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1. Introduction 

 

1.1 Nanostructure and carbon nanotube 
 

Nanoscience was discovered by physicist Richard P. 

Feynman in 1959 (Feynman). After that, it contained other 

sciences and made the researchers work on very small scale 
materials (Lieber 2003, Gates et al. 2005, Sanchez and 

Sobolev 2010). Nanotechnology has vast applications in 
medicine (Roco 2003, Wilkinson 2003, Angeli et al. 2008), 

agriculture (Baruah and Dutta 2009, Ditta 2012, Scott and 

Chen 2013, Mukhopadhyay 2014), surgical oncology, food 

packaging, food safety (Duncan 2011), biotechnology (Lee 

1998, West and Halas 2000, Wang et al. 2011), civil 

engineering (Gopalakrishnan et al. 2011) etc. The idea of 

nano-science comes from utilizing atoms and molecules in 

order to produce structures and materials. (Adams and 

Barbante 2013). 

CNTs have different properties such as low weight 

(Krishnan et al. 1998), small diameter (Dresselhaus et al. 

2013), and are useable in continuous yarns (Jiang et al. 

2002) nanobioelectronics (Katz and Willner 2004), 

electrochemistry (Gooding 2005) , scanning probe 
microscopy (Dai et al. 1996), and sensors (Li et al. 2003). 

The invention of CNT occurred by accident when Iijima 

(Iijima 1991) was working on an arc-discharge evaporation 
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method in graphite electrodes by synthesizing fullerenes. 

The delicacy in structure along with a hexagonal array of 

carbon atoms, high strength, and topology make the 

nanotubes individual. The property of Young’s modulus in 

CNT is constant as a planar structure, and the elastic 

constant depends on the CNTs diameter (Salvetat et al. 

1999). 

 

1.2 Small-scale effect 
 

There are plenty of theories to analyze the small-scale 

effect, including surface effect, modified coupled stress 

method, nonlocal elasticity theory (ET) (Kazemnia Kakhki 

et al. 2016, Murmu and Pradhan 2009b, Pradhan and 

Kumar 2011, Tounsi et al. 2013a, b, Ke et al. 2014, Ahouel 

et al. 2016, Bellifa et al. 2016, Hayati et al. 2016, Hosseini 

and Rahmani 2016a, b, c, d, Rahmani et al. 2016, Zarepour 

et al. 2016, Alizade Hamidi et al. 2019), and nonlocal strain 

gradient theory (SGT) (Farajpour et al. 2016, Ebrahimi and 

Barati 2017, Mehralian et al. 2017). In this study, we 

consider the nonlocal elasticity theory, which was 

introduced by Eringen (Eringen and Edelen 1972, Eringen 

1983) for the first time. Following this theory, many 

researchers allocated their works to this field. Reddy (2007) 

used this theory to investigate the buckling and vibration of 

nanobeams. Şimşek (2011) investigated the effects of 

moving load and its velocity, ratio of length to diameter, 

nonlocality, and small scale-effect when DWCNT connects 

with an elastic medium, and compared the deflections, 

which analytically were obtained according to the nonlocal 
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Abstract.   Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the 
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relations. Hamilton’s principle is established to derive the governing equation of motion and consequently related boundary 
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harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is 

considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural 

frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the 

time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were 

devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the 
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principle with those obtained by the classical continuum 

theory. Aydogdu and Filiz (2011) modeled an elastic 

SWCNT with an attached mass in two different boundary 

conditions using Eringen’s nonlocal theory in order to 

analyze the axial vibration, and found that by changing the 

parameters such as aspect ratio, value of the mass, and 

nonlocal parameter, the result will be attained different. 

 

1.3 Vibration analysis 
 

The ratio of nonlinear to linear frequencies versus 

nondimensional amplitude and nonlocal parameter for 

different boundary conditions based on Eringen’s elasticity 

theory were indicated by Şimşek (2014) using Galerkin 

method to calculate the approximate nonlinear responses. 

Aydogdu (2009b) developed a generalized nanobeam along 

with other presented nonlocal beam theories in other 

researches to investigate the nonlocal effect and dimensions 

on the buckling, bending, and natural frequencies of the 

nanobeam. Ke et al. (2012) studied the nanobeams when a 

piezoelectric, is added to nanobeam, and the nonlinear 

responses and mode shapes are measured by the existence 

of piezoelectricity effect. Eltaher et al. (2013) utilized FEM 

based on nonlocal theory for Euler Bernoulli beam model to 

obtain the responses of the system by changing the aspect 

ratio and nonlocal parameter. Zhang et al. (2015) used FG 

nanocomposite with CNTs as reinforcement embedded in 

the triangular composite layers, and applied the first-order 

shear deformation and element free Ritz method, to 

evaluate the nondimensional natural frequency when the 

geometrical parameters and boundary conditions are 

various. Sharabiani and Yazdi (2013) cooperated to obtain 

the nonlinear nondimensional frequencies of the FG 

nanobeam by the existence of the surface effect considering 

the beam as Euler-Bernoulli one and used geometrically 

von-Kármán theory to derive the equation of motion. They 

also showed the responses in various amplitude and volume 

fraction. Kiani (2014) investigated the produced axial 

vibration of size-dependent current-carry nanowires when 

exposed by a magnetic field. Assadi (2013) recommended 

an analytical method for a rectangular nanoplate when an 

external load applies, and the surface effect is non-

negligible. Aydogdu (2009a) established a nanorod, which 

deflects only in axial direction based on the nonlocal theory 

with different boundary conditions and determined the 

effects of the external characteristic length in fundamental 

frequencies and compared them with local theory. Aydogdu 

(Aydogdu and Elishakoff 2014) investigated the nanorods, 

which linearly were connected with spring, and they 

encountered a diversity of frequencies in different modes by 

changing the position of the spring. Murmu and Adhikari 

(2010) utilized double nanorod to obtain the axial response 

of the system using nonlocal theory and showed the 

influence of nonlocality. Murmu and Pradhan (2009a) used 

nanoplate to show the effect of nonlocal theory on the in-

plane frequencies and showed its necessity. Wang and Feng 

(2009, 2010) modeled nanowires as a Timoshenko beam, 

which a compressive force is applied as a buckling force 

with a rectangular and circular cross-section. They showed 

the surface effects in compressive force and response of the 

system by changing the value of aspect ratio, and studied 

the surface effect on the natural frequencies and buckling 

when a piezoelectric is connected to Euler-Bernoulli 

nanowire with a rectangular cross section, and the load is 

applied transversely. Fatahi-Vajari and Imam (2016) 

investigated the natural frequency in SWCNT due to the 

torsion, based on DM method for two kind of nanotubes. 

