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1. Introduction 

 

The recent development in the field of engineering 

materials has disclosed the advantages associated with the 

smart/intelligent materials. Incorporation of these smart 

materials in various multifunctional structures has paved 

way for tremendous changes in different engineering fields. 

Among them, magneto-electro-elastic (MEE) materials are 

unique as a matter of fact that it exhibits triple energy 

conversion between elastic, electric and magnetic fields 

(Vinyas et al. 2018a). Therefore, it has become a potential 

candidate for sophisticated applications such as vibration 

control (Vinyas 2019, Vinyas and Kattimani 2019), energy 

harvesting, sensors and actuators etc. More recently, 

attempts were made to synthesize MEE structures through 

functionally graded (FG) materials and improvise the 

structural functionalities. Having realized that the smart 

structures made of magneto-electro-elastic functionally 

graded (MEE-FG) materials play a significant role in 

industrial fields many pioneers have devoted their research 

to assess the mechanical response in various working 

environments. Among them, Bhangale and Ganesan (2005) 

developed a finite element (FE) formulation and evaluated 

the vibration response of MEE-FG cylindrical shells. Pan 

and Han (2005) presented exact solution to assess the 

structural response of MEE-FG plates. Huang et al. (2007) 

proposed an analytical solution to deal with the vibration 

problem of MEE-FG beams. Through asymptotic approach 

Wu and Tsai (2007) investigated the bending response of 
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MEE-FG shell. Analogously, Wu et al. (2010) exploited the 

Pagano method to demonstrate the static behaviour of 

MEE-FG plates. More recently, using FE methods, Vinyas 

and Kattimani contributed to the research community 

through their works which discuss the effect of various 

forms of thermal loading on the coupled static response of 

MEE-FG beams (Vinyas and Kattimani 2017) and MEE-FG 

plates (Vinyas and Kattimani 2017f). Extending their 

evaluation on the same grounds, the influence of moisture 

was also briefed out (Vinyas and Kattimani 2017g, Vinyas 

et al. 2018b). Nonlinear frequency response analysis of 

MEE-FG plates was performed by Kattimani and Ray 

(2015) using FE methods. In hygrothermal environment, the 

ability of higher order shear deformation theory (HSDT) to 

consider coupling effects to evaluate the natural frequencies 

of MEE-FG plates was thoroughly investigated by Vinyas 

and Kattimani (2018). In addition, the influence of carbon 

nano-tubes (CNT) on the frequency response of MEE plates 

with the aid of HSDT was assessed through a FE 

formulation by Vinyas (2019b). The free vibration 

behaviour of skew MEE plate was discussed by Vinyas et 

al. (2019) through HSDT. Sladek et al. (2015) studied the 

static response of MEE-FG circular plate incorporating 

meshless method. Bending behavior of layered FG neutral 

magneto-electro-elastic plates on elastic foundations is 

analyzed by Lezgy-Nazargah and Cheraghi (2015). 

Unlike the macroscopic structures, nanostructures 

behave uniquely due to size effects. At nano range, 

significant influence of size effects is noticed on both 

physical as well as the mechanical properties. This 

phenomenon has motivated few researchers to divert their 

focus towards assessing the mechanical response of the 

nanostructures. The major limitation of the classical 
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continuum mechanics is its inefficiency to model small size 

structures which paved way for the establishment of higher 

order continuum theories which incorporates the size-

dependency of structure with ease. The Eringen’s nonlocal 

elasticity theory (Eringen 1972, 1983) proved to be handy 

in employing the size-effects. In this regard, many articles 

have been published to make the best utilization of this 

theory in evaluating the size-dependent structural response 

(Aydogdu 2009, Thai 2012, Ebrahimi and Hosseini 2016a, 

Barati et al. 2016). The major outcome these researches 

indicate that with the higher value of nonlocal parameter, 

that nonlocal elastic models are efficient enough only to 

yield stiffness-softening effect. Incorporating the Eringen’s 

nonlocal elasticity theory few researchers attempted to 

analyze the FGM nanostructures. Eltaher et al. (2012, 2013) 

demonstrated the procedure to evaluate the stability and 

frequency characteristics of nonlocal Euler-Bernoulli FG 

nanobeams by FE methods. Based on nonlocal Timoshenko 

beam model and nonlocal third-order shear deformable 

beam model, the stability characteristics of FG nanobeams 

was studied by Şimşek and Yurtcu (2013) and Rahmani and 

Jandaghian (2015), respectively. Ebrahimi et al. (2015a) 

proposed a semi-analytical formulation to solve the 

vibration problem of FG nanobeams. The influence of 

external thermal environment on the frequencies of 

temperature-dependent FGM nanobeams was studied 

thoroughly by Ebrahimi and Salari (2015a, b). Meanwhile, 

the literatures on the vibration (Beni 2016) and buckling 

response (Ebrahimi and Salari 2015a, 2016, Ebrahimi and 

Barati 2016a-f, Ebrahimi et al. 2015a, 2016, Ebrahimi and 

Hosseini 2016a-c) of analysis of piezoelectric FG nano 

beams also have significantly contributed to the research 

community to understand the benefit of nonlocal theories. 

The results of the dynamic study of the nanostructures 

can be severely altered when the effect of damping is 

neglected. Therefore, it becomes very crucial to adapt 

damping mechanism to model the nano-electro-mechanical 

systems (NEMS) precisely. The main factors that contribute 

to the damping phenomenon include external forces and 

substrate interaction with the foundation. In any structural 

design, investigating the structure-foundation interaction is 

of much importance. More commonly, as witnessed in the 

literature review, the interaction of the beams resting on 

elastic foundation is considered as a conventional problem. 

However, for some applications it requires that the 

nanobeams are rooted in viscoelastic medium composed of 

an infinite set of dashpots and springs connected in parallel. 

In this regard, Lei et al. (2013) and Pouresmaeeli et al. 

(2013) investigated the influence of viscoelastic foundation 

on the frequency response of size-dependent Kelvin–Voigt 
viscoelastic damped Timoshenko nanobeams and 

viscoelastic orthotropic nanoscale plates, respectively. 

Similarly, Hashemi et al. (2015) investigated the natural 

frequency characteristics of double layered viscoelastic 

graphene sheets embedded in visco-Pasternak medium. 

