧𝑛𝑠, 𝑓)𝜎𝑥𝑥

ℎ

2
−ℎ0

−
ℎ

2
−ℎ0

𝑑𝑧𝑛𝑠, 𝑄 

                       = ∫ 𝑔𝜎𝑥𝑧

ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑑𝐴 

(9) 

 

In this study, the nanobeam is subjected to an in-plane 

axial magnetic field. Hence, to derive the exerted body 

force from longitudinal magnetic field𝐻 = (𝐻𝑥, 0,0), the 

Maxwell relations are adopted 

 

𝑓𝐿𝑧 = 𝜂(𝛻 × (𝛻 × (�⃗� × �⃗⃗� ))) × �⃗⃗�  (10) 

 

where �⃗� = (𝑢𝑥, 0, 𝑢𝑧)  is displacement vector and 𝜂  is 

magnetic parliamentary. For a planar beam deformation 

with the assumed displacement field, the resultant Lorentz 

force takes the form 
 

𝑓𝐿𝑧 = 𝜂 ∫𝑓𝑧
𝐴

𝑑𝐴 = 𝜂𝐴𝐻𝑥
2
𝜕2𝑤

𝜕𝑥2
 (11) 

 

The first variation of the work done by applied forces 

can be written in the form 

𝛿Π𝑤 = ∫ [−𝑁𝑥
0

𝑙

0

𝜕𝑤𝑏

𝜕𝑥

𝜕𝛿𝑤𝑏

𝛿𝑥
 

              −𝑁𝑦
0
𝜕𝑤𝑠

𝜕𝑦

𝜕𝛿𝑤𝑠

𝛿𝑦
+ 2𝛿𝑁𝑥𝑦

0
𝜕𝑤𝑏

𝜕𝑥

𝜕𝑤𝑠

𝛿𝑦
 

              −𝑘𝑤𝛿(𝑤𝑏 + 𝑤𝑠) + 𝑘𝑝𝜕
2
(𝑤𝑏+𝑤𝑠)

𝜕𝑥2
]𝑑𝑥 

              −𝑐𝑑

𝜕𝛿(𝑤𝑏 + 𝑤𝑠)

𝛿𝑡
 

              −𝜂𝐴𝐻𝑥
2
𝜕2𝛿(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+𝑓13𝛿(𝑤𝑏 + 𝑤𝑠) 

(12) 

 

Where 𝑁𝑇 , 𝑁𝐻 , f13 are flexoelectricity coefficient, 

applied forces due to variation of temperature and moisture 

as 

𝑁𝑇 = ∫ 𝐸(𝑧𝑛𝑠)𝛼(𝑧𝑛𝑠)(𝛥𝑇)𝑑𝑧𝑛𝑠

ℎ/2−ℎ0

−ℎ/2−ℎ0

, 

𝑁𝐻 = ∫ 𝐸(𝑧𝑛𝑠)𝛽(𝑧𝑛𝑠)(𝛥𝐻)𝑑𝑧𝑛𝑠

ℎ/2−ℎ0

−ℎ/2−ℎ0

 

(13) 

 

Where 𝛥𝑇 = 𝑇 − 𝑇0  and 𝛥𝐻 = 𝐻 − 𝐻0  in which T0 

and H0 are the reference temperature and moisture 

concentration, respectively, where 𝑘𝑤 , 𝑘𝑝  and 𝑐𝑑  are 

linear, shear and damping coefficients of medium, 

respectively. The variation of kinetic energy is represented 

by 
 

𝛿Π𝑘 = ∫ 𝐼0 [
𝜕𝑢

𝜕𝑡

𝑙

0

𝜕𝛿𝑢

𝜕𝑡
+ (

𝜕𝑤𝑏

𝜕𝑡
+

𝜕𝛿𝑤𝑠

𝛿𝑡
) (

𝜕𝑤𝑏

𝜕𝑡
+

𝜕𝛿𝑤𝑠

𝛿𝑡
) 

              −𝐼1 (
𝜕𝑢

𝜕𝑡

𝜕2𝛿𝑤𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝛿𝑢

𝜕𝑡

𝜕2𝑤𝑏

𝛿𝑥𝜕𝑡
) 

