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1. Introduction 

 

Nanoscience is the important science of topic issue that 

are between in size the largest molecules and smallest 

dimension of the structures that can be obtained by common 

photolithography fabrication methods (Poole Jr and Owens 

2003, Dowling 2004). Also, nanomaterials such as 

Functionally graded materials (FGMs) have numerous 

applications in general, nanotechnology and nanomechanics 

in particular because of their rare properties such as thermal 

and corrosive resistance. Hence, researchers in the last 

decade have unprecedentedly focused on using beams and 

plates made of FGMs to design, fabrication and 

characterization of nanomaterials with possible applications 

in enginee ring (Pompe et al. 2003, Miyamoto et al. 2013, 

Phung-Van et al. 2017c, Eltaher et al. 2018, Goyal and Soni 

2018, Petit et al. 2018). The small structures such 

nanostructures are strongly attracting widespread attention 

of researchers since 1990s for many reasons and unknown 

properties of these nanostructures because of altering and 

reform these properties in the nanometer regime from bulk 

materials. The various application of these nanostructures is 

in different systems like biological and nanomechanical 

devices, fluid storage, fluid transport, drugs delivery tools 

and many disciplines such as biotechnology, medicine, 

chemical, and engineering. One of the first problems was 

that classical mechanics could not examine issues in the 

 

Corresponding author, Ph.D., 

E-mail: s.amin.hadi@gmail.com; amin.hadi@ut.ac.ir 

 

 

nano-scale. In order to solve this problem, reinforcement 

continuum mechanics theories have been proposed, which 

consider inherent characteristics of materials at the nano-

scale. In recent decades, with the development of various 

engineering fields related to micro- and nano-systems, 

much attention has been given to size effects on material 

behaviors. Some advanced methods to address the 

weaknesses of the conventional theory are; Cosserat 

continuum mechanics (Kafadar and Eringen 1971a, b), 

nonlocal elasticity theory (Eringen 1972, 1983, 2002), 

strain gradient elasticity  (Mindlin and Eshel 1968), 

couple stress theory (Toupin 1962) and nonlocal strain 

gradient theory (Lim et al. 2015). Some of the researchers 

by using of couple stress theory analyze the microstructure 

(Thanh et al. 2018, 2019a, b, c, d). The nonlocal elasticity 

theory predicts softening in nano size structures, but strain 

gradient theory indicates that the nanostructure experience 

hardening in nano scale than bulk materials. Recently, Lim 

et al. (2015) demonstrate the nonlocal strain gradient theory 

can predict both increase and decrease in the structural 

stiffness which is confirmed by the experimental data 

(Abazari et al. 2015). Many researchers today use nonlocal 

elasticity, strain gradient theory and nonlocal strain gradient 

theory to analyze of nanostructures (Asemi and Farajpour 

2014, Farajpour et al. 2016, Hosseini et al. 2016, Nejad and 

Hadi 2016a, b, Nejad et al. 2016, Farajpour and Rastgoo 

2017, Farajpour et al. 2017a, b, Hosseini et al. 2017, 

Phung-Van et al. 2017a, b, Rahmani et al. 2017, Shishesaz 

et al. 2017, Ebrahimi and Haghi 2018, Ebrahimi and Salari 

2018, Farajpour et al. 2018a, b, c, Hadi et al. 2018a, b, 

Hosseini et al. 2018, 2019, Phung-Van et al. 2019). Fig. 1 
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shows citation and the links of documents that were 

published on the nanoscience and were utilized nonlocal 

strain gradient theory since last years. Li et al. (2015) 

proposed a nano- scale functionally graded (FG) beam 

analytical model for flexural wave propagation based on the 

theory of non- local strain gradients. They provided the 

explicit acoustical and optical dispersion relations between 

phase velocity and wave number. Hadi et al. (2018a) 

explored the free vibration of three-directional FGMs in 

Euler–Bernoulli nano-beam. They employed the nonlocal 

strain gradient theory to study the small-scale effects to 

exploring the free vibration of the three – directional FG 

Euler–Bernoulli nano-beam. These authors illustrated that 

in nonlocal strain gradient theory, the natural frequency 

could either be higher than the natural frequency of 

classical theory or smaller. Karami et al. (2018a-d) utilized 

the second-order shear deformation concept and nonlocal 

strain gradient theory to investigate the initial stress 

influenced wave dispersion in graphene. They derived 

constitutive orthotropic equations based on the nonlocal 

strain gradient and created an estimate subordinate 2D 

continuum model to supply a conceivable hypothetical way 

to deal with researching the wave practices of Graphene-

like 2D materials. 

 

 

 

 

 

Fig. 1 Citation and the links of documents that were 

published and utilized nonlocal strain gradient 

theory since last years. The links between the two 

documents demonstrate that one document is cited 

from the other. The knot size shows the number of 

documents cited globally and the color bar indicates 

the year in which the paper is published. (Lim et al. 

2015, Li and Hu 2016, Li et al. 2016, Shen et al. 