Ananalytical solution was proposed by Hosseini and 

Jamalpoor (2015) to study the effects of thermal loads on 

the dynamic characteristics of double-viscoelastic FGM 

nanoplates. 

 

Following the development of FG nanobeams, much 

investigation on FG curved nanobeam was made 

considering its extensive applications in NEMS like nano-

switches, nano-valves and nano-filters. In contrast to 

straight nanobeams, predominant characteristics such as bi-

stability nature and efficient large stroke performance are 

exhibited by the curved beams. The frequencies of isotropic 

curved nanobeams and rings were studied by Assadi and 

Farshi (2011) incorporating the surface energies. 

Considering the surface effects, electromechanical response 

of curved piezoelectric nanobeams was investigated by Yan 

and Jiang (2011). The dynamic behaviour of curved 

nanobeams was studied by Kananipour et al. (2014) under 

the framework of nonlocal elasticity theory. On the basis of 

nonlocal Euler-Bernoulli beam model the stability analysis 

of embedded curved nanotubes subjected to thermal effects 

was probed by Setoodeh et al. (2015). The static behaviour 

of variable curvature nanobeams was demonstrated by 

Tufekci et al. (2016). Even though several articles have 

been reported on dynamic analysis of isotropic curved 

nanobeams, rings, and arches, very limited research has 

been done on frequency study of FGM curved nanobeams. 

In this regard, using nonlocal curved beam model a first 

attempt was made by Hosseini and Rahmani (2016) to 

analyze the frequencies of deep curved FG nanobeams. She 

et al. (2019a) estimated investigated the snap-buckling 

behaviour of porous functionally graded curved nano beam 

using nonlocal strain gradient theory. She and co-

researchers (She et al. 2019b) extended their evaluation to 

probe the nonlinear bending behaviour of FG porous curved 

nano beam through non-local strain gradient theory. 

In this article a first attempt has been made to evaluate 

the frequency response characteristics of curved magneto-

electro-viscoelastic functionally graded (CMEV-FG) 

nanobeams through nonlocal elasticity theory. The influence 

of visco-Pasternak foundation composed of parallel springs 

and dashpots as well as a shear layer is also considered for 

evaluation. The equations of motion are derived with the aid 

of Hamilton’s principle and the solution to vibration 

problem of CMEV-FG nanobeams are obtained analytically. 

The material gradation is considered to follow Power-law 

rule. This study thoroughly investigates the influence of 

prominent parameters such as linear, shear and viscous 

layers of foundation, structural damping coefficient, 

opening angle, magneto-electrical field, nonlocal parameter, 

power-law exponent and slenderness ratio on the 

frequencies of FG nanobeams. 

 

 

2. Theory and formulation 
 

2.1 The nonlocal elasticity model for magneto-
electro-elastic nanobeams 

 

According to Eringen’s nonlocal theory (Eringen 1972, 

1983), the state of stress existing at an entity is dependent 

on the strains of the remaining points. In consideration with 

this theory, the relation pertaining to the nonlocal MEE 

structural entity can be shown as follows 
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𝜎𝑖𝑗 = ∫𝛼(|𝑥 ′ − 𝑥|, 𝜏)
𝑉

[𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝑥 ′) 

           −𝑒𝑚𝑖𝑗𝐸𝑚(𝑥 ′) − 𝑞𝑛𝑖𝑗𝐻𝑛(𝑥 ′)]𝑑𝑉(𝑥 ′) 

(1) 

 

𝐷𝑖 = ∫𝛼(|𝑥 ′ − 𝑥|, 𝜏)
𝑉

[𝑒𝑖𝑘𝑙𝜀𝑘𝑙(𝑥 ′) 

          +𝑠𝑖𝑚𝐸𝑚(𝑥 ′) + 𝑑𝑖𝑛𝐻𝑛(𝑥 ′)]𝑑𝑉(𝑥 ′) 

(2) 

 

𝐵𝑖 = ∫𝛼(|𝑥 ′ − 𝑥|, 𝜏)
𝑉

[𝑞𝑖𝑘𝑙𝜀𝑘𝑙(𝑥 ′) 

          +𝑑𝑖𝑚𝐸𝑚(𝑥 ′) + 𝜒𝑖𝑛𝐻𝑛(𝑥 ′)]𝑑𝑉(𝑥 ′) 

(3) 

 

in which, 𝜎𝑖𝑗 , 𝜀𝑖𝑗 , 𝐷𝑖 , 𝐸𝑖 , 𝐵𝑖  and 𝐻𝑖  represents the 

components of stress, strain, electric displacement, electric 

field components, magnetic induction and magnetic field, 

respectively; Similarly, the elastic constant is denoted by 

𝐶𝑖𝑗𝑘𝑙 , 𝑒𝑚𝑖𝑗  are piezoelectric constants, 𝑠𝑖𝑚  are dielectric 

constants, 𝑞𝑛𝑖𝑗  are piezomagnetic constants. Further, 

𝑑𝑖𝑗 and 𝜒𝑖𝑗  represents magneto-electric and magnetic 

constants, respectively. Meanwhile, the nonlocal kernel 

function is represented by the term 𝛼(|𝑥′ − 𝑥|, 𝜏)  and 

|𝑥 ′ − 𝑥|  denotes the Euclidean distance. Adapting 

differential form of Eringen’s nonlocal theory, the 

constitutive relations of a MEE solid can be explicitly 

represented as follows (Ebrahimi and Barati 2016a, b) 

 

𝜎𝑖𝑗 − (𝑒0𝑎)2𝛻2𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑚𝑖𝑗𝐸𝑚 − 𝑞𝑛𝑖𝑗𝐻𝑛 (4) 

 

𝐷𝑖 − (𝑒0𝑎)2𝛻2𝐷𝑖 = 𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑠𝑖𝑚𝐸𝑚 + 𝑑𝑖𝑛𝐻𝑛 (5) 

 

𝐵𝑖 − (𝑒0𝑎)2𝛻2𝐵𝑖 = 𝑞𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑑𝑖𝑚𝐸𝑚 + 𝜒𝑖𝑛𝐻𝑛 (6) 

 

in the Eqs. (4)-(6), the Laplacian operator is represented as 

𝛻2  and the small size effect is introduced through the 

nonlocal parameter 𝑒0𝑎. 

 

2.2 Effective properties of P-FGM curved 
nanobeam 

 

The schematic representation of a curved MEE-FG 

nanobeam is depicted along with its coordinates in Fig. 1. 