They indicated the small scale effect and chirality and also 

the influence of the variation in geometrical CNT’s 

parameter on the responses and compared the results with 

local and nonlocal theories. Gheshlaghi and Hasheminejad 

(2010) developed the normalized natural frequencies in 

nanotubes based on the torsional response, and used 

analytical method to show the geometrical dimension’s 

effect (e.g., size-dependency) on the normalized natural 

frequencies. Nazemnezhad and Fahimi (2017) studied 

nanobeams when the surface effect is considerable and 

contains crack. Therefore, surface elasticity is added to the 

classical elasticity theory. They counted the crack as the 

spring and evaluated its severity and position in the various 

boundary condition. Adeli et al. (2017) investigated the free 

torsional responses in a homogeneous and one-directional 

nano-cone by nonlinear variant axial cross-section based on 

strain gradient theory and discussed the effect of cross 

section change and length scale. Arda and Aydogdu (2014) 

investigated the torsional response of the CNT surrounded 

by an elastic medium based on the nonlocal theory, and 

showed the effect of the external length of CNT, stiffness of 

an elastic medium on the nondimensional frequencies 

statically. Apuzzo et al. (2017) used an enhanced nonlocal 

model for torsional responses of nanocantilever and 

nanobeam with various boundary conditions based on 

Eringen’s theory when external torque is applied uniformly. 

The research’s filed of Hao et al. (2010) was investigating 

the small-scale effect on the torsional behavior of the 

MWCNT embedded in an elastic medium, critical 

temperature change, critical shear force, and the buckling 

force. Also, the temperature loads coupled between the 

tubes. El-Borgi et al. (2018) obtained the nondimensional 

frequencies of the viscoelastic nanorod, which enclosed by 

an elastic medium with various end supports by mixing 

strain and velocity gradient methods. Furthermore, the 

effects of the stiffness, damping coefficient, and size-

dependency on different modes were investigated. Lim et 

al. (2015) considered the cylindrical nanostructures under 

the constant and distributed torques. For integrating the 

derived equations, applied an innovative FEM method 

based on nonlocal theory. The effects of the boundary 

conditions in the nanoscale on varied nonlocal parameters, 

angular displacement, and nondimensional angular 

displacement were evaluated. 

 

1.4 Novelty of the work 
 

By the deep studying of references, it can be understood 

that the time-dependent forced torsional vibration in carbon 

nanotubes has not been done before. There are some studies 

in forced axial and remarkably in transverse vibration. The 

forced torsional vibration in the time domain, especially for 

carbon nanotubes, has not been done before in the previous 
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works. It should be emphasized that the dynamical analysis 

of torsional vibration is novel, useful, and the main aim of 

this study is devoted to filling this gap. 

 

1.5 Present work 
 

This study technically is paid to time-dependent 

torsional vibration of a SWCNT under the linear and 

harmonic external torque. Clamped-clamped boundary 

condition is considered. The Hamilton’s principle is 

established to derive the equation of motion and boundary 

conditions. A Galerkin method is investigated to discretize 

the derived equations. For the free torsional vibration, the 

effects of the nonlocal parameter and mode number on the 

first three natural frequencies have been shown, and the 

results are compared with another study to evaluate the 

accuracy. In dynamic analysis, the effects of nonlocal 

parameter, CNT’s thickness, and excitation frequency on 

angular displacement and nondimensional angular 

displacement for harmonic loading are investigated. 

 

 

2. Theroy and formulation 
 

Firstly, we investigate theory of the nonlocal elasticity, 

which includes the effect of long range interatomic forces, 

and because the scale is in nanometer, it can be used as a 

continuum model of the atomic lattice dynamics. According 

to the nonlocal Eringen’s elasticity, the stress at a reference 

point𝑥is regarded as a function of strains of all around 

reference points. This theory is based on experimental 

observations on phonon scattering and the atomic theory of 

lattice dynamics. 
 

2.1 Eringen’s nonlocal elasticity theory 
 

The basic equations for an isotropic linear homogenous 

neglecting the body force for a homogeneous and isotropic, 

the nonlocal stress-tensor at point𝑥can be defined as 

 

𝜎𝑖𝑗(𝑥) = ∫𝐾(|𝑥 ′ − 𝑥|, 𝜏)
𝑉

𝑡𝑖𝑗(𝑥 ′)𝑑𝑉 (1) 

 

In which 𝑡𝑖𝑗(𝑥 ′) , 𝐾(|𝑥 ′ − 𝑥|, 𝜏) , and 𝜏 represent the 

classical local stress tensor at point𝑥, the nonlocal modulus, 

and material constant, respectively. Also, the nonlocal 

kernel 𝐾(|𝑥′ − 𝑥|, 𝜏) reflects the impact of the strain at the 

point 𝑥 ′on the stress at the point𝑥; |𝑥 ′ − 𝑥| denotes the 

Euclidean distance. The stress tensor and material constant 

are expressed as follows 
 

𝑡𝑖𝑗(𝑥) = 𝐶𝑖𝑗𝑘𝑙(𝑥): 𝜀𝑘𝑙(𝑥) (2) 

 

𝜏 = 𝑒0𝑎/𝑙 (3) 
 

From above equations, 𝐶𝑖𝑗𝑘𝑙(𝑥) represents the fourth-

order elasticity tensor, which represents the “double-dot 

product”, and 𝜏 is the ratio of the characteristic internal 

length, 𝑎 (e.g., Lattice parameter) per external length, 𝑙 
(e.g., crack length, wavelength) and 𝑒0is a constant, which 

 

Fig. 1 Schematic of SWCNT (12,6) under the coupling of 

torsional vibration 
 

 

variates for each material, and is obtained experimentally. 

