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1. Introduction 

 

Functional Grade Materials (FGMs) are the novel type 

of composite materials that offer a wide range of 

applications for various equipment subject to extreme 

thermo-mechanical stresses, such as the thermal shields of 

the “spacecraft body”, “nuclear reactor components”, “jet 

fighter structures” and “thermal engine components” (Kar 

and Panda 2015, Avcar 2015, Barati and Shahverdi 2016, 

Houari et al. 2016, Sekkal et al. 2017a, Avcar and 

Mohammed 2018, Tlidji et al. 2019, Karami et al. 2019a, 

Meksi et al. 2019). Due to the continuous variation in 

material properties compared to conventional composites, 

FGM has several advantages: avoiding cracking and 

delamination phenomena, minimizing or eliminating stress 

concentrations and residual stresses, ensuring a smooth 

transition of distributions constraints, etc. 

In the manufacture of FGMs, porosities may appear in 

the materials during the sintering process. The porosity 

contrasts with the harmful composite material with high 

performance. The impact of this failure has been the topic 

of much attention, as evidenced by the large number of 

investigations conducted on this subject. The linear and 

nonlinear dynamic stability of a circular porous plate has 

been studied to obtain the critical loads in two separate 

works by Mugnucka-Blandzi (2010). Wattanasakulpong and 

Ungbhakor (2014) studied the linear and nonlinear dynamic 

 

Corresponding author, Professor, 

E-mail: addabed@yahoo.com 

 

 

problems of FG beams with porosities. Wattanasakulpong et 

al. (2012) provided a work on porosities happening inside 

FGM samples manufactured by a multi-step sequential 

infiltration method. Ebrahimi and Zia (2015) investigated 

nonlinear vibration of FG Timoshenko beams with 

porosities. Yahia et al. (2015) employed higher-order shear 

deformation theories to examine the wave propagation of an 

infinite FG plate with porosities. Benferhat et al. (2016) 

presented a static analysis of the FG plate with porosities. 

Akbas (2017) studied post-buckling of porous FG beams 

subjected to compression load. Chen et al. (2017) examined 

the nonlinear vibration and post-buckling of FG graphene 

reinforced porous nanocomposite beams. Mirjavadi et al. 

(2017) analyzed thermo-mechanical dynamic response of 

two dimensional FG porous nanobeam. Ehyaei et al. (2017) 

investigated the influence of porosity and axial preload on 

vibration behavior of rotating FG nanobeam. Benadouda et 

al. (2017) presented an efficient shear deformation theory 

for wave propagation in FG beams with porosities. Thang et 

al. (2018) studied stability and dynamic behavior of porous-

cellular plates having uniform and non-uniform porosity 

variations using first-order shear deformation theory. Avcar 

(2019) presented an original study on free vibration of 

imperfect sigmoid and power law functionally graded 

beams. 

Nowadays, nanotechnology is primarily about the 

fabrication of nano-sized functionally graded materials and 

engineering structures, enabling a new generation of 

breakthrough materials and improved functionality (Akgöz 

and Civalek 2014, Arani and Kolahchi 2016, Madani et al. 

2016, Bilouei et al. 2016, Kolahchi et al 2016a, Boukhari et 
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al. 2016, Zamanian et al. 2017, Kolahchi and Cheraghbak 

2017, Kolahchi et al. 2017a, b, Besseghier et al. 2017, 

Hajmohammad et al. 2017, Amnieh et al. 2018, Golabchi et 

al. 2018, Fakhar and Kolahchi 2018, Hosseini and Kolahchi 

2018, Hajmohammad et al. 2018a, b, c, Chaabane et al. 

2019). In some cases, the porosity of materials at the 

micro/nano scale has been largely managed in different 

applications, such as biomedical systems lightweight 

structures, catalysts in electrochemical actuators and fuel 

cells (Detsi et al. 2013), a piezoelectric ceramic gradient 

actuator (Li et al. 2003), nano-layers of porous titanium 

dioxide to improve the hydrophilicity of materials (Kim et 

al. 2009). Various studies were carried out on perfect and 

imperfect FG nanostructures. Ebrahimi and Jafari (2016) 

examined thermo-mechanical dynamic characteristics of 

porous FG Reddy beams under different thermal loadings. 

Ahouel et al. (2016) studied size-dependent mechanical 

behavior of FG trigonometric shear deformable nanobeams 

including neutral surface position concept. Kolahchi and 

Moniri Bidgoli (2016) presented a size-dependent 

sinusoidal beam model for dynamic instability of single-

walled carbon nanotubes. Ebrahimi and Daman (2017) 

presented an analytical solution for dynamic response of 

curved FG nanobeam subjected to thermal loading by 

taking into account porosity variation using nonlocal 

elasticity theory. Al Rjoub and Hamad (2017) provided an 

analytical procedure to investigate the vibration response of 

FG porous beams by transfer matrix method. Fu et al. 