The geometrical length and thickness are denoted by L and 

h, respectively. The gradation of the material properties P(z) 

across the thickness of curved MEE-FG is assumed to 

follow power law function Hence, the distribution of MEE 

 

 

material properties P(z) can be represented by (Ebrahimi 

and Barati 2017) 

 

𝛲(𝑧) = (𝛲𝑢 − 𝛲𝑙) (
𝑧

ℎ
+

1

2
)

 𝑝

+ 𝛲𝑙 (7) 

 

where, p, 𝑃𝑢 and 𝑃𝑙 represents the power-law exponent,  

the material property at top (pure BaTiO3) and bottom side 

(pure CoFe2O4), respectively, whose material properties are 

listed in Table 1. 

 

2.3 Kinematic relations 
 

The displacement components of curved MEE-FG 

nanobeam is assumed to curved Euler–Bernoulli beam 

model, based on which the radial displacement 𝑤𝑟  and 

tangential displacement 𝑢𝜃 can be written as 

 

𝑢𝜃(𝜃, 𝑟, 𝑡) = (1 +
𝑧

𝑅
) 𝑢(𝜃, 𝑡) +

𝑧

𝑅
(

𝜕𝑤(𝜃, 𝑡)

𝜕𝜃
) (8) 

 

𝑤𝑟(𝜃, 𝑟, 𝑡) = −𝑤(𝜃, 𝑡) (9) 

 

where, 𝑢 and 𝑤 denote displacement components of the 

mid-surface in tangential and radial directions, respectively. 

Meanwhile, considering Maxwell’s electromagnetic 

equations, the distributions of electric and magnetic field 

distributions can be approximated as follows (Ebrahimi and 

Barati 2016f) 

 

 

Table 1 Magneto-electro -elastic coefficients of material 

properties 

 BaTiO3 CoFe2𝑂4 

𝑐11 (GPa) 166 286 

𝑒31 (𝐶𝑚-2) -4.4 0 

𝑞31 (N/Am) 0 580.3 

𝑠11 (10−9𝐶2𝑚-2𝑁-1) 11.2 0.08 

𝑠33  12.6 0.093 

𝜒11(10−6𝑁𝑠2𝐶−2/2) 5 -590 

𝜒33 10 157 

𝑑11 = 𝑑33 0 0 

𝜌 (𝑘𝑔𝑚-3) 5800 5300 
 

 

 

 

 

Fig. 1 Geometry and coordinates of curved FG nanobeam resting on viscoelastic medium 
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𝛷(𝑥, 𝑧, 𝑡) = − 𝑐𝑜𝑠( 𝜉𝑧)𝜙(𝑥, 𝑡) +
2𝑧

ℎ
𝑉 (10) 

 

ϒ(𝑥, 𝑧, 𝑡) = − 𝑐𝑜𝑠( 𝜉𝑧)𝛾(𝑥, 𝑡) +
2𝑧

ℎ
𝛺 (11) 

 

where 𝜉 = 𝜋/ℎ. The electric voltage and the corresponding 

electric potential are represented as V and , respectively. 

Analogously the magnetic field intensity and magnetic 

potential are denoted through  and , respectively. The 

nonzero normal strain is 

 

𝜀 = 𝜀0 + 𝑧𝑘0 ,          𝜀0 =
1

𝑅
(−𝑤 +

𝜕𝑢

𝜕𝜃
) , 

𝑘0 =
1

𝑅2
(
𝜕𝑢

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
) 

(12) 

 

In Eq. (12), the strains 𝜀0  and 𝑘0 can be bifurcated 

into extensional and bending strains, respectively. The 

relationship between the magneto-electric potential and the 

non-zero components of electric and magnetic fields 

(𝐸𝜃, 𝐸𝑧, 𝐻𝜃, 𝐻𝑧) can be established through Eqs. (10) and 

(11), as follows 
 

𝐸𝜃 = −𝛷,𝑥 = 𝑐𝑜𝑠( 𝜉𝑧)
𝜕𝜙

𝑅𝜕𝜃
, 

𝐸𝑧 = −𝛷,𝑧 = −𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝜙 −
2𝑉

ℎ
 

(13) 

 

𝐻𝜃 = −ϒ,𝑥 = 𝑐𝑜𝑠( 𝜉𝑧)
𝜕𝛾

𝑅𝜕𝜃
, 

𝐻𝑧 = −ϒ,𝑧 = −𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝛾 −
2𝛺

ℎ
 

(14) 

 

Invoking Hamilton’s principle 
 

∫ 𝛿(𝛱𝑆 − 𝛱𝐾 + 𝛱𝑊)𝑑𝑡 = 0
𝑡

0

 (15) 

 

Here 𝛱𝑆, 𝛱𝐾 and 𝛱𝑊 are strain energy, kinetic energy 

and external forces work, respectively. The strain energy 

can be written as 
 

𝛿𝛱𝑆 = ∫𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉
𝑣

= ∫(𝜎𝜃𝜃𝛿𝜀𝜃𝜃 − 𝐷𝜃𝛿𝐸𝜃
𝑣

 

             −𝐷𝑧𝛿𝐸𝑧 − 𝐵𝜃𝛿𝐻𝜃 − 𝐵𝑧𝛿𝐻𝑧)𝑑𝑉 

(16) 

 

Inserting Eq. (14) into Eq. (11) gives 
 

𝛿𝛱𝑆 = ∫ (𝑁(𝛿𝜀0 ) + 𝑀(𝛿𝑘0))
𝛼

0

𝑅𝑑𝜃 

             + ∫ ∫ [−
𝐷𝜃

𝑅
𝑐𝑜𝑠( 𝛽𝑧) 𝛿 (

𝜕𝜙

𝜕𝜃
)

ℎ

2

−
ℎ

2

𝛼

0

 

             +𝐷𝑧𝛽 𝑠𝑖𝑛( 𝛽𝑧)𝛿𝜙 −
𝐵𝜃

𝑅
𝑐𝑜𝑠( 𝛽𝑧)𝛿 (

𝜕𝛾

𝜕𝜃
) 

              
             +𝐵𝑧𝛽 𝑠𝑖𝑛( 𝛽𝑧)𝛿𝛾]𝑅𝑑𝑧𝑑𝜃 

(17) 