              +𝐼2(
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤𝑏

𝜕𝑥𝜕𝑡
)] 

              −𝐽1 (
𝜕𝑢

𝜕𝑡

𝜕2𝛿𝑤𝑠

𝜕𝑥𝜕𝑡
+

𝜕𝛿𝑢

𝜕𝑡

𝜕2𝑤𝑠

𝛿𝑥𝜕𝑡
) 

              +𝐾2 (
𝜕2𝑤𝑠

𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤𝑠

𝜕𝑥𝜕𝑡
) 

              +𝐽2 (
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤𝑠

𝜕𝑥𝜕𝑡
+

𝜕2𝑤𝑠

𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤𝑏

𝜕𝑥𝜕𝑡
) 

(14) 

 

where 
 

(𝐼0, 𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐾2)

= ∫ 𝜌(𝑧𝑛𝑠)(1, 𝑧𝑛𝑠, 𝑓, 𝑧𝑛𝑠
2

ℎ/2−ℎ0

−ℎ/2−ℎ0

, 𝑧𝑛𝑠𝑓, 𝑓2)𝑑𝑧𝑛𝑠 
(15) 

 

The governing equations are obtained by inserting Eqs. 
(9)-(16) in Eq. (8) when the coefficients of 𝛿𝑢, 𝛿𝑤𝑏 and 

𝛿𝑤𝑠 are equal to zero 

 
𝜕𝑁

𝜕𝑥
= 𝐼0

𝜕2𝑢

𝜕𝑡2
− 𝐼1

𝜕3𝑤𝑏

𝜕𝑥𝜕𝑡2
− 𝐽1

𝜕3𝑤𝑠

𝜕𝑥𝜕𝑡2
− 𝜂𝐴𝐻𝑥

2(𝑤𝑏 + 𝑤𝑠) (16) 

 
𝜕2𝑀𝑏

𝜕𝑥2
= (𝑁𝑇 + 𝑁𝐻)

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+ 𝐼0 (

𝜕2𝑤𝑏

𝜕𝑡2
+

𝜕2𝑤𝑠

𝜕𝑡2
) 

                +𝐼1
𝜕3𝑢

𝜕𝑥𝜕𝑡2
− 𝐼2

𝜕4𝑤𝑏

𝜕𝑥2𝜕𝑡2
− 𝐽2

𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑡2
 

                +𝑘𝑤(𝑤𝑏 + 𝑤𝑠) − 𝑘𝑝

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+ 𝑐𝑑

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑡
 

(17) 
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𝜕2𝑀𝑠

𝜕𝑥2
+

𝜕𝑄

𝜕𝑥
= (𝑁𝑇 + 𝑁𝐻)

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
 

                          +𝐼0 (
𝜕2𝑤𝑏

𝜕𝑡2
+

𝜕2𝑤𝑠

𝜕𝑡2
) + 𝐽1

𝜕3𝑢

𝜕𝑥𝜕𝑡2
 

                          −𝐽2
𝜕4𝑤𝑏

𝜕𝑥2𝜕𝑡2
− 𝐾2

𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑡2
 

                          +𝑘𝑤(𝑤𝑏 + 𝑤𝑠) − 𝑘𝑝

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
 

                        +𝑐𝑑

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑡
 

(18) 

 

2.2 The nonlocal strain gradient elasticity model for 
FGM nanobeams 

 

Based on nonlocal strain gradient theory, the stress 

accounts for both nonlocal elastic stress field and the strain 

gradient stress field. Hence, the stress can be expressed by 
 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
(0)

−
𝑑𝜎𝑖𝑗

(1)

𝑑𝑥
 (19) 

 

Where the stress 𝜎𝑥𝑥
(0)

 corresponds to strain 휀𝑥𝑥  and 

higher order stress 𝜎𝑥𝑥
(1)

 corresponds to strain gradient 

휀𝑥𝑥,𝑥 and are defined by 
 

𝜎𝑖𝑗
(0)

= ∫ 𝐶𝑖𝑗𝑘𝑙

𝐿

0

𝛼0(𝑥, 𝑥 ′, 𝑒0𝑎)휀𝑘𝑙
′ (𝑥 ′)𝑑𝑥 ′ (20) 

 

𝜎𝑖𝑗
(1)

= 𝑙2 ∫ 𝐶𝑖𝑗𝑘𝑙

𝐿

0

𝛼1(𝑥, 𝑥 ′, 𝑒1𝑎)휀𝑘𝑙,𝑥
′ (𝑥 ′)𝑑𝑥 ′ (21) 

 

In which 𝐶𝑖𝑗𝑘𝑙are the elastic constants and 𝑒0𝑎  and 

𝑒1𝑎 consider the influences of nonlocal stress field, and 

𝑙denote the material length scale parameter and captures the 

effects of higher-order strain gradient stress field. 
 