The integral constitutive relations in an equivalent 

differential form of Eq. (1) can be rewritten as 
 

(1 − 𝜇2𝛻2)𝜎𝑖𝑗(𝑥) = 𝑡𝑖𝑗(𝑥) (4) 
 

Where 𝛻2 represents the Laplacian operator, and 

𝜇denotes the nonlocal parameter and can be defined as 
 

𝜇 = 𝜏𝑙 = (𝑒0𝑎) (5) 
 

Considering a CNT, a simple one-dimensional nonlocal 

model, which undergoes torsional vibration with the length 

of 𝑙 as shown in Fig. 1, the constitutive relation for shear 

stress in a differential form (Eq. (4)) can be rewritten as 
 

𝜎𝑥𝑧 − 𝜇2
𝜕2𝜎𝑥𝑧

𝜕𝑥2
= 𝐺𝜀𝑥𝑧 (6) 

 

𝜎𝑥𝑦 − 𝜇2
𝜕2𝜎𝑥𝑦

𝜕𝑥2
= 𝐺𝜀𝑥𝑦 (7) 

 

Where 𝐺 represents the shear modulus; 𝜎𝑥𝑦, 𝜎𝑥𝑧 and 

𝜀𝑥𝑧, 𝜀𝑥𝑧 are the nonlocal shear stresses and strains of CNT, 

respectively. The torque resultant (Rao 2019) of CNT can 

be expressed as 
 

𝑇 = ∫(𝑦𝜎𝑥𝑧 − 𝑧𝜎𝑥𝑦)𝑑𝐴
𝐴

 (8) 

 

𝑢, 𝑣, and 𝑤 denote the displacements of any point of 

the CNT parallel to x-,y-, and z- axes, respectively, and can 

be expressed as 
 

𝑢(𝑥, 𝑡) = 0 
𝑣(𝑥, 𝑡) = −𝑧𝜃(𝑥, 𝑡) 
𝑤(𝑥, 𝑡) = 𝑦𝜃(𝑥, 𝑡) 

(9) 

 

Where 𝜃(𝑥, 𝑡)  is the angular displacement about 

the𝑥axis, which is the center of twist. The strains of the 

CNT are defined as 
 

𝜀𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= −𝑧

𝜕𝜃

𝜕𝑥
 

𝜀𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
= 𝑦

𝜕𝜃

𝜕𝑥
 

𝜀𝑦𝑧 =
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
= 0 

𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 0 

(10) 
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2.2 Deriving equation and boundary condition 
 

According to the Hamilton’s principle the governing 

equation can be expressed as 

 

∫ 𝛿(𝑈 − (𝑇𝑘 + 𝑉𝑒𝑥𝑡))𝑑𝑡
𝑡

0

= 0 (11) 

 

Here 𝑈 , 𝑇𝑘  and, 𝑉 denote the strain energy, kinetic 

energy and the external works, respectively. The virtual 

strain energy for CNT can be stated as 

 

𝛿𝑈 = ∫𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉 =
𝑉

∫(𝜎𝑥𝑦𝛿𝜀𝑥𝑦 + 𝜎𝑥𝑧𝛿𝜀𝑥𝑧)𝑑𝑉
𝑉

 (12) 

 

Replacing Eqs. (10) into Eq. (12) leads to 

 

𝛿𝑈 = ∫ (−𝑧𝜎𝑥𝑦 (
𝜕𝛿𝜃

𝜕𝑥
) + 𝑦𝜎𝑥𝑧 (

𝜕𝛿𝜃

𝜕𝑥
)) 𝑑𝑉

𝑉

 (13) 

 

Substituting Eq. (8) into Eq. (12) is given by 

 

𝛿𝑈 = ∫ 𝑇
𝜕𝛿𝜃

𝜕𝑥

𝐿

0

𝑑𝑥 (14) 

 

The kinetic energy of the CNT can be defined as 

 

𝑇𝐾 =
1

2
∫ 𝜌 [(

𝜕𝑢

𝜕𝑡
)

2

+ (
𝜕𝑣

𝜕𝑡
)

2

+ (
𝜕𝑤

𝜕𝑡
)

2

] 𝑑𝑉
𝑉

 (15) 

 

By substituting the first derivative of Eq. (10) into Eq. 

(15), the following equation will be obtained 

 

𝑇𝐾 =
1

2
∫ 𝜌 [(−𝑧

𝜕𝜃

𝜕𝑡
)

2

+ (𝑦
𝜕𝜃

𝜕𝑡
)

2

] 𝑑𝑉
𝑉

 

=
1

2
𝜌𝐼𝑝 ∫ (

𝜕𝜃

𝜕𝑡
)

2

𝑑𝑥
𝑙

0

=
1

2
𝐼0 ∫ (

𝜕𝜃

𝜕𝑡
)

2

𝑑𝑥
𝑙

0

 

(16) 

 

Where 𝐼𝑝,𝐼0, and𝜌represent the polar moment of inertia, 

mass inertia and density, respectively, and are equivalent to 

the following statements 

 

𝐼𝑝 = ∫(𝑦2 + 𝑧2)𝑑𝐴
𝐴

 (17) 

 

𝐼0 = 𝜌𝐼𝑝 (18) 

 

Since the cross-section is uniform and circular, and x-

axis is coincident with the CNT’s axis, it is obvious that the 

element’s distance in cross section from the origin of 

coordinate (√𝑦2 + 𝑧2) is equal to 𝑟. Therefore, the polar 

moment of inertia for CNT changes into 

 

𝐼𝑝 = ∫𝑟2𝑑𝐴
𝐴

=
𝜋

2
(𝑟4

𝑜𝑢𝑡 − 𝑟4
𝑖𝑛) (19) 