(2018) presented a comparison of mechanical properties of 

C-S-H and portlandite between nano-indentation 

experiments and a modeling approach using various 

simulation techniques. Eltaher et al. (2018) investigated the 

bending and dynamic behavior of FG nonlocal porous 

nanobeams by employing finite elements method and a 

modified porosity model. Other on nanostructures can be 

found in literature such as (Kolahchi et al. 2016b, 2017c, 

Bensaid 2017, Karami et al. 2017, 2018a, b, c, d, 2019b, c, 

Mouffoki et al. 2017, Gupta et al. 2018, Cherif et al. 2018, 

Aydogdu et al. 2018, Akbas 2018, Bensaid et al. 2018, 

Mokhtar et al. 2018, Selmi and Bisharat 2018, Yazid et al. 

2018, Hussain and Naeem 2019, Karami and Karami 2019, 

Boutaleb et al. 2019, Adda Bedia et al. 2019, Semmah et al. 

2019). 

In this paper, a nonlocal nth-order shear deformation 

theory is utilized to study the free vibrational analysis of the 

FG nano-beams. The theory takes into account the parabolic 

transverse shear effect. The small scale effect is introduced 

 

 

by using the differential constitutive relation of Eringen. 

Also, the effective properties of FG nano-beam are 

computed by introducing the imperfection of material in the 

form of porosities. The equation of motion are determined 

by the Hamilton’s principle and solved by Navier’s method. 

To show the efficiency and accuracy of the present model, 

several comparisons with existing models in the literature 

are performed. Finally, parametric studies are presented and 

discussed to illustrate the effects of material imperfection, 

small scales effect, slenderness ratio and the volume 

fraction on fundamental frequencies of FG nano-beams. 
 

 

2. Problem formulations 
 

In this research, in consider a short functionally graded 

(FG) porous nano-beam of thickness “h” width “b” and 

length “L” (as shown in Fig. 1). The studied FG porous 

nano-beam occupies the following limited intervals: 
 

−
ℎ

2
≤ 𝑧 ≤

ℎ

2
;   −

𝑏

2
≤ 𝑦 ≤

𝑏

2
  and   0 ≤ 𝑥 ≤ 𝐿 (1) 

 

wherex, y, z are Cartesian coordinates. 
 

2.1 Power law FG porous nano-beam 
 

Taking into account the imperfections in the form of 

porosity produced during the manufacturing time of the FG 

nano-beams (Zhu et al. 2001, Wattanasakulpong and 

Ungbhakorn 2014, Yahia et al. 2015), the Effective 

materials properties of FG porous nano-beams (the mass 

density “ρ (z)”, Young’s modulus “E(z)” and shear modulus 

“G(z)”) can be expressed as (Gupta and Talha 2017, 

Bourada et al. 2019) 
 

𝑃(𝑧) = (𝑃𝑡 − 𝑃𝑏) (
2𝑧 + ℎ

2ℎ
)
𝑘

 

− 𝑙𝑜𝑔 (1 +
𝜉

2
) (𝑃𝑡 + 𝑃𝑏) (1 −

2|𝑧|

ℎ
) + 𝑃𝑏 

(2) 

 

where the index “t and b” present the top (alumina) and 

bottom (steel) surfaces of the FG- nano beam, exponent “k” 

is the power low index with “k ≥ 0” and “ξ” is the term that 

takes into account the porosity. Based to the Eq. 1, the 

young modulus “E(z)”, shear modulus “G(z)” andthe mass 

density”ρ(z)” can be given as (Shahsavari et al. 2018) 

 

 

  

Fig. 1 Geometry of the FG porous nano-beam 
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Table 1 Material properties of Alumina (Al2O3) and steel 

Material 
Young’s modulus 

E (GPa) 

Mass density 

ρ (kg/m3) 

Poisson’s ratio 

v 

Alumina (Al2O3) 390 3960 
0,3 

Steel 210 7800 
 

 

 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚) (
2𝑧 + ℎ

2ℎ
)
𝑘

 

− 𝑙𝑜𝑔 (1 +
𝜉

2
) (𝐸𝑐 + 𝐸𝑚) (1 −

2|𝑧|

ℎ
) + 𝐸𝑚 

(3a) 

 

𝐺(𝑧) =
𝐸(𝑧)

2(1 + 𝑣)
 (3b) 

 

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚) (
2𝑧 + ℎ

2ℎ
)
𝑘

 

− 𝑙𝑜𝑔 (1 +
𝜉

2
) (𝜌𝑐 + 𝜌𝑚) (1 −

2|𝑧|

ℎ
) + 𝜌𝑚 

(3c) 

 

where “Ec, ρc” are the corresponding property of ceramic 

and “Em, ρm”are the corresponding property of metal. 

The material properties used in this work is abstracted in 

the Table 1. 
 

2.2 Nonlocal nth-order shear deformation theory 
 

The assumptions made in the refined high order shear 

deformation theory (Benachour et al. 2011, Zidi et al. 2014, 

Meziane et al. 2014, Al-Basyouni et al. 2015, Bellifa et al. 

2016, Abdelaziz et al. 2017, Kolahchi 2017, Bourada et al. 