[1 − (𝑒1𝑎)2𝛻2][1 − (𝑒0𝑎)2𝛻2]𝜎𝑖𝑗 

= 𝐶𝑖𝑗𝑘𝑙[1 − (𝑒1𝑎)2𝛻2]휀𝑘𝑙 

−𝐶𝑖𝑗𝑘𝑙𝑙
2[1 − (𝑒0𝑎)2𝛻2]𝛻2휀𝑘𝑙 

(22) 

 

The constitutive Eq. (23) can be developed to capture 

the influence of hygro-thermal loading as 
 

𝜎𝑖𝑗−(𝑒𝑎)2∇2𝜎𝑖𝑗 

= 1 − 𝑙2∇2 [
𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙 − 𝑓𝑘𝑙𝑖𝑗

𝜕𝐸𝐾

𝜕𝑥𝑙
+ 𝐶𝑖𝑗𝑘𝑙𝛼𝑘𝑙

−𝐶𝑖𝑗𝑘𝑙𝛽𝑘𝑙∆𝐻 − 𝜂𝐴𝐻𝑥
2              

] 
(23) 

 

where 𝛼𝑖𝑗  and 𝛽𝑖𝑗  are thermal and moisture expansion 

coefficients, respectively; T and H denote the temperature 

and moisture variation, respectively. Thus, the constitutive 

relations for a nonlocal refined shear deformable FG 

nanobeam can be stated as 
 

𝜎𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥

𝜕𝑥2
 

= 𝐸(𝑍𝑛𝑠) (휀𝑥𝑥 − 𝜂
𝜕2휀𝑥𝑥

𝜕𝑥2
− 𝛼∆𝑇 − 𝛽∆𝐻 − 𝑓𝑙𝑧) 

(24a) 

 

𝜎𝑥𝑧 − 𝜇
𝜕2𝜎𝑥𝑧

𝜕𝑥2 = 𝐺(𝑧𝑛𝑠)(𝛾𝑥𝑧 − 𝜂
𝜕2𝛾𝑥𝑧

𝜕𝑥2 )  (24b) 

Where 𝜇 = 𝑒𝑎2  and 𝜂 = 𝑙2.  Applying the Kelvin’s 

model on elastic materials with viscoelastic structural 

damping coefficient (g) and integrating Eq. (24) over the 

cross-section area of nanobeam provides the following 

nonlocal relations for a refined FGM beam model as 
 

𝑁 − 𝜇
𝜕2𝑁

𝜕𝑥2
= (1 − 𝜂

𝜕2

𝜕𝑥2
)(1 + 𝑔

𝜕

𝜕𝑡
) 

(𝐴
𝜕𝑢

𝜕𝑥
− 𝐵

𝜕2𝑤𝑏

𝜕𝑥2
− 𝐵𝑆

𝜕2𝑤𝑠

𝜕𝑥2
) − 𝑁𝑥

𝑇 − 𝑁𝑥
𝐻 

(25) 

 

𝑀𝑏 − 𝜇
𝜕2𝑀𝑏

𝜕𝑥2
= (1 − 𝜂

𝜕2

𝜕𝑥2
) (1 + 𝑔

𝜕

𝜕𝑡
) 

(𝐵
𝜕𝑢

𝜕𝑥
− 𝐷

𝜕2𝑤𝑏

𝜕𝑥2
− 𝐷𝑠

𝜕2𝑤𝑠

𝜕𝑥2
) − 𝑀𝑏

𝑇 − 𝑀𝑏
𝐻 

(26) 

 