2016, Simsek 2016, Barati 2017, Ebrahimi and 

Barati 2017a, b, Ebrahimi et al. 2017a, b, Ebrahimi 

and Dabbagh 2017, Ebrahimi and Haghi 2017, Li 

and Hu 2017, Lu et al. 2017a, b, Mehralian et al. 

2017a, b, Sahmani and Aghdam 2017, Xu et al. 

2017, Zhu and Li 2017a, b, Hadi et al. 2018a, 

Karami et al. 2018a-d, She et al. 2018) 

Functionally Graded Materials (FGMs) depicted by the 

variety in blend and arrangement step by step over volume, 

bringing about relating changes in the properties of the 
material (Zamani Nejad et al. 2017, Akbas 2018, Aydogdu 

et al. 2018, Ebrahimi and Barati 2018a, b, Ebrahimi and 

Fardshad 2018, Nejad et al. 2018, Noroozi and Ataee 2018, 

Thai et al. 2018, Bodaghi et al. 2019). FG materials not 

only decrease the weight but also increment the strength. 

Inside the most recent two years, investigators employed 

nonlocal strain gradient theory to simulate vibration 

analysis of FGMs (Ebrahimi and Barati 2018a, b). Wave 

spread investigation of rotating thermoelastically-actuated 

nanobeams dependent on nonlocal strain gradient theory 

was studied by Ebrahimi and Haghi (2017). Their outcomes 

illuminate that different parameter like temperature change, 

precise speed, nonlocality parameter, nonlocality parameter, 

and gradient index impact on the wave scattering of the 

nano-beam. 

Additionally, Ebrahimi and Haghi (2018) published the 

next paper on a nonlocal strain gradient theory for scale-

subordinate wave scattering examination of turning FG 

nano-beams. In this paper, they considered the physical 

field impacts on the wave scattering qualities of nanobeam. 

They researched the wave proliferation conduct of rotating 

functionally graded temperature-dependent nanoscale 

beams subjected to thermal loading based on the nonlocal 

strain gradient stress field. Besides, nonlinear temperature 

conveyances over the thickness were examined by these 

authors. Li et al. (2018) investigated the nonlinear vibration 

investigation of nano-beam made of porous materials. They 

utilized Hamilton’s principle to get the size-subordinate 

nonlinear conditions of movement dependent on the Euler–

Bernoulli beam and the nonlocal strain gradient elasticity 

theory. 

Only a few researchers worked on torsional vibration 

based on nonlocal strain gradient elasticity theory. Fig. 2 

shows the documents and their links published on the 

torsional vibration of nanoscience based on nonlocal 

elasticity theory. Li (2014) compared two nonlocal models 

and a semi-continuum model for investigating the torsional 

vibration of carbon nanotubes. Adeli et al. (2017) explored 

free torsional vibration conduct of a nonlinear nano- 

 

 

 

Fig. 2 Citation and the links of documents that investigated 

torsional vibration behavior by nonlocal strain 

gradient theory since last years (Li 2014, Guo et al. 

2016, Adeli et al. 2017, Li and Hu 2017, Zhu and Li 

2017a, b, El-Borgi et al. 2018, Yayli 2018) 
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cone, in light of the nonlocal strain gradient theory. The 

impacts of a few parameters, for example, cross-sectional 

zone change and little scale parameter, were examined in 

their paper. Results demonstrate that the cross-sectional 

zone change significantly affects the torsional vibration 

conduct of the nano-cone. Li and Hu (2017) introduced the 

condition of torsional movement to explore the free 

torsional vibration practices of tubes made of a bi-

directional functionally graded (FG) material. They 

determined the closed-form solutions of torsional 

frequencies and mode shapes. They demonstrated that the 

torsional frequencies could be essentially influenced by the 

through-radius and through-length grading of the 

bidirectional FG nanotubes and thus can be recommended 

by fitting the bidirectional nano-structures of the FG 

material. They have shown that the torsional frequencies 

can be expanded with the diminishing nonlocal parameter, 

while the size-subordinate practices on the mode shape 

cannot be watched. Zhu and Li (2017a, b) solved the 

longitudinal problem of a size-subordinate rod by using an 

integral form of nonlocal strain gradient theory. In their 

investigation, it was demonstrated unequivocally that the 

integral rod model could apply stiffness-softening and 

stiffness-hardening impacts by thinking about different 

estimations of the size-subordinate parameters. Moreover, 

by concentrate, the size-subordinate consequences for the 

longitudinal elements of monolayer graphene, the scattering 

connection determined by utilizing the nonlocal strain 

gradient model can demonstrate great concurrence with the 

test information gotten by inelastic X-ray dissipating (Zhu 

and Li 2017b). 

In this paper, to the best of the researchers’ knowledge, 

for the first time, using nonlocal strain gradient theory, the 

torsional vibration of bi-directional nano-cone is 

investigated. The effects of changes of some crucial 

parameters such as material length scale, FG index on the 

values of torsional frequencies are studied. The results of 

this study can be a reference for designing the nano-size 

devices. 

 

 

2. Analysis 
 

Consider a nano-cone made of bi-directional 

functionally graded material with length 𝐿, Radius 𝑅𝑖, and 

𝑅𝑜 in 𝑧 = 0 and 𝑧 = 𝐿, respectively. The radius of cross-

section graded along z-direction with arbitrary nonlinear 

function. The schematic of the nano-cone is shown in Fig. 