2019) are considered, the displacement field of the nth order 

shear deformation theory can be expressed as 
 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤𝑏
𝜕𝑥

+
𝑧𝑛

𝑛
(
2

ℎ
)
𝑛−1 𝜕𝑤𝑠

𝜕𝑥
 (4a) 

 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) (4b) 
 

where the components “u0, ub and us” are corresponding to 

extension, bending and shear displacements. wb and ws are 

the transverse displacements components corresponding to 

bending and shear. 

The formulations of the nonzero axial strain and the 

shear strain associated with the kinematics of Eq. (4) can be 

obtained as 
 

휀 = 휀𝑥
0 + 𝑧𝑘𝑥

𝑏 + 𝑓(𝑧)𝑘𝑥
𝑠     and     𝛾𝑥𝑧 = 𝑔(𝑧)𝛾𝑥𝑧

𝑠  (5) 

 

Where 
 

{

휀𝑥
0

𝑘𝑥
𝑏

𝑘𝑥
𝑠

} =

{
  
 

  
 
𝜕𝑢0
𝜕𝑥

−
𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑥2 }

  
 

  
 

,     𝛾𝑥𝑧
𝑠 =

𝜕𝑤𝑠
𝜕𝑥

 

and     𝑓(𝑧) =
1

𝑛
(
2

ℎ
)
𝑛−1

𝑧𝑛,    𝑔(𝑧) = 1 − 𝑓′(𝑧) 

(6) 

2.3 The nonlocal elasticity for the “P-FGM” nano-
beam 

 

By assuming that the normal and tangential stresses “σ, 

τ” at a reference point depends on the all deformation field 

of each point of the body. The non-local constitutive 

relation can be expressed in the differential form as 

(Eringen 1972 and 1983, Belkorissat et al. 2015, Bellifa et 

al 2017a, Bouazza et al. 2018, Bouadi et al. 2018, Kadari et 

al. 2018) 

 

𝜎𝑥 − 𝜇
𝑑2𝜎𝑥
𝑑𝑥2

= 𝐸휀𝑥 (7a) 

 

𝜏𝑥𝑧 − 𝜇
𝑑2𝜏𝑥𝑧
𝑑𝑥2

= 𝐺𝛾𝑥𝑧 (7b) 

 

where 

 

𝜇 = (𝑒0𝑎)
2 (8) 

 

where “e0” and “a” are constant (depend to material) and 

internal characteristic length. 

For SWCNT (single walled carbon nanotube), the 

nonlocal parameter “e0a” is estimated to be smaller than 2 

nm (Boumia et al. 2014, Tounsi et al. 2013a, Semmah et al. 

2014, Zidour et al. 2014, Bensattalah et al. 2018). 

 

2.4 Equations of motion 
 

Hamilton’s principle is used herein to derive the 

equations of motion for the free vibration analysis of 

nonlocal porous beams. The mathematical formulation of 

the Hamilton’s principle can be expressed as (Zidi et al. 

2017, Bellifa et al. 2017b, Klouche et al. 2017, Ait 

Sidhoum et al. 2017, 2018, Zine et al. 2018, Belabed et al. 

2018, Bakhadda et al. 2018, Kaci et al. 2018, Bourada et al. 

2019) 
 

∫ (𝛿𝑈 − 𝛿𝐾)𝑑𝑡
𝑡

0

= 0 (9) 

 

where “δU” and “δK” are the variation of the strain and the 

kinetic energy, respectively. 

In the present investigation, The Hamilton’s principle 

can be written as function of the stresses and strains as 

follows (Mahi et al. 2015, Bourada et al. 2019) 

 

∫ ∫(𝜎𝑥𝛿휀𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝐴𝑑𝑥
𝐴

𝐿

0

 

−∫ ∫𝜌[�̈�0𝛿𝑢0 + (�̈�𝑏 + �̈�𝑠)𝛿(𝑤𝑏 + 𝑤𝑠)]𝑑𝐴𝑑𝑥
𝐴

𝐿

0

= 0 

(10) 

 

By replacing Eqs. (4) and (6) into Eq. (10) and 

performing the integration by part and collecting the 

coefficients “δu”, “δwb”, and “δws” yields the three 

following equations of motion 

 

𝛿𝑢0 :  
𝑑𝑁

𝑑𝑥
= 𝐼0�̈�0 − 𝐼1

𝑑�̈�𝑏
𝑑𝑥

− 𝐽1
𝑑�̈�𝑠
𝑑𝑥

 (11a) 
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𝛿𝑤𝑏 :  
𝑑2𝑀𝑏

𝑑𝑥2
= 

𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐼1
𝑑�̈�0
𝑑𝑥

− 𝐼2
𝑑2�̈�𝑏
𝑑𝑥2

− 𝐽2
𝑑2�̈�𝑠
𝑑𝑥2

 

(11b) 

 