 

From Eq. (19), 𝑟𝑜𝑢𝑡 and 𝑟𝑖𝑛 represent the external and 

internal radii of CNT, respectively. The first variation of 

kinetic energy can be expressed as 

 

𝛿𝑇𝐾 = 𝐼0 ∫ (
𝜕𝜃

𝜕𝑡

𝜕𝛿𝜃

𝜕𝑡
)

𝑙

0

𝑑𝑥 (20) 

 

The work done by an external torque 𝑚𝑡(𝑥, 𝑡)can be 

expressed as 
 

𝑉𝑒𝑥𝑡 = ∫ (𝑚𝑡(𝑥, 𝑡))𝜃𝑑𝑥
𝑙

0

 (21) 

 

The first variation of the external works is given by 

 

𝛿𝑉𝑒𝑥𝑡 = ∫ (𝑚𝑡(𝑥, 𝑡))𝛿
𝑙

0

𝜃𝑑𝑥 (22) 

 

By replacing Eqs. (14), (20), and (22) into Eq. (11), we 

will have 

 

∫ (∫ 𝑇
𝜕𝛿𝜃

𝜕𝑥

𝑙

0

𝑑𝑥 − 𝐼0 ∫ (
𝜕𝜃

𝜕𝑡

𝜕𝛿𝜃

𝜕𝑡
)

𝑙

0

𝑑𝑥
𝑡

0

 

− (∫ 𝑚𝑡(𝑥, 𝑡)𝛿
𝑙

0

𝜃𝑑𝑥)) 𝑑𝑡 

= ∫ (𝑇𝛿𝜃 |
𝑙
0

− ∫
𝜕𝑇

𝜕𝑥

𝑙

0

𝛿𝜃𝑑𝑥 − 𝐼0

𝜕𝜃

𝜕𝑡
𝛿𝜃 |

𝑙
0

𝑡

0

 

+ ∫ 𝐼0

𝜕2𝜃

𝜕𝑡2

𝑙

0

𝛿𝜃𝑑𝑥 − 𝑚𝑡(𝑥, 𝑡)𝛿𝜃𝑑𝑥) 𝑑𝑡 

(23) 

 

In which 𝑇  is the induced torque. The equation of 

motion for torsional CNT can be obtained as 

 

𝜕𝑇

𝜕𝑥
= 𝐼0

𝜕2𝜃

𝜕𝑡2
− 𝑚𝑡(𝑥, 𝑡) (24) 

 

Multiplying Eq. (6) by 𝑦 and Eq. (7) by 𝑧 , then 

subtracting Eq. (7) from Eq. (6), and integrating with 

respect to the cross section by consideration of Eq. (17), the 

constitutive equation can be written as 

 

𝑇 − 𝜇2
𝜕2𝑇

𝜕𝑥2
= 𝐺𝐼𝑝

𝜕𝜃

𝜕𝑥
 (25) 

 

By applying the first derivative of Eq. (24) into Eq. (25) 

induced torque (𝑇) can be expressed as 

 

𝑇 = 𝜇2 (𝐼0

𝜕3𝜃

𝜕𝑥𝜕𝑡2
−

𝜕𝑚𝑡(𝑥, 𝑡)

𝜕𝑥
) + 𝐺𝐼𝑝

𝜕𝜃

𝜕𝑥
 (26) 

 

As a final step, by substituting the first derivative of Eq. 

(26) into Eq. (24), the following equation can be concluded 

 

𝑚𝑡(𝑥, 𝑡) − 𝐼0

𝜕2𝜃

𝜕𝑡2
+ 𝜇2 (𝐼0

𝜕4𝜃

𝜕𝑥2𝜕𝑡2
) 

+𝐺𝐼𝑝

𝜕2𝜃

𝜕𝑥2
− 𝜇2 (

𝜕2𝑚𝑡(𝑥, 𝑡)

𝜕𝑥2
) = 0 

(27) 
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2.3 Analytical solution 
 

2.3.1 Free torsional vibration analysis 
In order to obtain the natural frequencies, caused by 

torsion in each modes, the expression corresponded to the 

loading should be removed. Therefore, 𝑚𝑡(𝑥, 𝑡) is omitted 

from Eq. (27), and can be rewritten as 

 

𝐺𝐼𝑝

𝜕2𝜃

𝜕𝑥2
− 𝐼0

𝜕2𝜃

𝜕𝑡2
+ 𝜇2 (𝐼0

𝜕4𝜃

𝜕𝑥2𝜕𝑡2
) = 0 (28) 

 

By assuming the time-dependent term of discretized 

angular displacement to be harmonic, it can be defined as 

follows 

𝜃(𝑥, 𝑡) = ∑ 𝛩𝑛(𝑥)𝑒𝑖𝜔𝑡

∞

𝑛=1

 (29) 

 

Substituting Eq. (29) into Eq. (28) leads to 

 

𝐺𝐼𝑝𝛩𝑛
″ + 𝐼0𝛩𝑛𝜔2 − 𝜇2(𝐼0𝜔2𝛩𝑛

″) = 0 (30) 

 

Where 𝛩𝑛 and 𝛩𝑛
″ express the 𝑛th corresponding mode 

shape and second derivative of it and for the clamped-

clamped boundary condition can be written as 

 

𝛩𝑛(𝑥) = 𝐶𝑛 𝑠𝑖𝑛 (
𝑛𝜋

𝑙
𝑥) (31) 

 

𝛩𝑛
″(𝑥) = −𝐶𝑛 (

𝑛𝜋

𝑙
)

2

𝑠𝑖𝑛 (
𝑛𝜋

𝑙
𝑥) (32) 

 

Replacing Eqs. (31) and (32) into Eq. (30) results in 

 

−𝐺𝐼𝑝 (
𝑛𝜋

𝑙
)

2

+ 𝐼0𝜔2 + 𝜇2 (
𝑛𝜋

𝑙
)

2

(𝐼0𝜔2) = 0 (33) 

 