 

in which 𝑁, 𝑀 respectively denote the axial force and 

bending moment. The available stress resultants in Eq. (18) 

are defined by 

𝑁 = ∫𝜎𝑥𝑥
𝐴

𝑑𝐴,          𝑀 = ∫𝜎𝑥𝑥𝑧
𝐴

𝑑𝐴 (18) 

 

The variation of kinetic energyis written as 

 

𝛿𝛱𝐾 = ∫ [𝐼0(𝑢̇𝛿𝑢̇ + 𝑤̇𝛿𝑤̇)
𝛼

0

 

             +
𝐼1

𝑅
(2𝑢̇𝛿𝑢̇ + 𝑢̇

𝜕𝛿𝑤̇

𝜕𝜃
+ 𝛿𝑢̇

𝜕𝑤̇

𝜕𝜃
) 

             +
𝐼2

𝑅2
(𝑢̇𝛿𝑢̇ + 𝑢̇

𝜕𝛿𝑤̇

𝜕𝜃
+ 𝛿𝑢̇

𝜕𝑤̇

𝜕𝜃
+

𝜕𝑤̇

𝜕𝜃

𝜕𝛿𝑤̇

𝜕𝜃
] 𝑅𝑑𝜃 

(19) 

 

where (𝐼0, 𝐼1, 𝐼2) are the mass moment of inertias, defined 

as follows 
 

(𝐼0, 𝐼1, 𝐼2) = ∫𝜌(𝑧)(1, 𝑧, 𝑧2)
𝐴

𝑑𝐴 (20) 

 

Thus, the variationworks done by external loadscan be 

written as 
 

𝛿𝛱𝑊 = ∫ [
(𝑁𝐸 + 𝑁𝑀)

𝑅2
(
𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
)

𝐿

0

+ 𝑞𝛿𝑤]𝑅𝑑𝜃 (21) 

 

where 𝑁𝐸  and 𝑁𝑀  are applied electric and magnetic 

loads which is defined as 
 

𝑁𝐸 = − ∫ 𝑒31

2𝑉

ℎ
𝑑𝑧

ℎ/2

−ℎ/2

 (22a) 

 

𝑁𝑀 = − ∫ 𝑞31

2𝛺

ℎ
𝑑𝑧

ℎ/2

−ℎ/2

 (22b) 

 

The external transverse load qfrom viscoelastic medium 

are expressed by 
 

𝑞 = −𝑘𝑤𝑤 +
𝑘𝑝

𝑅2

𝜕2𝑤

𝜕𝜃2
− 𝑐𝑑

𝜕𝑤

𝜕𝑡
 (23) 

 

The nonlocal constitutive relations (8) and (9) may be 

rewritten for a curved Magneto-electro-elasticEuler-

Bernoulli nanobeam as 
 

𝜎𝜃𝜃 − 𝜇
𝜕2𝜎𝜃𝜃

𝑅2𝜕𝜃2
= 𝑐11𝜀𝜃𝜃 − 𝑒31𝐸𝑧 − 𝑞31𝐻𝑧 (24) 

 

𝐷𝜃 − 𝜇
𝜕2𝐷𝜃

𝑅2𝜕𝜃2
= 𝑠11𝐸𝜃 + 𝑑11𝐻𝜃 (25) 

 

𝐷𝑧 − 𝜇
𝜕2𝐷𝑧

𝑅2𝜕𝜃2
= 𝑒31𝜀𝜃𝜃 + 𝑠33𝐸𝑧 + 𝑑33𝐻𝑧 (26) 

 

𝐵𝜃 − 𝜇
𝜕2𝐵𝜃

𝑅2𝜕𝜃2
= 𝑑11𝐸𝜃 + 𝜒11𝐻𝜃 (27) 

 

𝐵𝑧 − 𝜇
𝜕2𝐵𝑧

𝑅2𝜕𝜃2
= 𝑞31𝜀𝜃𝜃 + 𝑑33𝐸𝑧 + 𝜒33𝐻𝑧 (28) 

 

where 𝜇 = 𝑒𝑎2 . The following governing equations are 

obtained by inserting Eqs. (17)-(21) in Eq. (15) when the 

coefficients of 𝛿𝑢, 𝛿𝑤 and 𝛿𝜙 are equal to zero 
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−
𝜕𝑁

𝜕𝜃
−

1

𝑅

𝜕𝑀

𝜕𝜃
= −𝑅𝐼0𝑢̈ − 𝐼1 (2𝑢̈ +

𝜕𝑤̈

𝜕𝜃
)

−
𝐼2

𝑅
(𝑢̈ +

𝜕𝑤̈

𝜕𝜃
) 

(29) 

 

     
1

𝑅

𝜕2𝑀

𝜕𝜃2
− 𝑁 −

(𝑁𝐸 + 𝑁𝑀)

𝑅

𝜕2𝑤

𝜕𝜃2
 

= −𝑅𝐼0𝑤̈ + 𝐼1

𝜕𝑢̈

𝜕𝜃
+

𝐼2

𝑅
(

𝜕2𝑤̈

𝜕𝜃2
+

𝜕𝑢̈

𝜕𝜃
) 

     +𝑘𝑤𝑅𝑤 −
𝑘𝑝

𝑅

𝜕2𝑤

𝜕𝜃2
+ 𝑐𝑑𝑅𝑤̇ 

(30) 

 

∫ (𝑐𝑜𝑠( 𝛽𝑧)
1

𝑅

𝜕𝐷𝜃

𝜕𝜃
+ 𝛽 𝑠𝑖𝑛( 𝛽𝑧)𝐷𝑧) 𝑑𝑧 = 0

ℎ/2

−ℎ/2

 (31) 

 

∫ (𝑐𝑜𝑠( 𝛽𝑧)
1

𝑅

𝜕𝐵𝜃

𝜕𝜃
+ 𝛽 𝑠𝑖𝑛( 𝛽𝑧)𝐵𝑧) 𝑑𝑧 = 0

ℎ/2

−ℎ/2

 (32) 

 

Under the following boundary conditions 
 

𝑁 +
𝑀

𝑅
= 0   or   𝑢 = 0   at   𝜃 = 0   and   𝜃 = 𝛼 (33) 

 
𝜕𝑀

𝑅𝜕𝑥
+ 𝐼1𝑢̈ +

𝐼2

𝑅
(𝑢̈ +

𝜕𝑤̈

𝜕𝑥
) = 0   or   𝑤 = 0 

 