𝑀𝑠 − 𝜇
𝜕2𝑀𝑠

𝜕𝑥2
= (1 − 𝜂

𝜕2

𝜕𝑥2
) (1 + 𝑔

𝜕

𝜕𝑡
) 

(𝐵𝑠

𝜕𝑢

𝜕𝑥
− 𝐷𝑠

𝜕2𝑤𝑏

𝜕𝑥2
− 𝐻𝑠

𝜕2𝑤𝑠

𝜕𝑥2
) − 𝑀𝑠

𝑇 − 𝑀𝑠
𝐻 

(27) 

 

𝑄 − 𝜇
𝜕2𝑄

𝜕𝑥2
= (1 − 𝜂

𝜕2

𝜕𝑥2
) (1 + 𝑔

𝜕

𝜕𝑡
) (𝐴𝑠

𝜕𝑤𝑠

𝜕𝑥
) (28) 

 

Where the cross-sectional rigidities are calculated as 

follows 
 

(𝐴, 𝐵, 𝐵𝑠, 𝐷, 𝐷𝑠, 𝐻𝑠)

= ∫ 𝐸(𝑧𝑛𝑠)(1, 𝑧𝑛𝑠, 𝑓, 𝑧𝑛𝑠
2, 𝑧𝑛𝑠𝑓, 𝑓2)

ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑑𝑧𝑛𝑠 
(29) 

 

𝐴𝑠 = ∫ 𝑔2𝐺(𝑧𝑛𝑠)
ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑑𝑧𝑛𝑠 (30) 

 

And 
 

{𝑁𝑥
𝑇 , 𝑀𝑏

𝑇 , 𝑀𝑠
𝑇} = ∫ 𝐸(𝑧𝑛𝑠)𝛼(𝑧𝑛𝑠)

ℎ

2
−ℎ0

−
ℎ

2
−ℎ0

 

                                (𝑇 − 𝑇0){1, 𝑧𝑛𝑠, 𝑓}𝑑𝑧𝑛𝑠, 

{𝑁𝑥
𝐻, 𝑀𝑏

𝐻, 𝑀𝑠
𝐻} = ∫ 𝐸(𝑧𝑛𝑠)𝛽(𝑧𝑛𝑠)

ℎ

2
−ℎ0

−
ℎ

2
−ℎ0

 

                                (𝐻 − 𝐻0){1, 𝑧𝑛𝑠, 𝑓}𝑑𝑧𝑛𝑠 

(31) 

 

The governing equations of shear deformable 

viscoelastic nanobeam resting on three-parameter 

viscoelastic medium in hygro-thermal environment in terms 

of displacements are obtained by inserting for 𝑁, 𝑀𝑏, 𝑀𝑠 

and 𝑄 from Eqs. (25)-(28), respectively into Eqs. (16)-(18) 

as follows 

 

𝐴(1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕2𝑢

𝜕𝑥2
+ 𝑔

𝜕3𝑢

𝜕𝑡𝜕𝑥2
) 

−𝐵 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕3𝑤𝑏

𝜕𝑥3
+ 𝑔

𝜕4𝑤𝑏

𝜕𝑡𝜕𝑥3
) 

−𝐵𝑠 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕3𝑤𝑠

𝜕𝑥3
+ 𝑔

𝜕4𝑤𝑠

𝜕𝑡𝜕𝑥3
) 

(32) 
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−𝐼0
𝜕2𝑢

𝜕𝑡2
+ 𝐼1

𝜕3𝑤𝑏

𝜕𝑥𝜕𝑡2
+ 𝐽1

𝜕3𝑤𝑠

𝜕𝑥𝜕𝑡2
 

+𝜇 (𝐼0
𝜕4𝑢

𝜕𝑥2𝜕𝑡2
− 𝐼1

𝜕5𝑤𝑏

𝜕𝑥3𝜕𝑡2
− 𝐽1

𝜕5𝑤𝑠

𝜕𝑥3𝜕𝑡2
) = 0 

(32) 

 

𝐵 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕3𝑢

𝜕𝑥3
+ 𝑔

𝜕4𝑢

𝜕𝑡𝜕𝑥3
) 

−𝐷 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕4𝑤𝑏

𝜕𝑥4
+ 𝑔

𝜕5𝑤𝑏

𝜕𝑡𝜕𝑥4
) 