Consequently, the natural frequency can be obtained as 

follows 

𝜔𝑛 = √
𝐺𝐼𝑝 (

𝑛𝜋

𝑙
)

2

𝐼0 (1 + 𝜇2 (
𝑛𝜋

𝑙
)

2

)
 (34) 

 

The dimensionless natural frequency can be written as 

 

�̄�𝑛 = √

(𝑛𝜋)2

(1 + 𝜇2 (
𝑛𝜋

𝑙
)

2

)
 (35) 

 

2.3.2 Dynamic torsional vibration 
In order to solve Eq. (27) dynamically, an analytical 

solution based on expansion theorem is utilized. For this 

purpose, we should discretize mode shape 𝛩𝑛(𝑥)  as a 

known coefficient and 𝑛th generalized coordinate 𝜂𝑛(𝑡) 

as an unknown function. Therefore, the angular 

displacement of a CNT in torsional vibration can be 

expressed as 

 

𝜃(𝑥, 𝑡) = ∑ 𝛩𝑛(𝑥)𝜂𝑛(𝑡)

∞

𝑛=1

 (36) 

 

Replacing Eq. (36) into Eq. (27) leads to 

 

𝑚𝑡(𝑥, 𝑡) − ∑ 𝐼0𝛩𝑛(𝑥)�̈�𝑛(𝑡)

∞

𝑛=1

+ ∑ 𝜇2𝐼0𝛩𝑛
″(𝑥)�̈�𝑛(𝑡)

∞

𝑛=1

 

+ ∑ 𝐺𝐼𝑝𝛩𝑛
″(𝑥)𝜂𝑛(𝑡) −

∞

𝑛=1

𝜇2 (
𝜕2𝑚𝑡(𝑥, 𝑡)

𝜕𝑥2
) = 0 

(37) 

 

By substituting Eqs. (31) and (32) into Eq. (37), the 

following relation can be inferred 

 

𝑚𝑡(𝑥, 𝑡) − ∑ 𝐼0𝛩𝑛(𝑥)�̈�𝑛(𝑡)

∞

𝑛=1

 

− ∑ 𝜇2𝐼0 (
𝑛𝜋

𝑙
)

2

𝛩𝑛(𝑥)�̈�𝑛(𝑡)

∞

𝑛=1

 

− ∑ 𝐺𝐼𝑝 (
𝑛𝜋

𝑙
)

2

𝛩𝑛(𝑥)𝜂𝑛(𝑡) −

∞

𝑛=1

𝜇2(𝑚𝑡
″(𝑥, 𝑡)) = 0 

(38) 

 

By multiplying Eq. (38) by 𝛩𝑚(𝑥) , the following 

equation can be expressed 

 

∫ [𝑚𝑡(𝑥, 𝑡) − 𝜇2(𝑚𝑡
″(𝑥, 𝑡))]𝛩𝑚(𝑥)𝑑𝑥

𝑙

0

 

−𝐼0�̈�𝑛(𝑡) ∫ 𝛩𝑛(𝑥)𝛩𝑚(𝑥)𝑑𝑥
𝑙

0

 

−𝜇2𝐼0 (
𝑛𝜋

𝑙
)

2

�̈�𝑛(𝑡) ∫ 𝛩𝑛(𝑥)𝛩𝑚(𝑥)𝑑𝑥
𝑙

0

 

−𝐺𝐼𝑝 (
𝑛𝜋

𝑙
)

2

𝜂𝑛(𝑡) ∫ 𝛩𝑛(𝑥)𝛩𝑚(𝑥)𝑑𝑥
𝑙

0

= 0 

(39) 

 

In which 

 

∫ 𝛩𝑛(𝑥)𝛩𝑚(𝑥)𝑑𝑥 = {
1        𝑛 = 𝑚
0        𝑛 ≠ 𝑚

𝑙

0

 (40) 

 

Applying Eq. (31) into Eq. (40) results in 

 

𝐶𝑛
2 ∫ 𝑠𝑖𝑛2 (

𝑛𝜋

𝑙
) 𝑑𝑥

𝑙

0

= 1 (41) 

 

𝐶𝑛 can be obtained 

 

𝐶𝑛 = √
2

𝑙
  𝑛 = 1,2, . .. (42) 

 

Eqs. (31) and (32) changes into 

 

𝛩𝑛(𝑥) = √
2

𝑙
𝑠𝑖𝑛 (

𝑛𝜋

𝑙
𝑥) (43) 
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𝛩𝑛
″(𝑥) = −√

2

𝑙
(

𝑛𝜋

𝑙
)

2

𝑠𝑖𝑛 (
𝑛𝜋

𝑙
𝑥) (44) 

 

For orthogonality condition and considering Eq. (42), 

Eq. (39) reduces to 

 

𝐼0 (1 + 𝜇2 (
𝑛𝜋

𝑙
)

2

) �̈�𝑛(𝑡) + 𝐺𝐼𝑝 (
𝑛𝜋

𝑙
)

2

𝜂𝑛(𝑡) 

= ∫ [𝑚𝑡(𝑥, 𝑡) − 𝜇2(𝑚𝑡
″(𝑥, 𝑡))]𝛩𝑚(𝑥)𝑑𝑥

𝑙

0

 

(45) 

 

Simplifying Eq. (45) leads to the following equation 

 

�̈�𝑛(𝑡) + 𝜆𝑛
2𝜂𝑛(𝑡) = 𝛹𝑛𝑄𝑛(𝑡) (46) 

 

Where the nonlocal natural frequency and coefficient 

𝛹𝑛, respectively, are equivalent to 

 

𝜆𝑛 =
𝜔𝑛

√1 + 𝜇2 (
𝑛𝜋

𝑙
)

2
 

(47) 

 

𝛹𝑛 =
1

𝐼0 (1 + 𝜇2 (
𝑛𝜋

𝑙
)

2

)
 

(48) 

 

𝑄𝑛(𝑡), which is called generalized force in𝑛thmode, is 

defined as 

  