𝛿𝑤𝑠:
𝑑2𝑀𝑠

𝑑𝑥2
+
𝑑𝑄

𝑑𝑥
 

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐽1
𝑑�̈�0
𝑑𝑥

− 𝐽2
𝑑2�̈�𝑏
𝑑𝑥2

− 𝐾2
𝑑2�̈�𝑠
𝑑𝑥2

 

(11c) 

 

where the resultants stress and moments N, Mb, Ms and Q 

are defined as follow 

 

{
𝑁
𝑀𝑏

𝑀𝑠
} = ∫ {

1
𝑧
𝑓
} 𝜎𝑥𝑑𝐴

𝐴

     and     𝑄 = ∫𝑔(𝑧)𝜏𝑥𝑧𝑑𝐴
𝐴

 (12a) 

 

and 
 

(𝐼0, 𝐼1, 𝐼2, 𝐽1, 𝐽2, 𝐾2)

= ∫(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝜌(𝑧)𝑑𝐴
𝐴

 
(12b) 

 

By replacing the strain field of Eqs. (5) and (6) into non-

local constitutive relation of Eq. (7) and the obtained results 

into Eq. (12a), the stress resultants of the non-local FG 

beam can be obtained in the following form 
 

𝑁 − 𝜇
𝑑2𝑁

𝑑𝑥2
= 𝐴

𝑑𝑢0
𝑑𝑥

− 𝐵
𝑑2𝑤𝑏
𝑑𝑥2

− 𝐵𝑠
𝑑2𝑤𝑠
𝑑𝑥2

 (13a) 

 

𝑀𝑏 − 𝜇
𝑑2𝑀𝑏

𝑑𝑥2
= 𝐵

𝑑𝑢0
𝑑𝑥

− 𝐷
𝑑2𝑤𝑏
𝑑𝑥2

− 𝐷𝑠
𝑑2𝑤𝑠
𝑑𝑥2

 (13b) 

 

𝑀𝑠 − 𝜇
𝑑2𝑀𝑠

𝑑𝑥2
= 𝐵𝑠

𝑑𝑢0
𝑑𝑥

− 𝐷𝑠
𝑑2𝑤𝑏
𝑑𝑥2

− 𝐻𝑠
𝑑2𝑤𝑠
𝑑𝑥2

 (13c) 

 

𝑄 − 𝜇
𝑑2𝑄

𝑑𝑥2
= 𝐴𝑠

𝑑𝑤𝑠

𝑑𝑥
 (13d) 

 

where “A, B, D, Bs, Ds, Hs” and “As” are the stiffness 

components. 

with 

{
 
 

 
 
𝐴
𝐵
𝐷
𝐵𝑠
𝐷𝑠
𝐻𝑠}
 
 

 
 

= ∫

{
 
 

 
 
1
𝑧
𝑧2

𝑓(𝑧)
𝑧𝑓(𝑧)

𝑓2(𝑧)}
 
 

 
 

𝐸(𝑧)𝑑𝐴
𝐴

, 

𝐴𝑠 = ∫𝑔
2(𝑧)

𝐴

𝐺(𝑧)𝑑𝐴 

(14) 

 

By replacing the stress resultants of Eq. (13) into 

equations of motion of Eq. (11), the present nonlocal 

equations of motion can be obtained in terms of 

displacements “u, wb, ws” as 

 

𝐴
𝑑2𝑢0
𝑑𝑥

− 𝐵
𝑑3𝑤𝑏
𝑑𝑥2

− 𝐵𝑠
𝑑3𝑤𝑠
𝑑𝑥2

 

= 𝐼0 (�̈�0 − 𝜇
𝑑2�̈�0
𝑑𝑥2

) − 𝐼1 (
𝑑�̈�𝑏
𝑑𝑥

− 𝜇
𝑑3�̈�𝑏
𝑑𝑥2

) 

(15a) 

−𝐽1(
𝑑�̈�𝑠
𝑑𝑥

− 𝜇
𝑑3�̈�𝑠
𝑑𝑥2

) (15a) 

 

𝐵
𝑑3𝑢0
𝑑𝑥3

− 𝐷
𝑑4𝑤𝑏
𝑑𝑥2

− 𝐷𝑠
𝑑4𝑤𝑠
𝑑𝑥2

 

= 𝐼0 ((�̈�𝑏 + �̈�𝑠) − 𝜇
𝑑2(�̈�𝑏 + �̈�𝑠)

𝑑𝑥2
) 

+𝐼1 (
𝑑�̈�0
𝑑𝑥

− 𝜇
𝑑3�̈�0
𝑑𝑥3

) 

−𝐼2 (
𝑑2�̈�𝑏
𝑑𝑥2

− 𝜇
𝑑4�̈�𝑏
𝑑𝑥4

) − 𝐽2 (
𝑑2�̈�𝑠
𝑑𝑥2

− 𝜇
𝑑4�̈�𝑠
𝑑𝑥4

) 

(15b) 

 