𝑎𝑡   𝜃 = 0   and   𝜃 = 𝛼 

(34) 

 

𝑀 = 0   or   
𝜕𝑤

𝜕𝜃
= 0   𝑎𝑡   𝜃 = 0   and   𝜃 = 𝛼 (35) 

 

∫𝐷𝜃 𝑐𝑜𝑠( 𝛽𝑧)
𝐴

𝑑𝐴 = 0   or   𝜙 = 0 

 

at   𝜃 = 0   and   𝜃 = 𝛼 

(36) 

 

∫𝐵𝜃 𝑐𝑜𝑠( 𝛽𝑧)
𝐴

𝑑𝐴 = 0   or   𝛾 = 0 

 

at   𝜃 = 0   and   𝜃 = 𝛼 

(37) 

 

The nonlocal relations related to the magneto-electro-

viscoelastic nanobeam model can be attained by integrating 

Eqs. (24)-(28) by incorporating the Kelvin’s model on 

elastic materials with viscoelastic structural damping 

coefficient (g) as follows 
 

𝑁 − 𝜇
𝜕2𝑁

𝑅2𝜕𝜃2
= (1 + 𝑔

𝜕

𝜕𝑡
) [

𝐴11

𝑅
(−𝑤 +

𝜕𝑢

𝜕𝜃
) 

+
𝐵11

𝑅2
(

𝜕𝑢

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
)] + 𝐴31

𝑒 𝜙 + 𝐴31
𝑚 𝛾 − 𝑁𝑥

𝐸 − 𝑁𝑥
𝑀 

(38) 

 

𝑀 − 𝜇
𝜕2𝑀

𝑅2𝜕𝜃2
= (1 + 𝑔

𝜕

𝜕𝑡
) [

𝐵11

𝑅
(−𝑤 +

𝜕𝑢

𝜕𝜃
) 

+
𝐷11

𝑅2
(

𝜕𝑢

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
)] + 𝐸31

𝑒 𝜙 + 𝐸31
𝑚 𝛾 − 𝑀𝑥

𝐸 − 𝑀𝑥
𝑀 

(39) 

 

∫ {𝐷𝜃 −
𝜇

𝑅2

𝜕2𝐷𝜃

𝜕𝜃2
} 𝑐𝑜𝑠( 𝜉𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 (40) 

= +
𝐹11

𝑒

𝑅

𝜕𝜙

𝜕𝜃
+

𝐹11
𝑚

𝑅

𝜕𝛾

𝜕𝜃
 (40) 

 

∫ {𝐷𝑧 −
𝜇

𝑅2

𝜕2𝐷𝑧

𝜕𝜃2
} 𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 

=
𝐴31

𝑒

𝑅
(−𝑤 +

𝜕𝑢

𝜕𝜃
) +

𝐸31
𝑒

𝑅2
(

𝜕𝑢

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
) − 𝐹33

𝑒 𝜙 − 𝐹33
𝑚𝛾 

(41) 

 

∫ {𝐵𝜃 −
𝜇

𝑅2

𝜕2𝐵𝜃

𝜕𝜃2
} 𝑐𝑜𝑠( 𝜉𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 

= +
𝐹11

𝑚

𝑅

𝜕𝜙

𝜕𝜃
+

𝑋11
𝑚

𝑅

𝜕𝛾

𝜕𝜃
 

(42) 

 

∫ {𝐵𝑧 −
𝜇

𝑅2

𝜕2𝐵𝑧

𝜕𝜃2
} 𝜉 𝑠𝑖𝑛( 𝜉𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 

=
𝐴31

𝑚

𝑅
(−𝑤 +

𝜕𝑢

𝜕𝜃
) +

𝐸31
𝑚

𝑅2
(

𝜕𝑢

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
) − 𝐹33

𝑚𝜙 − 𝑋33
𝑚 𝛾 

(43) 

 

The cross-sectional rigidities are defined as follows 
 

(𝐴11, 𝐵11, 𝐷11) = ∫ 𝑐11(𝑧)(1, 𝑧, 𝑧2)
ℎ/2

−ℎ/2

𝑑𝑧 (44) 

 

{𝐴31
𝑒 , 𝐸31

𝑒 } = ∫ 𝑒31{𝜉 𝑠𝑖𝑛( 𝜉𝑧), 𝑧𝜉 𝑠𝑖𝑛( 𝜉𝑧)}
ℎ/2

−ℎ/2

𝑑𝑧 (45) 

 

{𝐴31
𝑚 , 𝐸31

𝑚 } = ∫ 𝑞31{𝜉 𝑠𝑖𝑛( 𝜉𝑧), 𝑧𝜉 𝑠𝑖𝑛( 𝜉𝑧)}
ℎ/2

−ℎ/2

𝑑𝑧 (46) 

 

{𝐹11
𝑒 , 𝐹33

𝑒 } = ∫ {𝑠11 𝑐𝑜𝑠2( 𝜉𝑧), 𝑠33𝜉2 𝑠𝑖𝑛2( 𝜉𝑧)}
ℎ/2

−ℎ/2

𝑑𝑧 (47) 

 

{𝐹11
𝑚, 𝐹33

𝑚} = ∫ {𝑑11 𝑐𝑜𝑠2( 𝜉𝑧), 𝑑33𝜉2 𝑠𝑖𝑛2( 𝜉𝑧)}
ℎ/2

−ℎ/2

𝑑𝑧 (48) 

 

{𝑋11
𝑚 , 𝑋33

𝑚 } = ∫ {𝜒11 𝑐𝑜𝑠2( 𝜉𝑧), 𝜒33𝜉2 𝑠𝑖𝑛2( 𝜉𝑧)}
ℎ/2

−ℎ/2

𝑑𝑧 (49) 

 

And 
 

𝑁𝑥
𝐸 = − ∫ 𝑒31

2𝑉

ℎ
𝑑𝑧

ℎ

2

−
ℎ

2

, 

𝑁𝑥
𝑀 = − ∫ 𝑞31

2𝛺

ℎ
𝑑𝑧

ℎ/2

−ℎ/2

 

(50) 

 

𝑀𝑥
𝐸 = − ∫ 𝑒31

2𝑉

ℎ
𝑧𝑑𝑧

ℎ

2

−
ℎ

2

, 

𝑀𝑥
𝑀 = − ∫ 𝑞31

2𝛺

ℎ
𝑧𝑑𝑧

ℎ/2

−ℎ/2

 

(51) 

 

The governing equations of a CMEV-FG can be 

obtained inserting Eqs. (38)-(43), respectively, into Eqs. 