−𝐷𝑠 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕4𝑤𝑠

𝜕𝑥4
+ 𝑔

𝜕5𝑤𝑠

𝜕𝑡𝜕𝑥4
) 

−(𝑁𝑇 + 𝑁𝐻)
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
− 𝐼0 (

𝜕2𝑤𝑏

𝜕𝑡2
+

𝜕2𝑤𝑠

𝜕𝑡2
) 

−𝐼1
𝜕3𝑢

𝜕𝑥𝜕𝑡2
+ 𝐼2

𝜕4𝑤𝑏

𝜕𝑥2𝜕𝑡2
+ 𝐽2

𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑡2
 

−𝑘𝑤(𝑤𝑏 + 𝑤𝑠) + 𝑘𝑝

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
 

−𝑐𝑑

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑡
+ 𝜇 ((𝑁𝑇 + 𝑁𝐻)

𝜕4(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥4
 

+𝐼0 (
𝜕4𝑤𝑏

𝜕𝑥2𝜕𝑡2
+

𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑡2
) 

+𝐼1
𝜕5𝑢

𝜕𝑥3𝜕𝑡2
− 𝐼2

𝜕6𝑤𝑏

𝜕𝑥4𝜕𝑡2
− 𝐽2

𝜕6𝑤𝑠

𝜕𝑥4𝜕𝑡2
 

+𝑘𝑤

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
− 𝑘𝑝

𝜕4(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥4
 

+𝑐𝑑

𝜕3(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2𝜕𝑡
) = 0 

(33) 

 

𝐵𝑠 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕3𝑢

𝜕𝑥3
+ 𝑔

𝜕4𝑢

𝜕𝑡𝜕𝑥3
) 

−𝐷𝑠 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕4𝑤𝑏

𝜕𝑥4
+ 𝑔

𝜕5𝑤𝑏

𝜕𝑡𝜕𝑥4
) 

−𝐻𝑠 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕4𝑤𝑠

𝜕𝑥4
+ 𝑔

𝜕5𝑤𝑠

𝜕𝑡𝜕𝑥4
) 

+𝐴𝑆 (1 − 𝜂
𝜕2

𝜕𝑥2
)(

𝜕2𝑤𝑠

𝜕𝑥2
+ 𝑔

𝜕3𝑤𝑠

𝜕𝑡𝜕𝑥2
) 

−𝐼0 (
𝜕2𝑤𝑏

𝜕𝑡2
+

𝜕2𝑤𝑠

𝜕𝑡2
) − 𝐽1

𝜕3𝑢

𝜕𝑥𝜕𝑡2
+ 𝐽2

𝜕4𝑤𝑏

𝜕𝑥2𝜕𝑡2
 

+𝑘2

𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑡2
− 𝑘𝑤(𝑤𝑏+𝑤𝑠) − 𝜂𝐴𝐻𝑥

2(𝑤𝑏 + 𝑤𝑠) 

+𝑘𝑝

𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑥2
− 𝑐𝑑

𝜕(𝑤𝑏+𝑤𝑠)

𝜕𝑡
 

+𝜇((𝑁𝑇+𝑁𝐻)
𝜕4(𝑤𝑏+𝑤𝑠)

𝜕𝑥4
+ 𝐼0 (

𝜕4𝑤𝑏

𝜕𝑥2𝜕𝑡2
+

𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑡2
) 

+𝐽1
𝜕3𝑢

𝜕𝑥3𝜕𝑡2
− 𝐽2

𝜕6𝑤𝑏

𝜕𝑥4𝜕𝑡2
+ 𝑘2

𝜕6𝑤𝑠

𝜕4𝜕𝑡2
+ 𝑘𝑤

𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑥2
 

+𝑘𝑝

𝜕4(𝑤𝑏+𝑤𝑠)

𝜕𝑥4
+ 𝜂𝐴𝐻𝑥

2
𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑥2
 

+𝑐𝑑

𝜕3(𝑤𝑏+𝑤𝑠)

𝜕𝑥2𝜕𝑡
−

𝑒31

2𝑘33
𝑓13 (

𝜕2𝑤𝑏

𝜕𝑥2
+

𝜕2𝑤𝑠

𝜕𝑥2
) 

(34) 

 
 
 
 
 

3. Solution procedure 
 

In this section, an analytical solution is implemented in 

which the generalized displacements are expanded in a 

double Fourier series in terms of unknown parameters. The 

selection of the functions in these series is associated to 

those which satisfy the boundary edges of the nanoplate. 