3. 

The material properties of the nano-size cone are 

assumed to vary according to the arbitrary function along z 

and r directions. 
 

𝐺(𝑟, 𝑧) = 𝐺1(𝑟)𝐺2(𝑧) (1) 

 

𝜌(𝑟, 𝑧) = 𝜌1(𝑟)𝜌2(𝑧) (2) 

 

where G and 𝜌 denote the shear modulus and density, 

respectively. 

The nonlocal strain gradient can predict all of the 

material properties by considering softening and hardening 

 

Fig. 3 The geometry of nano-cone with arbitrary section 

 

 

in nanosize structures. The constitutive equation for the 

behavior of the material based on nonlocal strain gradient 

theory is defined as follow 

 

[1 − 𝜇2𝛻2] {
𝑡𝑥𝑧
𝑡𝑦𝑧
} = 2𝐺(1 − 𝑙2𝛻2) {

𝜀𝑥𝑧
𝜀𝑦𝑧
} (3) 

 

in Eq. (3) and (4), 𝛻 is the Nabla operator. 𝜇 and 𝑙 are 

size-dependent parameters for nonlocal and strain gradient 

theory. 𝜀𝑖𝑗  denote the shear strain. Moreover, the total 

stress (𝑡𝑖𝑗) is defined as 
 

𝑡𝑖𝑗 = 𝜎𝑖𝑗 − 𝛻𝜎𝑖𝑗𝑚
(1)

 (4) 

 

where, 𝜎𝑖𝑗 and 𝜎𝑖𝑗𝑚
(1)

 are stress and higher-order stress. 

The displacement field for torsion can be expressed as 
 

{
𝑢 = −𝑦𝜙
𝑣 = 𝑥𝜙
𝑤 = 0

, 𝜙 = 𝜙(𝑧, 𝑡) (5) 

 

where 𝑢, 𝑣, and 𝑤are components of the displacement 

along x, y, and z-direction and t denotes time. Considering 

small deformation, non-zero components of strain tensor is 

expressed as follow 
 

𝜀𝑥𝑧 = 𝜀𝑧𝑥 = −
𝑦

2

𝜕𝜙

𝜕𝑧
 (6) 

 

𝜀𝑦𝑧 = 𝜀𝑧𝑦 =
𝑥

2

𝜕𝜙

𝜕𝑧
 (7) 

 

That 𝜙 shows the torsion field along the z-direction. 

The governing motion equation of bi-directional FG nano-

cone is derived using Hamilton’s principle as 
 

∫ (𝛿𝑈 − 𝛿𝐾)
𝑡2

𝑡1

𝑑𝑡 = 0 (8) 

 

𝛿𝑈  and, 𝛿𝐾  are variation of potential and kinetic 

energy, respectively. 

The variation of potential energy-based nonlocal strain 

gradient theory for torsional vibration can be described as 

follow 
 

𝛿𝑈 = ∫ (
2𝜎𝑥𝑧𝛿𝜀𝑥𝑧 + 2𝜎𝑦𝑧𝛿𝜀𝑦𝑧 +

2𝜎(1)𝑥𝑧𝑧𝛻𝛿𝜀𝑥𝑧 + 2𝜎
(1)
𝑦𝑧𝑧𝛻𝛿𝜀𝑦𝑧

)
𝑉

𝑑𝑉 (9) 
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where 𝛻𝛿𝜀𝑖𝑗 are first-order strain gradient. By simplifying 

and integral by part, the potential energy is defined. 

 

𝛿𝑈 = −∫
𝜕𝑇𝑧
𝜕𝑧

𝐿

0

𝛿𝜙𝑑𝑧 + [𝑇𝑧𝛿𝜙 + 𝑇𝑍
(1)𝛿

𝜕𝜙

𝜕𝑍
]
0

𝐿

 (10) 

 

in the above equation, 𝑇𝑧, and 𝑇𝑍
(1) describe as follow 

 

𝑇𝑧 = ∫(𝑥𝑡𝑦𝑧 − 𝑦𝑡𝑥𝑧)
𝐴

𝑑𝐴 (11) 

 

𝑇𝑧
(1) = ∫(𝑥𝜎(1)𝑦𝑧𝑧 − 𝑦𝜎

(1)
𝑥𝑧𝑧)

𝐴

𝑑𝐴 (12) 

 

The variation of the kinetic energy is given by 

 

𝛿𝐾 = ∫ ∫𝜌[�̇�𝛿�̇� + �̇�𝛿�̇� + �̇�𝛿�̇�]
𝑉

𝑡

0

𝑑𝑉𝑑𝑡 (13) 

 

Substituting Eqs. (1), (2), and (5) into Eq. (12) and using 

integral by part the variation of the kinetic energy derived. 