(29)-(32) as 

395



 

Farzad Ebrahimi, Ramin Ebrahimi Fardshad and Vinyas Mahesh 

(1 + 𝑔
𝜕

𝜕𝑡
) [

𝐴11

𝑅
(−

𝜕𝑤

𝜕𝜃
+

𝜕2𝑢

𝜕𝜃2
) 

+
𝐵11

𝑅2
(−

𝜕𝑤

𝜕𝜃
+2

𝜕2𝑢

𝜕𝜃2
+

𝜕3𝑤

𝜕𝜃3
) +

𝐷11

𝑅3
(

𝜕2𝑢

𝜕𝜃2
+

𝜕3𝑤

𝜕𝜃3
)] 

+𝐴31
𝑒

𝜕𝜙

𝜕𝜃
+

𝐸31
𝑒

𝑅

𝜕𝜙

𝜕𝜃
+ 𝐴31

𝑚
𝜕𝛾

𝜕𝜃
+

𝐸31
𝑚

𝑅

𝜕𝛾

𝜕𝜃
 

−𝑅𝐼0𝑢̈ − 𝐼1 (2𝑢̈ +
𝜕𝑤̈

𝜕𝜃
) −

𝐼2

𝑅
(𝑢̈ +

𝜕𝑤̈

𝜕𝜃
) 

+
𝜇

𝑅2
(+𝑅𝐼0

𝜕2𝑢̈

𝜕𝜃2
+ 𝐼1 (2

𝜕2𝑢̈

𝜕𝜃2
+

𝜕3𝑤̈

𝜕𝜃3
) 

+
𝐼2

𝑅
(

𝜕2𝑢̈

𝜕𝜃2
+

𝜕3𝑤̈

𝜕𝜃3
)) = 0 

(52) 

 

(1 + 𝑔
𝜕

𝜕𝑡
) [

𝐴11

𝑅
(−𝑤 +

𝜕𝑢

𝜕𝜃
) +

𝐵11

𝑅2
(

𝜕𝑢

𝜕𝜃
+ 2

𝜕2𝑤

𝜕𝜃2
 

−
𝜕3𝑢

𝜕𝜃3
) −

𝐷11

𝑅3
(

𝜕3𝑢

𝜕𝜃3
+

𝜕4𝑤

𝜕𝜃4
)] −

𝐸31
𝑒

𝑅

𝜕2𝜙

𝜕𝜃2
+ 𝐴31

𝑒 𝜙 

−
𝐸31

𝑚

𝑅

𝜕2𝛾

𝜕𝜃2
+ 𝐴31

𝑚 𝛾 + 𝑘𝑤𝑅𝑤 −
𝑘𝑝

𝑅

𝜕2𝑤

𝜕𝜃2
 

+𝑐𝑑𝑅𝑤̇ − 𝑅𝐼0𝑤̈ + 𝐼1

𝜕𝑢̈

𝜕𝜃
+

𝐼2

𝑅
(

𝜕2𝑤̈

𝜕𝜃2
+

𝜕𝑢̈

𝜕𝜃
) 

+ (
𝑁𝐸 + 𝑁𝑀

𝑅
)

𝜕2𝑤

𝜕𝜃2
+

𝜇

𝑅2
(+𝑅𝐼0𝑤̈ − 𝐼1

𝜕𝑢̈

𝜕𝜃
 

−
𝐼2

𝑅
(

𝜕2𝑤̈

𝜕𝜃2
+

𝜕𝑢̈

𝜕𝜃
) − (

𝑁𝐸 + 𝑁𝑀

𝑅
)

𝜕4𝑤

𝜕𝜃4
 

−𝑘𝑤𝑅
𝜕2𝑤

𝜕𝜃2
+

𝑘𝑝

𝑅

𝜕4𝑤

𝜕𝜃4
− 𝑐𝑑𝑅

𝜕2𝑤̇

𝜕𝜃2
) = 0 

(53) 

 

𝐹11
𝑒

𝑅

𝜕2𝜙

𝜕𝜃2
+

𝐹11
𝑚

𝑅

𝜕2𝛾

𝜕𝜃2
+ 𝐴31

𝑒 (−𝑤 +
𝜕𝑢

𝜕𝜃
) 

+ (
𝜕𝑢

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
) − 𝑅𝐹33

𝑒 𝜙 − 𝑅𝐹33
𝑚𝛾 = 0 

(54) 

 

𝐹11
𝑚

𝑅

𝜕2𝜙

𝜕𝜃2
+

𝑋11
𝑚

𝑅

𝜕2𝛾

𝜕𝜃2
+ 𝐴31

𝑚 (−𝑤 +
𝜕𝑢

𝜕𝜃
) 

+
𝐸31

𝑚

𝑅
(

𝜕𝑢

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
) − 𝑅𝐹33

𝑚𝜙 − 𝑅𝑋33
𝑚 𝛾 = 0 

(55) 

 

 

3. Solution procedure 
 

The nonlocal governing equations derived previously 

are solved analytically. To satisfy the simply-supported 

boundary conditions, the following solution for 

displacement variables is employed 
 

𝑢(𝜃, 𝑡) = ∑ 𝑈𝑛 𝑐𝑜𝑠[
𝑛𝜋

𝜃
𝛼]

∞

𝑛=1

𝑒𝑖𝜔𝑛𝑡 (56) 

 

𝑤(𝜃, 𝑡) = ∑ 𝑊𝑛 𝑠𝑖𝑛[
𝑛𝜋

𝜃
𝛼]

∞

𝑛=1

𝑒𝑖𝜔𝑛𝑡 (57) 

 

𝜙(𝜃, 𝑡) = ∑ 𝛷𝑛 𝑠𝑖𝑛[
𝑛𝜋

𝜃
𝛼]

∞

𝑛=1

𝑒𝑖𝜔𝑛𝑡 (58) 

 

𝛾(𝜃, 𝑡) = ∑ ϒ𝑛 𝑠𝑖𝑛[
𝑛𝜋

𝜃
𝛼]

∞

𝑛=1

𝑒𝑖𝜔𝑛𝑡 (59) 

 

in which ( 𝑈𝑛 , 𝑊𝑛 , 𝛷𝑛 , ϒ𝑛 ) are the unknown Fourier 

coefficients. Inserting Eqs. (56) and (59) into Eqs. (52) to 

(55) respectively, leads to 
 

{[𝐾] + [𝐶]𝜔 + [𝑀]𝜔2} {

𝑈𝑛

𝑊𝑛

𝛷𝑛

ϒ𝑛

} = 0 (60) 

 

where [K], [C] and [M] are the stiffness, damping, and mass 

matrixes for FG nanobeam, respectively. Also, for nontrivial 

solution of Eq. (60), the determinant of {[𝐾] + [𝐶]𝜔 +
[𝑀]𝜔2} should be zero to obtain natural frequencies. 