These boundary edges are given as : 
 

● Simply-supported (S): 
 

𝑤𝑏 = 𝑤𝑠 = 𝑁𝑥 = 𝑀𝑥 = 0          at          𝑥 = 0, 𝑎 (35) 
 

𝑤𝑏 = 𝑤𝑠 = 𝑁𝑦 = 𝑀𝑦 = 0          at          𝑦 = 0, 𝑏 (36) 
 

● Clamped (C): 
 

𝑢 = 𝑣 = 𝑤𝑏 = 𝑤𝑠 = 0 
at     𝑥 = 0, 𝑎     and     𝑦 = 0, 𝑏 

(37) 

 

To satisfy above-mentioned boundary conditions, the 

displacement quantities are presented in the following form 
 

𝑢 = ∑ ∑ 𝑈𝑚𝑛

𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑌𝑛(𝑦)

∞

𝑛=1

∞

𝑚=1

 (38) 

 

𝑤𝑏 = ∑ ∑ 𝑊𝑏𝑚𝑛𝑋𝑚(𝑥)

∞

𝑛=1

𝑌𝑛(𝑦)

∞

𝑚=1

 (39) 

 

𝑤𝑠 = ∑ ∑ 𝑊𝑠𝑚𝑛𝑋𝑚(𝑥)

∞

𝑛=1

𝑌𝑛(𝑦)

∞

𝑚=1

 (40) 

 

where (𝑈𝑚𝑛, 𝑊𝑏𝑚𝑛, 𝑊𝑧𝑚𝑛) are the unknown coefficients 

and for different boundary conditions (𝛼 = 𝑚𝜋/𝑎 , 𝛽 =
𝑛𝜋/𝑏). 

where 

{[𝐾] + [𝐶]𝜔 + [𝑀]𝜔2} {

𝑈𝑛

𝑊𝑏𝑛

𝑊𝑠𝑛

} = 0 (41) 

 

Where [K], [C] and [M] are the stiffness, damping, and 

mass matrixes for FG nanobeam, respectively. 
 

𝑘1,1 = 𝐴(𝛼3 − 𝜂𝛼11), 
𝐾1,2 = 𝐵(𝛼9 − 𝜂𝛼13), 
𝐾1,3 = 𝐵𝑆(𝛼9 − 𝜂𝛼13) 

𝑘2,3 = (𝑁𝐻 + 𝑁𝑇−𝑘𝑝)(−𝛼7 + 𝜇𝛼9) − 𝑘𝑤(𝛼5 − 𝜇𝛼7) 

             −𝑓𝑙𝑧(𝛼5 − 𝜇𝛼7) − 𝐷𝑠(𝛼9 − 𝜂𝛼13) 

𝐾2,2 = (𝑁𝐻 + 𝑁𝑇−𝑘𝑝)(−𝛼7 + 𝜇𝛼9) − 𝑘𝑤(𝛼5 − 𝜇𝛼7) 

             −𝑓𝑙𝑧(𝛼5 − 𝜇𝛼7) − 𝐷(𝛼9 − 𝜂𝛼13) 

𝐾3,3 = (𝑁𝐻 + 𝑁𝑇−𝑘𝑝)(−𝛼7 + 𝜇𝛼9) − 𝑘𝑤(𝛼5 − 𝜇𝛼7) 

             −𝐴𝑠(𝛼5 − 𝜇𝛼7) −
𝑒31

2𝑘33

𝑓13(𝛼5 − 𝜇𝛼7) 

             −𝐻𝑠(𝛼9 − 𝜂𝛼13) 
𝑐1,1 = 𝐴𝑖𝑔(𝛼3 − 𝜂𝛼11), 
𝑐1,2 = 𝐵𝑖𝑔(𝛼9 − 𝜂𝛼13), 
𝑐1,3 = 𝐵𝑠 𝑖𝑔(𝛼9 − 𝜂𝛼13) 