𝑄𝑛(𝑡) = 𝛹𝑛 ∫ [𝑚𝑡(𝑥, 𝑡) − 𝜇2(𝑚𝑡
″(𝑥, 𝑡))]𝛩𝑚(𝑥)𝑑𝑥

𝑙

0

 (49) 

 

The complete solution of Eq. (46) can be specified as 

 

𝜂𝑛(𝑡) = 𝐴𝑛 𝑐𝑜𝑠( 𝜆𝑛𝑡) + 𝐵𝑛 𝑠𝑖𝑛( 𝜆𝑛𝑡) 

+
1

𝜆𝑛
∫ 𝑄𝑛(𝜏)𝑠𝑖𝑛

𝑡∫ (𝜆𝑛(𝑡−𝜏))

0

 
(50) 

 

Where 𝐴𝑛 and 𝐵𝑛  are constants, which can be 

determined from initial conditions. The steady state of CNT 

regardless of initial conditions can be obtained 

 

𝜂𝑛(𝑡) =
𝛹𝑛

𝜆𝑛
∫ 𝑄𝑛(𝜏) 𝑠𝑖𝑛(𝜆𝑛(𝑡 − 𝜏)) 𝑑𝜏

𝑡

0

 (51) 

 

Linear external torque 
If the external torque is concentrated at point 𝑥 = 𝑙/2, 

and assumed to be linear, 𝑚𝑡(𝑥, 𝑡) can be expressed as 

 

𝑚𝑡(𝑥, 𝑡) = 𝑀𝑡𝛿 (𝑥 −
𝑙

2
) = 𝑎0𝑡𝛿 (𝑥 −

𝑙

2
) (52) 

 

Where 𝛿(⋅) denotes the Dirac delta function. It is clear 

that the concentrated external torque only depends on the 

time. As the time is linear, subsequently, the external torque 

changes linearly over time. By using Eq. (52) into Eq. (49), 

the normalized force can be rewritten as 

𝑄𝑛(𝑡) = 𝛹𝑛 ∫ 𝑎0𝑡 (𝛿 (𝑥 −
𝑙

2
)

𝑙

0

 

−(𝜇)2𝛿″ (𝑥 −
𝑙

2
)) 𝛩𝑛(𝑥)𝑑𝑥 

= 𝛹𝑛𝑎0𝑡 (𝛩𝑛 (
𝑙

2
) − (𝜇)2𝛩𝑛

″ (
𝑙

2
)) 

(53) 

 

Setting 𝑥 = 𝑙/2 in Eqs. (31) and (32), leads to 

 

𝛩𝑛 (
𝑙

2
) = √

2

𝑙
𝑠𝑖𝑛 (

𝑛𝜋

2
) 

𝛩𝑛
″ (

𝑙

2
) = −√

2

𝑙
(

𝑛𝜋

𝑙
)

2

𝑠𝑖𝑛 (
𝑛𝜋

2
) 

(54) 

 

By substituting Eq. (54) into Eq. (53), Eq. (53) can be 

rewritten as 
 

𝑄𝑛(𝑡) = 𝛹𝑛𝑎0𝑡√
2

𝑙
𝑠𝑖𝑛 (

𝑛𝜋

2
) (1 + (𝜇)2 (

𝑛𝜋

𝑙
)

2

) (55) 

 

By applying Eq. (55) into Eq. (51) the following 

equation can be concluded 
 

𝜂𝑛(𝑡) = 𝛷𝑛 ∫ 𝜏 𝑠𝑖𝑛(𝜆𝑛(𝑡 − 𝜏)) 𝑑𝜏
𝑡

0

 

= 𝛷𝑛 (𝑡 −
1

𝜆𝑛
𝑠𝑖𝑛( 𝜆𝑛𝑡)) 

(56) 

 

𝛷𝑛 =
𝛹𝑛𝑎0√

2

𝑙
𝑠𝑖𝑛 (

𝑛𝜋

2
) (1 + (𝜇)2 (

𝑛𝜋

𝑙
)

2

)

𝜆𝑛
2

 
(57) 

 

By substituting Eqs. (56) and (31) into Eq. (36), the 

angular displacement can be expressed as 

 

𝜃𝑛(𝑥, 𝑡) =
𝑎0

𝐼0
∑

𝛩𝑛(𝜗)𝛩𝑛(𝑥)

𝜆𝑛
2

∞

𝑛=1

(𝑡 −
1

𝜆𝑛
𝑠𝑖𝑛(𝜆𝑛𝑡)) (58) 

 

By using Eq. (54), and considering the external torque 

exists at point of 𝜗 = 𝑙/2, the multiplication of the normal 

modes in Eq. (58) can be expressed as 

  

𝛩𝑛(𝜗)𝛩𝑛 (
𝑙

2
) = {

0              𝑛 = 0
2/𝑙          𝑛 = 1,3,5, . . .

 (59) 

 

Finally, Eq. (58) can be rewritten as 

 

𝜃𝑛(𝑥, 𝑡) =
2𝑎0

𝑙𝐼0
∑

1

𝜆2
𝑛

(𝑡 −
1

𝜆𝑛
𝑠𝑖𝑛(𝜆𝑛𝑡))

∞

𝑛=1,3,5,..