𝐵𝑠
𝑑3𝑢0
𝑑𝑥3

− 𝐷𝑠
𝑑4𝑤𝑏
𝑑𝑥4

−𝐻𝑠
𝑑4𝑤𝑠
𝑑𝑥4

+ 𝐴𝑠
𝑑2𝑤𝑠

𝑑𝑥2
 

= −𝐼0 ((�̈�𝑏 + �̈�𝑠) − 𝜇
𝑑2(�̈�𝑏 + �̈�𝑠)

𝑑𝑥2
) 

−𝐽1 (
𝑑�̈�0
𝑑𝑥

− 𝜇
𝑑3�̈�0
𝑑𝑥3

) + 𝐽2 (
𝑑2�̈�𝑏
𝑑𝑥2

− 𝜇
𝑑4�̈�𝑏
𝑑𝑥4

) 

+𝐾2 (
𝑑2�̈�𝑠
𝑑𝑥2

− 𝜇
𝑑4�̈�𝑠
𝑑𝑥4

) 

(15c) 

 

To obtain the equations of motion of local beam theory, 

just put “μ = 0” into Eqs. (15). 

 

 

3. Solution procedure of FG-nanobeam 
 

The Navier’s procedure is used in this study to solve the 

previous nonlocal equations of motion for vibrational 

analysis of non-local FG beam. The Navier’s procedure can 

be presented in the following form (Tagrara et al. 2015, 

Bounouara et al. 2016, Hachemi et al. 2017, Fourn et al. 

2018, Bourada et al. 2018, 2019, Draoui et al. 2019)  

 

{

𝑢0
𝑤𝑏
𝑤𝑠

} = ∑ {

𝑈𝑚 𝑐𝑜𝑠(𝛼𝑥) 𝑒
𝑖𝜔𝑡

𝑊𝑏𝑚 𝑠𝑖𝑛(𝛼𝑥) 𝑒
𝑖𝜔𝑡

𝑊𝑠𝑚 𝑠𝑖𝑛(𝛼𝑥) 𝑒
𝑖𝜔𝑡

}

∞

𝑚=1

 (16) 

 

with 
 

𝛼 = 𝑛𝜋/𝐿 (17) 

 

where “Um, Wbm and Wsm” are unknowns functions to be 

determined, ω is the frequency of the free vibration of FG 

nano-beam and “√i=-1” is the imaginary unite. 

Replacing the functions “u0, wb, ws” of Eq. (16) into 

equation of motion of Eqs. (17), the analytical solutions can 

be obtained in the following matrix form 

 
([𝑆] − 𝜆𝜔2[𝑀]){𝛥} = {0} (18) 

 

where “[S] and [M]” are the matrix of stiffness and mass, 

respectively. “{Δ}” is the displacement vector. 

with 
 

[𝑆] = [

𝐴𝛼2 −𝐵𝛼3 −𝐵𝑠𝛼
3

𝑆𝑦𝑚. 𝐷𝛼4 𝐷𝑠𝛼
4

𝑆𝑦𝑚. 𝑆𝑦𝑚. 𝐻𝑠𝛼
4 + 𝐴𝑠𝛼

2

], (19) 
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[𝑀] = [

𝐼0 −𝐼1𝛼 −𝐽1𝛼

𝑆𝑦𝑚. 𝐼0 + 𝐼2𝛼
2 𝐼0 + 𝐽2𝛼

2

𝑆𝑦𝑚. 𝑆𝑦𝑚. 𝐼0 + 𝐾2𝛼
2

] , 

{𝛥} = {

𝑈𝑛
𝑊𝑏𝑛

𝑊𝑠𝑛

} 

(19) 

 

and 
 

𝜆 = 1 + 𝜇𝛼2 (20) 

 

 

 

4. Numerical results and discussion 
 

In this part, several numerical examples are presented 

and discussed to verify the efficiency and accuracy of 

current model in predicting the fundamental frequencies of 

simply supported FG nano-beam. For all presented results, 

the following non-dimensional fundamental frequency is 

utilized 

𝜔 = 𝜔𝐿2√
𝜌𝑡𝐴

𝐸𝑡𝐼
 (21) 

 
 