𝑐3,3 = −𝑐𝑑𝑖(𝛼5 − 𝜇𝛼7) + 𝐴𝑠𝑖𝑔(𝛼7 − 𝜇𝛼9) 
            −𝐻𝑠(𝛼9 − 𝜂𝛼13) 

(42) 
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Table 1 Flexoelectric properties of PZT-5H sandwich beam 

Properties PZT-5H 

c11 (Gpa)
 

102 

c12 31 

c66 35.5 

e31 (C/m2) 17.05 

k33 (C/(Vm)) 1.76 × 10-8 

f31 (V) 10-7 

𝑐11
𝑠  (N/m) 102 

𝑐12
𝑠  3.3 

𝑐66
𝑠  2.13 

𝑒31
𝑠  (C/m) -3.8 × 10-8 

 

 

 

 

Fig. 1 Geometry of MEVHT nanobeam resting on 

viscoelastic foundation 

 

 

𝑚1,1 = (𝛼1 − 𝜂𝛼3)𝐼0, 
𝑚1,2 = (𝛼7 − 𝜂𝛼9)𝐼1, 
𝑚1,3 = (𝛼7 − 𝜂𝛼9)𝐽1 
𝑚2,2 = (𝛼5 − 𝜂𝛼7)𝐼0 − (𝛼7 − 𝜂𝛼9)𝐼2, 
𝑚2,3 = (𝛼5 − 𝜂𝛼7)𝐼0−(𝛼7 − 𝜂𝛼9) 𝐽2 
𝑚3,3 = (𝛼5 − 𝜂𝛼7)𝐼0−(𝛼7 − 𝜂𝛼9)𝑘2 

(42) 

 

In which 
 

𝛼1 = ∫ 𝑋𝑚
′

𝐿

0

𝑋𝑚
′ 𝑑𝑥, 𝛼3 = ∫ 𝑋𝑚

′′′𝑋𝑚
′

𝐿

0

𝑑𝑥 (43) 

 

 

 

𝛼5 = ∫ 𝑋𝑚

𝐿

0

𝑋𝑚𝑑𝑥, 𝛼7 = ∫ 𝑋𝑚
′′ 𝑋𝑚

𝐿

0

𝑑𝑥, 𝛼9 

      = ∫ 𝑋𝑚
′′′′𝑋𝑚

𝐿

0

𝑑𝑥 

(44) 

 

𝛼11 = ∫ 𝑋𝑚
′′′′′

𝐿

0

𝑋𝑚
′ 𝑑𝑥, 𝛼13 = ∫ 𝑋𝑚

′′′′′′𝑋𝑚

𝐿

0

𝑑𝑥 (45) 

 

 

4. Numerical results and discussions 
 

In this section the damped frequency response of 

MEVHT nanobeams are depicted through several set of 

illustrations considering various boundary conditions (S-S 

and C-C). The material properties adopted for MEVHT 

nanobeam are shown in Table 1. Unless and otherwise 

mentioned, the specifications of MEVHT nanobeams 

considered in this analysis are as follows: L = 10 nm, L/h = 

20, ΔT = 20, ΔH = 1, Kw = Kp = 0. 

The frequencies are evaluated in the dimensionless form 

with the aid of dimensionless viscoelastic parameters that 

can be represented as follows 
 

�̃� = ωL2√
𝜌𝑐𝐴

𝐸𝑐𝐼
,        𝐾𝑤 = 𝑘𝑤

𝐿4

𝐸𝑐𝐼
,        𝐾𝑝 = 𝑘𝑝

𝐿2

𝐸𝑐𝐼
, 

𝐶 = 𝑐𝑑

𝐿2

√𝐸𝑐Iρ𝑐
𝐴

,     𝐺 =
𝑔

𝐿2
√

𝐸𝑐𝐼

𝜌𝑐𝐴
 

(46) 

 

Figs. 2 and 3 show the effects of nonlocal parameter (µ) 

and length scale parameter (𝜂) on damping frequency of 

MEVHT nanobeams, respectively. It is observable from 

Fig. 2 that with the higher nonlocal parameter (µ), the 

imaginary part (IP) and real part (RP) of eigen frequency 

reduces. Further, the critical damping co-efficient reduces 

for higher values of µ. 