 (60) 

 

Harmonic external torque 
In this section, the external torque is concentrated at 

point 𝑥 = 𝑙/2 and assumed to be Harmonic, 𝑚𝑡(𝑥, 𝑡) is 

given by 
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𝑚𝑡(𝑥, 𝑡) = 𝑀𝑡𝛿 (𝑥 −
𝑙

2
) = (𝑀0 𝑠𝑖𝑛(𝛺𝑡))𝛿 (𝑥 −

𝑙

2
) (61) 

 

Where𝛺 denotes the excitation frequency, and 𝑚𝑡(𝑥, 𝑡) 

only depends on the harmonic time. By using Eq. (61) into 

Eq. (49), the normalized force can be specified as 

 

𝑄𝑛(𝑡) = 𝛹𝑛 ∫ 𝑀0 𝑠𝑖𝑛(𝛺𝑡) (𝛿 (𝑥 −
𝑙

2
)

𝑙

0

 

−(𝜇)2𝛿″ (𝑥 −
𝑙

2
)) 𝛩𝑛(𝑥)𝑑𝑥 

= 𝛹𝑛𝑀0 𝑠𝑖𝑛(𝛺𝑡) (𝛩𝑛 (
𝑙

2
) − (𝜇)2𝛩𝑛

″ (
𝑙

2
)) 

(62) 

 

Replacing Eq. (54) into Eq. (62) leads to 

 

𝑄𝑛(𝑡) = 𝛹𝑛𝑀0 𝑠𝑖𝑛(𝛺𝑡) √
2

𝑙
𝑠𝑖𝑛 (

𝑛𝜋

2
) 

× (1 + (𝜇)2 (
𝑛𝜋

𝑙
)

2

) 

(63) 

 

By applying Eq. (63) into Eq. (51), the following 

equation can be concluded 

 

𝜂𝑛(𝑡) = 𝛷𝑛 ∫ 𝑠𝑖𝑛(𝛺𝜏) 𝑠𝑖𝑛(𝜆𝑛(𝑡 − 𝜏)) 𝑑𝜏
𝑡

0

 

= 𝛷𝑛 (𝑠𝑖𝑛(𝛺𝑡) −
𝛺

𝜆𝑛
𝑠𝑖𝑛(𝜆𝑛𝑡)) 

(64) 

 

In which coefficient of 𝛷𝑛 is equal to 

 

𝛷𝑛 =
𝛹𝑛𝑀0√

2

𝑙
𝑠𝑖𝑛 (

𝑛𝜋

2
) (1 + (𝜇)2 (

𝑛𝜋

𝑙
)

2

)

𝜆𝑛
2 − 𝛺2

 
(65) 

 

 

 

 

 

 

By replacing Eqs. (64) and (31) into Eq. (36), the 

angular displacement can be expressed as 

 

𝜃𝑛(𝑥, 𝑡) =
𝑀0

𝐼0
∑

𝛩𝑛(𝜗)𝛩𝑛(𝑥)

(𝜆2
𝑛 − 𝛺2)

∞

𝑛=1

 

× (𝑠𝑖𝑛(𝛺𝑡) −
𝛺

𝜆𝑛
𝑠𝑖𝑛(𝜆𝑛𝑡)) 

(66) 

 

By using Eq. (54), for the external Harmonic torque, 

which exists at point 𝑙/2, the angular displacement of the 

CNT is given by 
 

𝜃𝑛(𝑥, 𝑡) =
2𝑀0

𝑙𝐼0
∑

(𝑠𝑖𝑛(𝛺𝑡) −
𝛺

𝜆𝑛
𝑠𝑖𝑛(𝜆𝑛𝑡))

(𝜆2
𝑛 − 𝛺2)

∞

𝑛=1,3,5,..

 (67) 

 

 

3. Results and discussion 
 

In this section, several numerical examples are utilized. 

The angular displacement by different external torques as 

linear and harmonic, are investigated from derived 

expressions for torsional vibration. Table 1 shows the 

characteristics of the CNT. For this purpose, a chiral 

structure single-walled carbon nanotube has been 

considered (SWCNT(12,6)) as a rolled-up rectangular plane 

of the graphene layer in the form of a hollow cylindrical 
tube (Zakeri and Shayanmehr 2013, Eatemadi et al. 2014). 

The geometrical parameters and mechanical properties of 

CNT are indicated in Table 1. 

From Table 1 the radius, length, thickness, shear 

modulus, density, linear external torque amplitude, and 

harmonic external torque amplitude are shown with 𝑟, 𝑙, 
𝑡, 𝐺, 𝜌, 𝑎0 and 𝑀0, respectively, in the context. 𝑟 + 𝑡/2 

and 𝑟 − 𝑡/2 represent the outer and inner radii of the 

rolled-up SWCNT, and are denoted in Eq. (19) as 𝑟𝑜𝑢𝑡 and 

𝑟𝑖𝑛 , respectively. Considering the numerical values of 

 

 

 

 

Table 1 Characteristic of graphene SWCNT (12,6) 

Radius 

(nm) 

Length 

(nm) 

Thickness 

(nm) 

Shear modulus 

(Gpa) 

Densit 

(Kg/m3) 

Linear torque 

amplitude (nN.mn/ns) 

Harmonic torque 

amplitude (nN.nm)  

0.621 30 0.34 298 1400 1 1 
 

Table 2 First three dimensionless natural frequencies(𝜔𝑛 × 𝑙 × √𝜌/𝐺)for clamped-clamped 

SWCNT (12,6) and different values of the nonlocal parameter (𝑒0𝑎 × nm) (𝜌 =1400 

kg/m3, 𝑙 =30 nm, 𝑡 =0.34 nm, 𝐺 =298 Gpa , 𝜈 =0.25, 𝑅 =0.621 nm) 

𝑒0𝑎 (nm) 

Frequency mode number 

n = 1 n = 2 n = 3 

Present (Adeli et al. 2017) Present (Adeli et al. 2017) Present (Adeli et al. 2017) 

0 3.1415 3.1416 6.2831 6.2832 9.4247 9.4248 

1.5 3.1035 3.1035 5.9943 5.9943 8.5255 8.5256 

3 2.9971 2.9972 5.3201 5.3202 6.8586 6.8587 

4.5 2.8418 2.8419 4.5724 2.5724 5.4426 5.4427 
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Table 1, Eqs. (19) and (20) can be determined as𝐼𝑝 =

0.5499 nm4  and 𝐼0 = 0.7699 × 10−24N.m.s2 , respecti-

vely. 

For the results, the dimensionless natural frequency is 

investigated. The influences of the nonlocal parameter and 

mode shape on dimensionless natural frequency are 

indicated. Moreover, the frequencies are compared with 

another study, and the results are in good agreement with 

reference. It is comprehensible form Table 2, as the 

nonlocal parameter increases, the value of dimensionless 

natural frequency decreases for different modes. It is 

because of decrement in the stiffness. The increment in the 

dimensionless natural frequency occurs with higher rates by 

increasing the values of the nonlocal parameter. Also, the 

amount of the dimensionless natural frequency increases, as 

the value of mode shape increases. 