 

𝛿𝐾 = ∫ ∫ 𝜌2(𝑧)𝐽𝑜

𝐿

0

𝑡

0

�̇�𝛿�̇�𝑑𝑧𝑑𝑡 

       = ∫ 𝜌1(𝑧)𝐽𝑜
𝜕𝜙

𝜕𝑡

𝐿

0

𝛿𝜙𝑑𝑧|0
𝑡  

           −∫ ∫ 𝜌1(𝑧)𝐽𝑜

𝐿

0

𝑡

0

𝜕2𝜙

𝜕𝑡2
𝛿𝜙𝑑𝑧𝑑𝑡 

(14) 

 

where the polar moments of mass 

 

𝐽𝑜 = ∫𝜌1(𝑟) 𝑟
2𝑑𝐴 (15) 

 

Substituting Eqs. (10), and (15) into Eq. (8), the 

governing equation expressed as follow 

 

𝜕𝑇𝑧
𝜕𝑧
− 𝜌2(𝑧)𝐽

𝜕2𝜙

𝜕𝑡2
= 0 (16) 

 

The classical boundary condition is 

 

𝜙 = 0, 𝑜𝑟𝑇𝑧 = 0 (17) 

 

and non-classical boundary condition is defined as follow 

 
𝜕𝜙

𝜕𝑧
= 0, 𝑜𝑟𝑇𝑧

(1) = 0 (18) 

 

Substituting Eqs. (6)-(7), (11) into Eq. (16), the equation 

of torsional motion for the FG nano-cone with arbitrary 

cross-section can be expressed as follow 

 

𝜌2(𝑧)𝐽𝑜
𝜕2𝜙

𝜕𝑡2
− 𝜇2

(

 
𝐽𝑜
𝜕2𝜌2(𝑧)

𝜕𝑧2
+ 2

𝜕𝜌2(𝑧)

𝜕𝑧

𝜕𝐽𝑜
𝜕𝑧
+

𝜌1(𝑧)
𝜕2𝐽𝑜
𝜕𝑧2 )

 
𝜕2𝜙

𝜕𝑡2
 (19) 

−2𝜇2(

𝜕𝜌2(𝑧)

𝜕𝑧
𝐽𝑜 +

𝜌2(𝑧)
𝜕𝐽𝑜
𝜕𝑧

)
𝜕3𝜙

𝜕𝑧𝜕𝑡2
− 𝜇2𝜌2(𝑧)𝐽𝑜

𝜕4𝜙

𝜕𝑡2𝜕𝑧2
) 

=
𝜕𝐺2(𝑧)

𝜕𝑧
(
𝜕𝜙

𝜕𝑧
− 𝑙2

𝜕3𝜙

𝜕𝑧3
)𝐼𝑜 + 𝐺2(𝑧)(

𝜕2𝜙

𝜕𝑧2
− 𝑙2

𝜕4𝜙

𝜕𝑧4
)𝐼𝑜 

+𝐺2(𝑧)(
𝜕𝜙

𝜕𝑧
− 𝑙2

𝜕3𝜙

𝜕𝑧3
)
𝜕𝐼𝑜

𝜕𝑧
 

(19) 

 

In free vibration, 𝜙 can be decomposed in two-part, 

that φ varies harmonically with respect to the time variable t 

 

𝜙(𝑧, 𝑡) = 𝜑(𝑧)𝑒𝑖𝜔𝑡 (20) 

 

By substituting Eq. (20) into Eq. (19), Eq. (19) can be 

written as 

 

(

 
 
 
 
 
 
 

−𝜌2(𝑧)𝐽𝑜𝜑 +

𝜇2

(

 
 
 
 
 
 

(

 
𝐽𝑜
𝜕2𝜌2(𝑧)

𝜕𝑧2
+ 2

𝜕𝜌2(𝑧)

𝜕𝑧

𝜕𝐽𝑜
𝜕𝑧
+

𝜌2(𝑧)
𝜕2𝐽𝑜
𝜕𝑧2 )

 𝜑

+2(
𝜕𝜌2(𝑧)

𝜕𝑧
𝐽𝑜 + 𝜌2(𝑧)

𝜕𝐽𝑜
𝜕𝑧
)
𝜕𝜑

𝜕𝑧
+

𝜌2(𝑧)𝐽𝑜
𝜕2𝜑

𝜕𝑧2 )

 
 
 
 
 
 

)

 
 
 
 
 
 
 

𝜔2 

=
𝜕𝐺2(𝑧)

𝜕𝑧
(
𝜕𝜑

𝜕𝑧
− 𝑙2

𝜕3𝜑

𝜕𝑧3
) 𝐼𝑜 + 𝐺2(𝑧)(

𝜕2𝜑

𝜕𝑧2
− 𝑙2

𝜕4𝜑

𝜕𝑧4
)𝐼𝑜 

+𝐺2(𝑧)(
𝜕𝜑

𝜕𝑧
− 𝑙2

𝜕3𝜑

𝜕𝑧3
)
𝜕𝐼𝑜
𝜕𝑧

 

(21) 

 
𝜕𝜙

𝜕𝑧
= 0, 𝑜𝑟𝑇𝑧

(1) = 0 (22) 

 

In order to obtain general results, the following 

dimensionless quantities can be defined 

 

𝛺2 =
𝐽𝑜𝜔

2𝐿

𝐼𝑜
     �̄� =

𝑧

𝐿
 

�̄� =
𝜇

𝐿
                 𝑙 =

𝑙

𝐿
               �̄� =

𝑅

𝐿
 

(23) 

 

That 𝛺  , �̄� , �̄� , 𝑙 , �̄�  shows the nondimensional 

frequency, longitudinal component, size-dependent 

parameters for nonlocal and strain gradient theory and 

radius, respectively. 