 

 

4. Numerical results and discussions 
 

This section addresses the frequency response of 

nonlocal CMEV-FG nanobeams resting on visco-Pasternak 

medium. This study considers the length of curved 

nanobeams (L) to be 10 nm. The verification of the 

proposed model is carried out by comparing the frequency 

results of curved FG nanobeams reported by Hosseini and 

Rahmani (2016). A similar geometric conditions and 

materials properties as that of Hosseini and Rahmani (2016) 

are incorporated in this verification study as well. It can be 

witnessed from the results of Table 2 that the proposed 

model correlates well with the results presented in Hosseini 

and Rahmani (2016). Therefore, it is justified that the 

results presented in this article is accurate to predict the 

frequency response of nonlocal curved magneto-electro-

viscoelastic FG nanobeams. Further, the relations 

established to calculate the non dimensional natural 

frequencies can be expressed as follows 
 

𝜔̃ = ωL2√
𝜌𝑢𝐴

𝑐11
𝑢 𝐼

,     𝐾𝑤 = 𝑘𝑤

𝐿4

𝑐11
𝑢 𝐼

, 

𝐾𝑝 = 𝑘𝑝

𝐿2

𝑐11
𝑢 𝐼

,     𝐶 = 𝑐𝑑

𝐿2

√𝑐11
𝑢 Iρ

𝑢
𝐴

,     𝐺 =
𝑔

𝐿2
√

𝑐11
𝑢 𝐼

𝜌𝑢𝐴
 

(61) 

 

The influence of damping coefficient (C) on the 

dimensionless frequency CMEV-FG nanobeams with 

different opening angles is illustrated in Fig. 2. It can be 

observed that irrespective of the opening angle, ‘C’ has a 

detrimental effect on the frequencies of CMEV-FG 

nanobeams. Further, higher value of C shows a predominant 

effect on the reduction of dimensionless frequency. 

Meanwhile, it can also be seen that a higher value of 

opening angle results in lesser frequency. The discrepancies 

in frequencies are predominant with respect to the opening 

angles a fixed electric voltage and magnetic potential. To 

elaborate, the frequency difference existing between α = π/4 

and π/3 in minimal in contrast to that existing between α = 

π/2 and 2π/3. Therefore, it suggests that the opening angle 

has a significant contribution in assessing the effect of ‘C’ 

396



 

Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams 

 

 

on the frequency response of CMEV-FG nanobeams. 

The effect of nonlocal parameters (µ) associated with 

different damping coefficient on the vibration behaviour the 

smart CMEV-FG nanobeams is depicted in Fig. 3. From this 

figure, it can be noticed that at a fixed value of ‘C’, higher 
 

 

 

 

 

 

value of µ  yields lower frequency of CMEV-FG 

nanobeams. This may be due to the fact that CMEV-FG 

nanobeams become less stiff as its size reduces. Further, it 

also implies that the CMEV-FG nanobeams exhibit a 

stiffness-softening effect with an improvement in the value 
 

 

 

 

 

Table 2 Comparison of dimensionless frequency of curved FG nanobeam for various opening angles and nonlocal parameters 

(L/h = 50) 

μ 

𝛼 = π/3, p = 0 𝛼 = π/4, p = 0.5 𝛼 = π/2, p = 1 𝛼 = 2π/3, p = 5 

Hosseini and 

Rahmani (2016) 
Present 

Hosseini and 

Rahmani (2016) 
Present 

Hosseini and 

Rahmani (2016) 
Present 

Hosseini and 

Rahmani (2016) 
Present 

0 8.31770 8.32132 7.30721 7.31014 4.72079 4.72275 2.63872 2.64019 

1 7.93532 7.93877 6.97129 6.97408 4.50376 4.50563 2.51741 2.51881 

2 7.60125 7.60455 6.67780 6.68048 4.31416 4.31595 2.41143 2.41277 

3 7.30611 7.30928 6.41852 6.42108 4.14665 4.14837 2.3178 2.31909 
 

 

Fig. 2 Effect of damping coefficient on the frequency response of CMEV-FG nanobeams with different opening angles 

(L/h = 20, µ = 1 nm2 , V = Ω = 0, p = 1, Kw = 25, Kp = 5, G = 0.01) 

 

Fig. 3 Effect of damping coefficient on the frequency response of CMEV-FG nanobeams with different nonlocal parameters 

(L/h = 20, V = Ω = 0, p = 1, Kw = 25, Kp = 5, G = 0.01, α = π/3) 
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of µ. Hence, it can be concluded that a predominant 

influence of µ prevails on the damping vibration of CMEV-

FG nanobeams. 

The effect of externally applied electric voltage (V) and 

magnetic potential (Ω) on the vibration characteristics of 

CMEV-FG nanobeams are illustrated in Fig. 4. In addition, 

influence on different forms of elastic foundations viz. 

Winkler-Pasternak (Kw = 25, Kp = 5, C = 0), visco- 

Pasternak (Kw = 25, Kp = 5, C = 5), visco-Winkler (Kw = 

25, Kp = 0, C = 5) and Winkler foundations are also 

considered for evaluation. The results reveal that with the 

increase in the positive electric voltage, the frequency of 

CMEV-FG nanobeams reduces. However, the natural 

frequencies improve with the increase in negative electric 

voltage. On the other hand, a reverse trend is noticed with 

respect to the magnetic potential. Meanwhile, at a fixed 

value of electric voltage and magnetic potential, the effect 

of elastic foundations on the frequency response of CMEV-

FG is in the following order: Winkler-Pasternak medium > 

Visco-Pasternak > Winkler medium > Visco-Winkler 

medium. 