Afterward, the angular displacements (𝜃 ) and 

dimensionless angular displacements (�̄�) of SWCNT versus 

time under external torque (𝑚𝑡) are analyzed. The effects of 

the nonlocal parameter, CNT’s thickness, and the excitation 

frequency for harmonic external torque case on the angular 

displacement are investigated. The time is based on 

nanosecond; the torsion occurs at point 𝑥 = 𝑙/2. In Fig. 

2(a), the variation of �̄� versus time with linear external 

torque is illustrated. It is obvious, when the nonlocal 

parameter (𝜇) set to zero, the dimensionless angular 

displacement becomes constant, and equal to one, and by 

setting 𝜇 to zero, Eq. (27) changes into the classical form. 

When 𝜇 is not zero (𝜇 = 1, 1.5 and 2.5 nm), as the value 

of 𝜇 increases, the value of �̄� increases by the time and 

after a while, it will possess fluctuating behavior (e.g., 

decreasing and increasing of �̄�). It is normal because of the 

existence of the sinusoidal term in Eq. (54). When 𝜇 =
1 nm, the value of �̄� is almost constant over time and has 

just fluctuating with small amplitudes. As 𝜇 increases, this 

amplitude becomes more and more. In Fig. 2(b), the 

 

 

variation of 𝜃 versus time with linear 𝑚𝑡 and the effect of 

thickness of CNT with a constant nonlocal parameter, 

which is equal to 1.5 nm, and thicknesses (𝑡 = 0.1, 0.15, 

0.34 and 0.4) has been indicated. 
It can be found from Fig. 3(b), as the value of thickness 

increases, 𝜃 decreases in relative to the specified time, and 

increases for each case (e.g., different thicknesses). The 

behaviors of the diagrams are almost similar, and is 

fluctuating. The amplitude of the vibration becomes less for 

more values of thicknesses, and the slope of the diagrams 

decreases by increasing the value of thickness. All the 

diagrams are ascending. Fig. 3(a) indicates the variation of 

angular displacement with respect to the time, based on 

harmonic 𝑚𝑡 , which is equivalent to 𝑀0 𝑠𝑖𝑛 𝛺 𝑡 ; the 

excitation frequency and the amplitude of 𝑚𝑡 are equal to 

𝛺 = 1000 GHz and 𝑀0 = 1 nN.nm , respectively. The 

variation of the nonlocal parameter is also equal to 𝜇 =0.2, 

1, 1.5 and 2.5 nm. It is Comprehensible from Fig. 3(a) that 

the magnitude of the angular displacement increases by 

increasing the value of the nonlocal parameter. The angular 

displacement regardless of the value of the nonlocal 

parameter becomes zero at the specified time. CNT acts like 

a spring, and an increase in the values of the nonlocal 

parameter causes the stiffness to increase. 

Consequently,  the magnitude of  the angular 

displacement closes to zero at a specified time for a 

constant value of 𝑚𝑡 and different values of the nonlocal 

parameter (due to the applied harmonic load). The 

dimensionless angular displacement versus time is plotted 

in Fig. 4b; 𝑀0 is also equal to 1nN.nm; the nonlocal 

parameter is 𝜇 =1nm. It is clear that for all cases 

disregarding the value of ratio, �̄� increases first and then 

decreases with steep slope over time. After that, it continues 

fluctuating behavior, and when the time arrives at 𝑡 =
2 × 10−3 ns, this ratio becomes infinity for those cases that 

contain ratio 𝛺/𝜔 = 2, 3 and 4. It is just because of the 

 

 
 

  

(a) (b) 

Fig. 2 (a)Variation of dimensionless angular displacement versus time for four different nonlocal parameters; 

(b) Variation of angular displacement versus time for four different CNT’s thicknesses and constant 

nonlocal parameter 𝜇 = 1.5 nm. Linear external torque is equal to 𝑎0 = 1 nN.nm/ns for (a) and (b) 
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angular displacement for classical form at this time 

becomes zero. For the case that 𝛺/𝜔 = 0.2, it will take 

more times to become infinity. As the ratio increases, the 

fluctuating amplitude becomes less. 

 

 

4. Conclusions 
 

In this present work, the torsional vibration of the chiral 

SWCNT (12,6) under the time-dependent linear and 

harmonic external torques was analyzed. The governing 

equation of motions and boundary conditions were derived 

using Hamilton’s principle. A Galerkin method was 

established for clamped-clamped boundary condition to 

discretize of derived differential equation. The Eringen’s 

nonlocal elasticity theory was utilized to justify the small-

scale effect. It was proved: 

 

● The increasing of the nonlocal parameter has an 

inverse effect on the stiffness and subsequently the 

natural frequencies for free vibration. 

● The obtained natural frequencies were in good 

agreement with the results of another study. 

● The variation of the time-dependent angular 

displacement and nondimensional angular displace-

ment versus time in SWCNT was investigated for 

the first time. 

● It was discerned from the results that an increase in 

the value of the nonlocal parameter causes an 

increase in magnitude of the angular displacement 

and nondimensional angular displacement regardless 

type of loading. 

 

 

● Raising of thickness leads to a reduction in angular 

displacement under the linear and harmonic loading, 

and raising of the excitation frequency to natural 

frequency ratio first increases, and then decreases the 

nondimensional angular displacement with steep 

slope, and then fluctuates in less amplitude till the 

resonance happens. 

 

As mentioned, the study of the forced torsional vibration 

in the time domain is workable, and it can be developed. 

Considering this fact, the size dependency on the torsional 

behavior of the MWCNT, FG nanobeam, as well as the 

forced vibration of CNT under the multiple loadings with 

different boundary conditions, namely clamped-attached 

mass and clamped-torsional spring, can be worked and  

focused. Furthermore, different theories can be used to 

continue this study. 
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