The equation of motion bi-directional FG nano-cone can 

be written in the dimensionless form as follows 

 

(

 
 
 
 
−𝜌2(�̄�)𝜑 + �̄�

2
𝜕2𝜌2(�̄�)

𝜕�̄�2
𝜑 + 2�̄�2

𝜕𝜌2(�̄�)

𝜕�̄�

𝜕𝐽𝑜
𝜕�̄�

1

𝐽𝑜
𝜑

+�̄�2𝜌2(�̄�)
𝜕2𝐽𝑜
𝜕�̄�2

𝜑 + 2�̄�2
𝜕𝜌2(�̄�)

𝜕�̄�

𝜕𝜑

𝜕�̄�
+

2�̄�2𝜌2(�̄�)
𝜕𝐽𝑜
𝜕�̄�

1

𝐽𝑜

𝜕𝜑

𝜕�̄�
+ �̄�2𝜌2(�̄�)

𝜕2𝜑

𝜕�̄�2 )

 
 
 
 

Ω2 

=
𝜕𝐺2(�̄�)

𝜕�̄�
(
𝜕2𝜑

𝜕�̄�2
− 𝑙2

𝜕3𝜑

𝜕�̄�3
)𝐼𝑜 + 𝐺2(�̄�)(

𝜕2𝜑

𝜕�̄�2
− 𝑙2

𝜕4𝜑

𝜕�̄�4
)𝐼𝑜 

+𝐺2(�̄�)(
𝜕𝜑

𝜕�̄�
− 𝑙2

𝜕3𝜑

𝜕�̄�3
)
1

𝐼𝑜

𝜕𝐼𝑜
𝜕�̄�

 

(24) 
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3. Generalized differential quadrature method 
 

In the case of the general boundary conditions, the 

analytical solution of Eq. (22) is difficult to obtain, so a 

generalized differential quadrature (GDQ) approach has 

been undertaken for the solution of Eq. (22). The GDQ 

approach may be an easy and useful tool for analyzing 

problems that are more complex. The generalized 

differential quadrature method is an efficient numerical 

method for the solution of differential equations. It is 

assumed that the grid points are located on the zeros of the 

Chebyshev polynomials (Shu and Chew 1998) and to 

discretize the solution domain, one can assume a set of 𝑁 

grid points in the 𝑥 -direction 

 

𝑍𝑖 =
𝐿

2
{1 − 𝑐𝑜𝑠 (

𝑖 − 1

𝑁 − 1
)𝜋} ,          𝑖 = 1,… ,𝑁 − 1 (25) 

 

In this method, the derivatives of a function, at a point 

𝑧𝑖 are expressed as 

 

𝜑𝑥
(𝑛)(𝑧𝑖) =∑𝐶𝑖𝑗

(𝑛)𝜑(𝑧𝑗)

𝑁

𝑗=1

,          𝑛 = 1,… ,𝑁 − 1 (26) 

 

where 𝑁 is the numbers of the grid points over the 𝑥 

direction. 𝐶𝑖𝑗
(𝑛)

 is the respective weighting coefficients 

through the 𝑧 direction obtained according to the following 

equations. 

If 𝑛 = 1, i.e., for the first-order derivative, then 

 

𝐶𝑖𝑗
(1) =

𝑀(𝑍𝑖)

(𝑍𝑖 − 𝑍𝑗)𝑀(𝑍𝑗)
,       𝑖, 𝑗 = 1,… ,𝑁    𝑗 ≠ 𝑖 (27) 

 

Where 

 

𝑀(𝑍𝑖) =∏(𝑍𝑖 − 𝑍𝑗)

𝑁𝑥

𝑗=1
𝑗≠𝑖

 (28) 

 

To obtain the weighting coefficients for the second-

order or higher-order derivatives, the matrix multiplication 

procedure is implemented 

 

𝐶𝑖𝑗
(𝑛) = 𝑛(𝐶𝑖𝑖

(𝑛−1)𝐶𝑖𝑗
(1) −

𝐶𝑖𝑗
(𝑛−1)

𝑍𝑖 − 𝑍𝑗
) , 

𝑖, 𝑗 = 1,… ,𝑁    𝑗 ≠ 𝑖 

(29) 

 

𝐶𝑖𝑖
(𝑛) = −∑

𝑁𝑥

𝑗=1
𝑗≠𝑖

𝐶𝑖𝑗
(𝑛), 

{
𝑖 = 1,… ,𝑁            

𝑛 = 1,2, … , 𝑁 − 1   
 

(30) 

 

Substituting Eq. (25) into the first governing equation 

(Eq. (24)) results in the following equation 

 

[−𝜌2(𝑧𝑖)∑𝐶𝑖𝑗𝜑(𝑧𝑗)