Table 2 Comparison of Dimensionless frequency “ϖ” of the FG nano-beam 

L/h e0a Theories k = 0 k = 0.3 k = 1 k = 3 k = 10 

10 

0 

EBT (Zemri et al. 2015) 9.8293 8.2694 6.965 6.1575 5.6544 

TBT (Zemri et al. 2015) 9.7075 8.1700 6.8814 6.0784 5.5794 

RBT (Zemri et al. 2015) 9.7075 8.1709 6.8814 6.0755 5.5768 

Present (n = 3) 9.7075 8.1709 6.8814 6.0755 5.5768 

Present (n = 5) 9.7099 8.1727 6.8831 6.0778 5.5785 

Present (n = 7) 9.7128 8.1750 6.8851 6.0801 5.5805 

0.5 

EBT (Zemri et al. 2015) 9.7102 8.1692 6.8807 6.0829 5.5859 

TBT (Zemri et al. 2015) 9.5899 8.0711 6.7981 6.0019 5.5118 

RBT (Zemri et al. 2015) 9.5899 8.0719 6.7981 6.0019 5.5092 

Present (n = 3) 9.5899 8.0719 6.7981 6.0019 5.5092 

Present (n = 5) 9.5923 8.0738 6.7997 6.0042 5.5109 

Present (n = 7) 9.5952 8.0760 6.8017 6.0065 5.5129 

1.5 

EBT (Zemri et al. 2015) 8.8915 7.4804 6.3005 5.5700 5.1150 

TBT (Zemri et al. 2015) 8.7813 7.3905 6.2249 5.4985 5.0470 

RBT (Zemri et al. 2015) 8.7813 7.3913 6.2249 5.4959 5.0447 

Present (n = 3) 8.7813 7.3913 6.2249 5.4959 5.0447 

Present (n = 5) 8.7835 7.3930 6.2264 5.4979 5.0463 

Present (n = 7) 8.7861 7.3951 6.2282 5.5000 5.0481 

30 

0 

EBT (Zemri et al. 2015) 9.8651 8.3015 6.9929 6.1806 5.6744 

TBT (Zemri et al. 2015) 9.8511 8.2901 6.9832 6.1715 5.6658 

RBT (Zemri et al. 2015) 9.8511 8.2902 6.9832 6.1712 5.6655 

Present (n = 3) 9.8511 8.2902 6.9832 6.1712 5.6655 

Present (n = 5) 9.8514 8.2904 6.9834 6.1714 5.6657 

Present (n = 7) 9.8517 8.2907 6.9837 6.1717 5.6660 

0.5 

EBT (Zemri et al. 2015) 9.8516 8.2902 6.9833 6.1722 5.6667 

TBT (Zemri et al. 2015) 9.8376 8.2787 6.9737 6.1631 5.6581 

RBT (Zemri et al. 2015) 9.8376 8.2788 6.9737 6.1627 5.6578 

Present (n = 3) 9.8376 8.2788 6.9737 6.1627 5.6578 

Present (n = 5) 9.8379 8.2791 6.9739 6.1630 5.6580 

Present (n = 7) 9.8382 8.2793 6.9741 6.1633 5.6582 

1.5 

EBT (Zemri et al. 2015) 9.7456 8.2010 6.9082 6.1058 5.6057 

TBT (Zemri et al. 2015) 9.7318 8.1897 6.8987 6.0968 5.5972 

RBT (Zemri et al. 2015) 9.7318 8.1898 6.8987 6.0964 5.5969 

Present (n = 3) 9.7318 8.1898 6.8987 6.0964 5.5969 

Present (n = 5) 9.7320 8.1900 6.8988 6.0967 5.5971 

Present (n = 7) 9.7324 8.1902 6.8991 6.0970 5.5973 
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Table 2 Continued 

L/h e0a Theories k = 0 k = 0.3 k = 1 k = 3 k = 10 

100 

0 

EBT (Zemri et al. 2015) 9.8692 8.3052 6.9961 6.1833 5.6767 

TBT (Zemri et al. 2015) 9.8679 8.3042 6.9952 6.1825 5.6760 

RBT (Zemri et al. 2015) 9.8679 8.3042 6.9952 6.1824 5.6759 

Present (n = 3) 9.8679 8.3042 6.9952 6.1824 5.6759 

Present (n = 5) 9.8680 8.3042 6.9952 6.1824 5.6760 

Present (n = 7) 9.8680 8.3042 6.9952 6.1825 5.6760 

0.5 

EBT (Zemri et al. 2015) 9.8680 8.3042 6.9952 6.1825 5.6761 

TBT (Zemri et al. 2015) 9.8667 8.3031 6.9943 6.1817 5.6753 

RBT (Zemri et al. 2015) 9.8667 8.3032 6.9943 6.1817 5.6752 

Present (n = 3) 9.8667 8.3032 6.9943 6.1817 5.6752 

Present (n = 5) 9.8667 8.3032 6.9943 6.1817 5.6753 

Present (n = 7) 9.8668 8.3032 6.9944 6.1817 5.6753 

1.5 

EBT (Zemri et al. 2015) 9.8583 8.2960 6.9883 6.1764 5.6705 

TBT (Zemri et al. 2015) 9.8570 8.2950 6.9874 6.1756 5.6697 

RBT (Zemri et al. 2015) 9.8570 8.2950 6.9874 6.1756 5.6697 

Present (n = 3) 9.8570 8.2950 6.9874 6.1756 5.6697 

Present (n = 5) 9.8570 8.2950 6.9874 6.1756 5.6697 

Present (n = 7) 9.8571 8.2950 6.9875 6.1756 5.6697 
 

Table 3 The non-dimensional fundamental frequency “ϖ” versus power index “k” and slenderness ratio “L/h” 

of the FG porous nano-beam with (e0a = 1 nm) 

L/h ξ Theory 
Material index “k” 