 

 

 

 

The variation of dimensionless frequencies of CMEV-

FG nanobeams with different values of internal damping 

constant (G) against externally applied V and Ω is depicted 

in Fig. 5. As seen from this figure, it can be inferred that at 

a constant value of V and Ω, incrementing the value of ‘G’ 

reduces the frequency. It implies that viscoelastic material 

properties play a prominent role in deciding the stiffness 

characteristics of CMEV-FG nanobeams. A previously 

discussed, a similar trend of variation with respect to V and 

Ω is noticed here as well. It may be attributed to the fact 

that the positive and negative values of V results in 

development of the compressive and tensile forces in 

CMEV-FG nanobeams, respectively. Analogously, magnetic 

field exhibits a reverse trend on the vibration frequencies. 

The effect of externally applied V and Ω associated with 

frequencies of CMEV-FG nanobeams with various opening 

angle is demonstrated in Fig. 6. The results from this figure 

suggest that a prominent influence of opening angle prevails 

on frequency response of CMEV-FG nanobeams. Vibration 

behavior of curved magneto-electro-elastic FG nanobeams 

is dependent on the value of opening angle. Further an 

  

Fig. 4 Effect of electric voltage and magnetic potential on the frequency response of CMEV-FG nanobeams resting on 

various types of foundation (L/h = 20, µ = 1, p = 1, G = 0.01, α = π/3) 

  

Fig. 5 Effect of electric voltage and magnetic potential on the frequency response of CMEV-FG nanobeams with different 

internal damping constant (L/h = 20, µ = 1, p = 1, Kw = 25, Kp = 5, C = 5, α = π/3) 
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increase in opening angle leads to reduced frequencies. A 

predominant influence of opening angles is noticed at its 

value improves. The vibration behaviour of CMEV-FG 

nanobeams with different power-law index (p) subjected to 

various magnitude of external electric voltage (V = -10, -5, 

0, +5, +10) is displayed in Fig. 7. It is noticeable that at a 

constant power-law index, negative electric voltage yields a 

higher frequency. In addition, the frequencies of CMEV-FG 

nanobeam decreases as the power law index increases. This 

can be attributed to the fact that the stiffness of the FG 

nanobeam decreases as the portion of BaTiO3 phase which 

has a lesser elastic stiffness in the overall material 

composition increases. A significant influence of power law 

index on the frequency prevails and it is dependent on the 

sign and value of electric voltage. 

The analysis is further extended to evaluate the 

influence of power-law index associated with different 

magnitudes of magnetic potential. The results presented in 

Fig. 8 illustrates that at a given value of magnetic potential, 

 

 

 

with a small increment in the power-law index, the 

dimensionless frequency drastically reduces. The reduction 

is predominant for small values of power-law index in 

contrast to larger power-law index. Further, unlike electric 

voltage noticed higher frequencies are noticed for positive 

magnetic potentials. For different magnitudes of externally 

applied magnetic potential, the effect of slenderness ratio 

(L/h) on the vibrations of simply supported CMEV-FG 

nanobeams with various damping coefficient (C) and 

internal damping (G) are studied in Fig. 10. It can be 

noticed that at the lesser L/h ratio the discrepancies of 

natural frequencies are minimal. However, at the larger 

values of L/h ratio a significant effect can be witnessed. It 

implies that compared to thin CMEV-FG nanobeams, a 

significant influence of magnetic potentials exists on thick 

CMEV-FG nanobeams. In addition, the negative magnetic 

potential deteriorates the natural frequency whereas the 

positive magnetic potential enhances the vibration 

frequencies of CMEV-FG nanobeam. Meanwhile, Ω = 0,

  

Fig. 6 Effect of electric voltage and magnetic potential on the frequency response of CMEV-FG nanobeams with different 

values of opening angle (L/h = 20, µ = 1, p = 1, Kw = 25, Kp = 5, C = 5) 

 

Fig. 7 Effect of power-law index on the frequency response of CMEV-FG nanobeams with various magnitudes of electric 

voltages (L/h = 20, µ = 1, Kw = 25, Kp = 5, C = 5, α = π/3) 
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does not influence the frequency variation in any means 

even with the change in L/h ratio. These phenomena 

associated the positive/negative magnetic potentials is due 

to the development of tensile and compressive forces 

developed, respectively. The improvement in the value of 

‘C’ and ‘G’ yields lesser frequency of CMEV-FG nanobeam 

irrespective of applied magnetic potential and L/h ratio. 

 

 

4. Conclusions 
 

In this article a first attempt has been made to assess the 

frequency response of CMEV-FG nanobeam under the 

framework of Euler-Bernoulli beam theory. In addition, 

emphasize has been made on investigating the influence of 

three-parameter viscoelastic medium of the natural 

frequencies of CMEV-FG nanobeam. The material graation 

 

 

 

 

is assumed to follow Power-law distribution. The equations 

of motion are solved by incorporating The Navier solution. 

The numerical results reveal that higher opening angles 

have a deteriorating effect on the frequencies of CMEV-FG 

nanobeam. The dimensionless frequencies of CMEV-FG 

nanobeam are observed to reduce with the inclusion of 

nonlocal parameter. Meanwhile, the influence of externally 

applied electric and magnetic fields are found to be 

predominant on thin CMEV-FG nanobeams (larger 

slenderness ratio) in contrast to the thick CMEV-FG 

nanobeams. The negative/positive electric voltage increase 

/decrease the vibration frequencies of CMEV-FG 

nanobeams. Analogously a reverse trend in noticed for the 

magnetic potential. Further, the sign and magnitude of the 

electric voltage and magnetic potential plays an important 

role in deciding the influence of damping coefficient and 

internal damping constant on the frequency response of 

 

Fig. 8 Effect of power-law index on the frequency response of CMEV-FG nanobeams with various magnitudes of magnetic 

potentials (L/h = 20, µ = 1, Kw = 25, Kp = 5, C = 5, α = π/3) 

 

Fig. 9 Variation of dimensionless frequency of curved FG nanobeam versus slenderness ratio for various magnetic potentials 

(p = 1, µ = 2, V = 0, Kw = 25, Kp = 5, α = π/4) 
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CMEV-FG nanobeam. It is concluded that higher value of 

damping coefficient reduces the frequencies of CMEV-FG 

nanobeams drastically. 
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