𝑁

𝑗=1

+ �̄�2
𝜕2𝜌2(�̄�)

𝜕�̄�2
|
𝑧=𝑧𝑖

∑𝐶𝑖𝑗𝜑(𝑧𝑗)

𝑁

𝑗=1

 

+2�̄�2 (
𝜕𝜌

2
(�̄�)

𝜕�̄�

𝜕𝐽
𝑜

𝜕�̄�

1

𝐽
𝑜

)|
𝑧=𝑧𝑖

∑ 𝐶𝑖𝑗𝜑(�̄�𝑗)

𝑁

𝑗=1

+ �̄�2𝜌
2
(�̄�𝑖)

𝜕2𝐽
𝑜

𝜕�̄�2
|
𝑧=𝑧𝑖

 

∑𝐶𝑖𝑗𝜑(�̄�𝑗)

𝑁

𝑗=1

+ 2�̄�2
𝜕𝜌2(�̄�)

𝜕�̄�
|
𝑧=𝑧𝑖

∑𝐶𝑖𝑗
(1)𝜑(�̄�𝑗)

𝑁

𝑗=1

+ 2�̄�2𝜌2(�̄�𝑖) 

(
𝜕𝐽𝑜
𝜕�̄�

1

𝐽𝑜
)|
�̄�=�̄�𝑖

∑𝐶𝑖𝑗
(1)𝜑(�̄�𝑗)

𝑁

𝑗=1

+ �̄�2𝜌2(�̄�𝑖)∑𝐶𝑖𝑗
(2)𝜑(�̄�𝑗)

𝑁

𝑗=1

]Ω2 

=
𝜕𝐺2(�̄�)

𝜕�̄�
|
�̄�=�̄�𝑖

(∑𝐶𝑖𝑗
(2)𝜑(�̄�𝑗)

𝑁

𝑗=1

− 𝑙2∑𝐶𝑖𝑗
(3)𝜑(�̄�𝑗)

𝑁

𝑗=1

) 

+𝐺2(�̄�𝑖)(∑𝐶𝑖𝑗
(1)𝜑(�̄�𝑗)

𝑁

𝑗=1

− 𝑙2∑𝐶𝑖𝑗
(3)𝜑(�̄�𝑗)

𝑁

𝑗=1

)(
1

𝐼𝑜

𝜕𝐼𝑜
𝜕�̄�
)|
�̄�=�̄�𝑖

 

+𝐺2(�̄�𝑖)(∑𝐶𝑖𝑗
(2)𝜑(�̄�𝑗)

𝑁

𝑗=1

− 𝑙2∑𝐶𝑖𝑗
(4)𝜑(�̄�𝑗)

𝑁

𝑗=1

) 

(31) 

 

Arranging the displacement variable and corresponding 

coefficient, the governing equations in the following form 

can be obtained 

 

[
𝐴𝑏𝑏 𝐴𝑏𝑑
𝐴𝑑𝑏 𝐴𝑑𝑑

] [
𝑋𝑏
𝑋𝑑
] = [𝛺] [

0 0
𝐵𝑑𝑏 𝐵𝑑𝑑

] [
𝑋𝑏
𝑋𝑑
] (32) 

 

In which subscripts 𝑏  and 𝑑  denote boundary and 

domain sample points, respectively. In addition, coefficients 

𝐴 and 𝐵 are matrices and their dimensions depend on the 

number of domain and boundary sample points. After 

eliminating boundary nodes 𝑋𝑏 in Eq. (31) by using the 

boundary conditions, the dimension of the coefficient 

matrices reduces. Finally, Eq. (31) can be rewritten to give 

an eigenvalue problem as 

 
[𝐾][𝑋𝑑] = [ 𝛺][𝐼][𝑋𝑑] (33) 

 

Solving the obtained eigenvalue problem gives the 

natural torsional frequency (𝛺) for the bi-directional FG 

nano-cone based on nonlocal strain gradient theory. 

 

 

3. Result and discussion 
 

In this section, we consider bi-directional FG nano-cone 

that its radius changes along z with Eq. (34). Fig. 4 shows 

the change cross-section for different quantities n. The 

properties of nano-cone are different along z and r, and we 

can decompose mechanical properties in the form of  

product longitudinal term and radius term. Eq. (33) 

expressed decompose of mechanical properties, that 𝜂 in 

an arbitrary property. The longitudinal properties FG nano-

cone is varying with an exponential function that expressed 

with Eqs. (34) and (35), that show different shear modulus 

and density, respectively. Fig. 5, shows distribution density 

and shear modules along the z-direction. The radial 

properties are varying with the power function that 

expressed with Eqs. (36) and (37). Fig. 6, shows 

distribution density and shear modules along r direction. 
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Fig. 4 cross-section variations for different values of n 
 

 

𝑅(𝑧) = (𝑅𝑜 − 𝑅𝑖) (
𝑧

𝐿
)
𝑛

+ 𝑅𝑖 (34) 

 

𝜂 = 𝜂1(𝑟)𝜂2(𝑧) (35) 
 

where 
 

𝐺2(𝑧) = 𝐺𝑜𝑒
(𝑚1

𝑧

𝐿
)
 (36) 