0 0.5 1 5 10 

5 

0.05 Present (n = 3) 7,9556 6,2119 5,5929 4,7102 4,4987 

0.1 Present (n = 3) 8,0618 6,2563 5,6191 4,7146 4,4999 

0.2 Present (n = 3) 8,2863 6,3479 5,6723 4,7220 4,5007 

0.3 Present (n = 3) 8,5290 6,4433 5,7265 4,7270 4,4988 

10 

0.05 Present (n = 3) 9,3884 7,3268 6,6007 5,5809 5,3285 

0.1 Present (n = 3) 9,5203 7,3845 6,6368 5,5928 5,3365 

0.2 Present (n = 3) 9,7997 7,5037 6,7106 5,6161 5,3521 

0.3 Present (n = 3) 10,1024 7,6288 6,7868 5,6387 5,3669 

20 

0.05 Present (n = 3) 9,8444 7,6815 6,9214 5,8588 5,5932 

0.1 Present (n = 3) 9,9847 7,7435 6,9608 5,8733 5,6037 

0.2 Present (n = 3) 10,2820 7,8720 7,0417 5,9023 5,6246 

0.3 Present (n = 3) 10,6045 8,0070 7,1253 5,9313 5,6455 

50 

0.05 Present (n = 3) 9,9812 7,7879 7,0177 5,9423 5,6728 

0.1 Present (n = 3) 10,1241 7,8513 7,0581 5,9576 5,6839 

0.2 Present (n = 3) 10,4269 7,9827 7,1411 5,9884 5,7065 

0.3 Present (n = 3) 10,7554 8,1207 7,2271 6,0194 5,7293 

100 

0.05 Present (n = 3) 10,0011 7,8034 7,0317 5,9544 5,6843 

0.1 Present (n = 3) 10,1444 7,8670 7,0723 5,9699 5,6956 

0.2 Present (n = 3) 10,4480 7,9988 7,1556 6,0009 5,7184 

0.3 Present (n = 3) 10,7774 8,1372 7,2419 6,0322 5,7415 
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with “A” and “I” are the section area and moment inertia, 

respectively. 

Table 2 show the non-dimensional fundamental 

frequencies values “ϖ” of simply supported FG nano-beam 

as function of nonlocal parameter “e0a”, material index “k” 

and slenderness ratio “L/h”. The results obtained using the 

present nth order shear deformation theory are compared 

with those given by Euler Bernoulli beam theory, 

Timoshenko beam theory and refined shear deformation 

theory published by Zemri et al. (2015). From the Table 2, 

it can be seen that the current results obtained with “n = 3” 

are in good agreement with those obtained by Zemri et al. 

(2015) using both Timoshenko beam theory (TBT, with 

shear correction factor “ks = 5/6”) and refined shear 

deformation theory (RBT). It can be noted that the non-

dimensional fundamental frequencies “ϖ” is in inverse 

relation with both power index “k” and nonlocal parameter 

“e0a”. 

Table 3 present the dimensionless fundamental 

frequencies values “ϖ” versus power index”k”and aspect 

ratio “L/h” of the FG porous nano-beam with “e0a = 1 

nm”.From the table, it can be seen that the fundamental 

 

 

frequency “ϖ” is in direct correlation relation with “L/h” 

because the beam becomes slender. It can also be noted that 

the increase of the power index “k” lead to a decrease of the 

fundamental frequency “ϖ”. 

The effect of the volume fraction of the porosity “ξ” and 

nonlocal parameter “e0a” on the non-dimensional 

fundamental frequencies “ϖ” of simply supported FG 

porous nano-beam with slenderness ratio “L/h = 5” is 

presented in Table 4. From the results, it can be noticed that 

thecomputed results show that the values of “ϖ” increase as 

the volume fraction of porosity “ξ” increases. It can also be 

remarkable that the smallest values of the fundamental 

frequency are obtained for nonlocal parameter e0a = 2 nm. 

Fig. 2 illustrates the dimensionless fundamental 

frequencies “ϖ” as function of slenderness ratio “L/h” using 

local “e0a = 0” and nonlocal “e0a = 2 nm” theories with 

power index “k = 0.3”. From the plotted graphs, it can be 

noted that the fundamental frequencies”ϖ” increase with 

increasing of the aspect ratio and this is due that the FG 

nano-beam becomes flexible. It is clear in Fig. 2 that the 

greatest values of the fundamental frequencies “ϖ” are 

obtained with local theory “e0a = 0” and this for the 

Table 4 Effect of the nonlocal parameter “e0a” and porosity effect on dimensionless fundamental 

frequency “ϖ” of the thick FG porous nano-beam with (L/h) 