From Fig. 3, it can be witnessed that with a higher value 

of length scale parameter (𝜂) the critical point move 

towards right. The value of critical damping coefficient 

reduces indicating that the critical damping coefficient for 

the nonlocal elasticity beam model is lesser that that of 

nonlocal strain gradient beam model. Meanwhile, the 𝜇 
 

 

 

  

Fig. 2 Effect of 𝜇 on (a) IP of eigen frequency; (b) RP of eigen frequency of MEVHT nanobeam (L/h = 10, p = 1, 

ΔT = 20, ΔH = 1, ɳ = 0, Kw = Kp = 0) 

54



 

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading 

 

 

 

 

 

 

and 𝜂  has a negligible influence on the real part of 

frequency at smaller damping coefficient. However, its 

effect on real eigen frequency becomes significant at larger 

damping coefficients. 

The effect of different magnitudes of hygrothermal 

loads on the vibration behavior of MEVHT nanobeams at 

an internal damping (G) of 0.01 is presented in Fig. 4. It can 

be witnessed from this figure that larger magnitude of 

 

 

 

 

 

 

moisture (ΔH) and temperature gradient (ΔT) yields a 

smaller critical damping coefficient. 

Fig. 5 shows the influence of slenderness ratio (L/h) on 

the imaginary frequencies of MEVHT nanobeams. The 

effect of hygro-thermal loads are nullified in this study. 

Also, S-S and C-C boundary conditions are considered. It 

can be observed from these figures that for both the 

boundary condition considered, the variation of the 

  

Fig. 3 Effect of 𝜂 on (a) IP of eigen frequency; (b) RP of eigen frequency of MEVHT nanobeam (L/h = 10, p = 1, 

ΔT = 20, ΔH = 1, ɳ = 0, Kw = Kp = 0) 

  

Fig. 4 Effect of hygrothermal loads on (a) IP of eigen frequency; (b) RP of eigen frequency of MEVHT nanobeam 

(L/h = 10, ΔT = 20, ΔH = 1, Kw = 50, Kp = 10, µ = 2, h = 1) 

  

(a) S-S (b) C-C 

Fig. 5 Influence of slenderness ratio on the vibration behavior of the FGM viscoelastic nanobeams for various 

damping coefficients without and with hygro-thermal loading: (a) S-S; (b) C-C boundary condition 

(Kw = 50, Kp = 10, p = 1, µ = 2, h = 1) 
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Fig. 6 Effect of magnetic field intensity on the 

dimensionless frequency of MEVHT nanobeam 

for different length scale parameters (L/h = 30, 

Kp = Kw = 0) 
 

 

imaginary frequencies are negligible at lower slenderness 

ratios, while it becomes prominent at larger values of 

slenderness ratio. Also, a higher damping coefficient yields 

in reduced frequency for all values of slenderness ratio. 

The effect of magnetic field length scale parameter on 

dimensionless frequency of MEVHT nanobeams is 

presented in Fig. 6. From this figure it can be witnessed that 

for different values of magnetic field intensity (H) 

considered, a higher value of length scale parameter yields a 

higher dimensionless frequency. Also, a larger value of H 

results in improved frequency. 
 

 

5. Conclusions 
 

This article studies the frequency response of MEVHT 

nanobeam through nonlocal strain gradient elasticity theory 

in association with the higher order refined beam theory. 

The governing equations are obtained via Hamilton’s 

principle and solved analytically. The numerical assessment 

reveals that 
 

(1) The natural frequency of MEVHT nanobeam 

exhibits a higher value when the higher value of 

length scale parameter is used. However, 

considering the nonlocal parameter appears to have 

detrimental effect. 

(2) The critical damping co-efficient reduces for higher 

values of nonlocal parameter µ.  

(3) With the higher magnitude of hygrothermal loads, 

the critical damping coefficient reduces. 

(4) The natural frequency of MEVHT nanobeams is 

minimal at the lower slenderness ratio. Also, at all 

the slenderness ratio, the higher value of damping 

results in lesser frequency. 

(5) A higher value of magnetic intensity improves the 

frequency response of MEVHT nanobeam 
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