 

𝜌2(𝑧) = 𝜌𝑜𝑒
(𝑚2

𝑧

𝐿
)
 (37) 

 

 

 

 

𝜕𝜙

𝜕𝑧
= 0, 𝑜𝑟𝑇𝑧

(1) = 0 (38) 

 

𝐺1(𝑟) = (1 + 
𝑟

𝑅𝑜
)𝛽1 (39) 

 

𝜌2(𝑟) = (1 + 
𝑟

𝑅𝑜
)𝛽2 (40) 

 

In order to verify the present work, a comparison 

frequency is made with Demir and Civalek (2013). For the 

comparison, we should be neglecting the strain gradient 

material length scale parameter (𝑙 = 0) and consider a 

nano-cone with a constant cross-section ( 𝑛 = 0 ). 

Furthermore, this comparison is the dimensionless 

frequency in mode one of clamped-clamped support (C-C) 

nano-cone with various nonlocal material length scale 

parameter, as shown in Table 1. As observed, the results of 

this paper are consistent with those of Demir and Civalek 

(2013). 

In this section, we study the effect of different bi-

directional FG nano-cone parameters (𝑚1, 𝑚2, 𝛽1, 𝛽2) and 

different cross-section parameters (𝑛) on torsional vibration. 

At first, we check the number of the discrete points at DGQ 

and its influence on frequency. Fig. 7 shows convergence 

the nondimensional frequency obtained from DGQ for 

different quantities n. This result shows that for the different 

cross section, by choosing 𝑁 = 15, we can be sure that 

convergence has happened (𝑒𝑟𝑟𝑜𝑟 = 10−3). 
 

 

 

 

 

  

Fig. 5 Longitudinal properties FG nano-cone along z for (a) 𝑚 = 1; (b) 𝑚 = −1 

  

Fig. 6 radial properties FG nano-cone along r for (a) 𝛽 = 3; (b) 𝛽 = −3 
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Table 1 Comparison non-dimensional frequency obtained 

from percent work with (Demir and Civalek 2013) 

Mode 

number 
�̄� 

𝛀 

[Present work] 

𝛀 

(Demir and Civalek 2013) 

1 

0 

3.1416 3.1416 

2 6.2832 6.2832 

3 9.4248 9.4248 

4 12.5665 12.5664 

5 15.7097 15.7080 

1 

0.5 

3.1035 3.1035 

2 5.9943 5.9943 

3 8.5256 8.5256 

4 10.6405 10.6404 

5 12.3542 12.3534 

1 

0.1 

2.9972 2.9972 

2 5.3202 5.3202 

3 6.8587 6.8587 

4 7.8248 7.8248 

5 8.4359 8.4356 

1 

0.15 

2.8419 2.8419 

2 4.5724 4.5724 

3 5.4427 5.4427 

4 5.8892 5.8892 

5 6.1369 6.1368 
 

 

 

 

Fig. 7 The convergence of dimensionless torsional 

frequency in mode 1 clamped-clamped FG nano-cone 

for 𝑚1 = 𝑚2 = 𝛽1 = 𝛽2 = 0 and 𝑙 = 𝜇 = 1 𝑛𝑚 

 

 

Fig. 8 shows the ratio of natural frequency in strain 

gradient theory than the natural frequency in the classical 

theory versus FG nano-cone length. As is shown in this 

figure, the natural frequency obtained from the strain 

gradient theory is larger than the classical theory. By 

increasing 𝑙, the effects of the size are increased and the 

difference between strain gradient theory and classical 

theory increasing, in other words, the material gets harder. 

 

Fig. 8 Torsional frequency ratio of the clamped-clamped 

nano-cone versus length for 𝑚1 = 𝛽1 = 𝛽2 = 𝜇 = 0 

and 𝑚2 = 1, and n = 2 

 

 

In very small length, this ratio is tremendous and with 

increasing length, this ratio decreasing. The trend continues 

until at L = 50 nm that in this length strain gradient and 

classical theory reports similar results, in another word the 

effects of the size disappear. 

Fig. 9 shows the ratio of natural frequency in nonlocal 

elasticity theory to the natural frequency in the classical 

theory versus FG nano-cone length for different cross-

section parameters (n). In contrast to the staring radiant 

theory, the natural frequency obtained from the nonlocal 

theory is smaller than the classical theory. By increasing 𝜇, 

the effects of the size increased, and the difference between 

nonlocal elasticity theory and classical theory is increasing. 

 

 

 

Fig. 9 Torsional frequency ratio of the clamped-clamped 

nano-cone versus length for 𝛽1 = 𝛽2 = 𝑙 = 0 and 

𝑚1 = 𝑚2 = 1, and n = 2 
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Fig. 10 Torsional frequency FG nano-cone versus 𝑚1 
length for 𝛽1 = 𝛽2 = 𝑚2 = 0 and 𝑙 = 𝜇 = 1 𝑛𝑚 

 

 

 

Fig. 11 Length for 𝛽1 = 𝛽2 = 𝑚1 = 0 and Torsional 

frequency FG nano-cone versus 𝑚2𝑙 = 𝜇 = 1 𝑛𝑚 
 

 

In this theory, the material becomes softer. In petite length, 

this ratio is very small, and with increasing length, this ratio 

is increasing. This trend continues until at L = 50 nm that in 

this length, the nonlocal and the classical theory is approach 

to each other. 