e0a k Theory 
ξ 

0.05 0.1 0.2 0.3 

0 

0 Present (n = 3) 9,3956 9,5211 9,7862 10,0729 

0.5 Present (n = 3) 7,3363 7,3888 7,4969 7,6096 

1 Present (n = 3) 6,6053 6,6362 6,6990 6,7630 

5 Present (n = 3) 5,5628 5,5680 5,5768 5,5826 

10 Present (n = 3) 5,3130 5,3144 5,3153 5,3131 

0.5 

0 Present (n = 3) 8,9637 9,0834 9,3363 9,6098 

0.5 Present (n = 3) 6,9991 7,0491 7,1523 7,2598 

1 Present (n = 3) 6,3016 6,3312 6,3911 6,4521 

5 Present (n = 3) 5,3070 5,3121 5,3204 5,3260 

10 Present (n = 3) 5,0688 5,0701 5,0710 5,0689 

1 

0 Present (n = 3) 7,9556 8,0618 8,2863 8,5290 

0.5 Present (n = 3) 6,2119 6,2563 6,3479 6,4433 

1 Present (n = 3) 5,5929 5,6191 5,6723 5,7265 

5 Present (n = 3) 4,7102 4,7146 4,7220 4,7270 

10 Present (n = 3) 4,4987 4,4999 4,5007 4,4988 

1.5 

0 Present (n = 3) 6,8375 6,9287 7,1217 7,3303 

0.5 Present (n = 3) 5,3389 5,3770 5,4557 5,5377 

1 Present (n = 3) 4,8068 4,8294 4,8751 4,9216 

5 Present (n = 3) 4,0482 4,0520 4,0584 4,0626 

10 Present (n = 3) 3,8664 3,8674 3,8681 3,8665 

2 

0 Present (n = 3) 5,8504 5,9285 6,0936 6,2721 

0.5 Present (n = 3) 4,5682 4,6008 4,6681 4,7383 

1 Present (n = 3) 4,1129 4,1322 4,1713 4,2112 

5 Present (n = 3) 3,4638 3,4671 3,4725 3,4762 

10 Present (n = 3) 3,3083 3,3092 3,3097 3,3084 
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Fig. 2 Effect of the porosity and slenderness ratio “L/h” on dimensionless fundamental frequency “𝜔” with 

(n = 3, k = 0.3 and e0a = 2 nm) 

 

Fig. 3 Effect of nonlocal parameter “e0a” on dimensionless fundamental frequency “𝜔” of simply supported 

FG porous nano-beam with (n = 3, k = 0.3 and L/h = 5) 

 

Fig. 4 Dimensionless fundamental frequency “𝜔” versus material index “k” of the FG nano-beam with 

(n = 3, L/h = 10 and e0a = 2 nm) 
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different values of porosity index “ξ”. 

The Effect of the nonlocal parameter “e0a” on 

dimensionless fundamental frequency “ϖ” of simply 

supported FG nano-beam is presented in Fig. 3 for the 

different values of the porosity index “ξ” with (k = 0.3 and 

L/h = 5). From the obtained graphs, it is clearly remarkable 

that the fundamental frequency parameter”ϖ” is in inverse 

relation with the scale effect “e0a”. The largest values of the 

fundamental frequency “ϖ” are obtained for porosity index 

“ξ = 0.3” and this can be justified by the reduction of the 

Young modulus “E(z)” when volume faction of porosity “ξ” 

increase. 

In Fig. 4 the non-dimensional fundamental frequencies 

versus material index “k” of the FG nano-beam “e0a=2nm” 

with “L/h = 10”. The obtained results are for the various 

values of porosity index (ξ = 0, 0.05, 0.1, 0.2 and 0.3). From 

the plotted curves, it can be noted that the fundamental 

frequencies diminish with the increase of the power index 

“k”. It can be also concluded that the fundamental 

frequencies is in direct correlation relation with the volume 

fraction of the porosity. 

 

 

5. Conclusions 
 

In the current investigation, the free vibrational behavior 

of FG porous nano-beams was analyzed by using a nonlocal 

nth order shear deformation theory. The present model does 

not require the introduction of the shear correction factors. 

The nonlocal equations of motion are derived by utilizing 

the constitutive relations of Eringen and Hamilton’s 

principle. The obtained equations have been solved by 

Navier’s solution. The effects of several parameters 

influencing the vibrational response of the FG nano-beams 

such as porosity index, the slenderness of the beam and 

small scale effect are studied and discussed in detail. An 

improvement of present formulation will be considered in 

the future work to consider the thickness stretching effect 

by using quasi-3D shear deformation models (Belabed et al. 

2014, Bousahla et al. 2014, Hebali et al. 2014, Larbi Chaht 

et al. 2015, Bennoun et al. 2016, Bourada et al. 2015, 

Draiche et al. 2016, Ait Atmane et al. 2017, Sekkal et al. 

2017b, Bouafia et al. 2017, Benahmed et al. 2017, 

Benchohra et al. 2018, Abualnour et al. 2018, Younsi et al. 

2018, Bouhadra et al. 2018, Boukhlif et al. 2019, Khiloun 

et al. 2019, Zaoui et al. 2019) and the thermal effect 

(Tounsi et al. 2013, Bouderba et al. 2013 and 2016, Attia et 

al. 2015 and 2018, Hamidi et al. 2015, Bousahla et al. 

2016, Beldjelili et al. 2016, Menasria et al. 2017, Chikh et 

al. 2017, El-Haina et al. 2017, Khetir et al. 2017, Fahsi et 

al. 2017). 
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