Figs. 10 and 11 demonstrate the effect of 𝑚1 and 𝑚2 
on the torsional vibration natural frequency, respectively. 

By increasing 𝑚1  at a constant section, the torsional 

vibration frequency increased, which its reason is the 

hardening of the material. In contrast 𝑚1, with increasing 

𝑚2, the torsional frequency decreased, in other words, by 

increasing density, the torsional frequency decreased. 

Figs. 12 and 13 show torsional vibration frequency 

versus 𝑛 for different quantities 𝜇 and 𝑙, respectively. In 

the constant 𝜇  and 𝑙 , by increasing 𝑛 , at first, the 

frequency increasing, this trend continues until 𝑛 = 5, in 

this point, frequency reaches its maximum, after this point 

by increasing 𝑛, frequency decreasing. By increasing 𝜇, 

the torsional frequency is decreasing, but in contrast 𝜇, by 

increasing 𝑙, the torsional frequency increases. 

 

Fig. 12 Torsional frequency FG nano-cone versus 𝑛 length 

for 𝛽1 = 𝛽2 = 𝑙 = 0 and 𝑚1 = 𝑚2 = 1 

 

 

 

Fig. 13 Torsional frequency FG nano-cone versus 𝑛length 

for 𝛽1 = 𝛽2 = 𝜇 = 0 and 𝑚1 = 𝑚2 = 1 

 

 

Figs. 14-15 show the torsional vibration frequency 

versus n at different quantities 𝑚1 and 𝑚2, respectively. 

At first, for 𝑚1 < 0 , by increasing 𝑛 , frequency is 

decreasing. This trend continues until 𝑛 = 1, in this point, 

frequency reaches its minimum point. After 𝑛 = 1 , by 

increasing n, frequency increases. For large n, the cross-

section change not a significant parameter on the natural 

frequency. In contrast the negative value of 𝑚1, for 𝑚1 >
0, As n increases, the frequency increases first and then 

decreases. In the positive and negative value of𝑚1 and 𝑚2, 
for large value of 𝑛, by increasing 𝑛, there is no effect on 

the frequency. 

Figs. 16-17  showed the effect of 𝛽1 and 𝛽2 on the 

torsional vibration frequency at different quantities 𝑚1. By 

increasing 𝛽1, the frequency is increasing. In contrast 𝛽1, 

by increasing 𝛽2, the frequency decreases. 
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Fig. 14 Torsional frequency FG nano-cone versus 𝑛 length 

for 𝛽1 = 𝛽2 = 𝑚2 = 0 and 𝑙 = 𝜇 = 1 𝑛𝑚 

 

 

 

Fig. 15 Torsional frequency FG nano-cone versus 𝑛 length 

for 𝛽1 = 𝛽2 = 𝑚1 = 0 and 𝑙 = 𝜇 = 1 𝑛𝑚 

 

 

 

Fig. 16 Torsional frequency FG nano-cone versus 𝛽1 

length for 𝛽2 = 𝑚2 = 0 and 𝑙 = 𝜇 = 1 𝑛𝑚 

 

 

Fig. 17 Torsional frequency FG nano-cone versus 𝛽2 

length for 𝛽2 = 𝑚2 = 0 and 𝑙 = 𝜇 = 1 𝑛𝑚 

 

 

 

5. Conclusions 
 
In this paper, based on nonlocal strain gradient theory 

and Hamilton’s principle, the Navier equations of bi-

directional FG nano-cone with arbitrary section subjected 

torsional loading were derived. The effect of different 

parameters such as the nonlocal parameter, the cross-section 

change parameter, FG parameters were considered.  In this 

paper, we use an arbitrary function for all of the material 

parameters. For numerical results, in the final section we 

use a function for material properties that this function 

related to 𝛽1, 𝛽2, 𝑚1 and 𝑚2. By increasing 𝛽1 and 𝑚1, 
the shear modules increase along z and r directions. 𝛽2 and 

𝑚2 have a straight relationship with density. Comparison of 

the results obtained from this paper with those obtained 

from literature proves the efficiency and accuracy of this 

paper. 

 

It was found that: 

 

● 𝛽1  and 𝑚1  have a straight relation with the 

torsional frequency of nano-cone. 

● 𝛽2  and 𝑚1  have an inverse relation with the 

torsional frequency of nano-cone. 

• By increasing the length of nano-cone, the nonlocal 

elasticity theory, the strain gradient theory and 

classical elasticity theory approach to each other’s. 

• Results show the small-scale effect vanishes if the 

length of the nano-cone exceeds 50 nm. 

• The nonlocal and strain gradient theories, in 

comparison to the classical elasticity theory, predict 

softer and stiffer behavior for nano-structures. 

• The results indicate that small n has a significant 

effect on the natural torsional frequency of 

bidirectional FG nano-cone. In large values of 𝑛, 

there is no effect on the torsional frequency. 
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