
Advances in Nano Research, Vol. 7 No. 5 (2019) 337-349 
DOI: https://doi.org/10.12989/anr.2019.7.5.337 

Copyright ©  2019Techno-Press, Ltd. 
http://www.techno-press.org/?journal=journal=anr&subpage=5                               ISSN: 2287-237X (Print), 2287-2388 (Online) 

 
1. Introduction 

 

Over the past few years, micro-nanostructures with 

magnetic field effect have been attracted the attention of 

research community due to their fantastic characteristics 

and applications. Although considerable attention has been 

devoted to the mechanical characteristics of magneto-

electro-elastic structures (Pan 2001, Pan and Heyliger 2002, 

Moshtagh et al. 2017), there are few studies concerning 

structures under external in-plane magnetic field. It is 

acknowledged that external magnetic field is able to change 

the stabilization factor of nanostructures without the 

demand of varying the material properties and geometrical 

parameters of them (Jalaei and Arani 2018). (Narendar et al. 

2012) examined the critical influence of in-plane magnetic 

field and nonlocal parameter on the wave characteristics of 

single-walled carbon nanotubes (SWCNTs). The obtained 

results showed that the wave frequency amplifies with 

increasing strength of the magnetic field, whilst the 

nonlocal effect would decrease the wave frequency of the 

SWCNTs. The importance of the magnetic field on the free 

vibration of nanoplate on the basis of the nonlocal elasticity 

theory was examined by (Murmu et al. 2013). (Karami et 

al. 2018f) analyzed the role of magnetic field on the size-

dependence wave behavior of nanoplates by considering the 

Lorentz magnetic force obtained from Maxwell’s relation. 

By comparison with experimental data, their results 

indicated that the size effects on the magnetic field strength 

were not ignorable. Moreover they showed the influence of 

magnetic field on the results is more significant at low wave 

numbers when the dependence of wave frequency to 

material properties and size effects will be less important. 

(Karličić et al. 2017) studied the in-plane magnetic field 
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impact on the damped-vibration of the viscoelastic 

orthotropic multi-nanoplate system using the nonlocal 

theory. 

Because of requirement to have an advanced structure 

applicable in modern industrials, the attitude to use 

laminated composite structures considerably has been 

developed during recent years. It is due to the fact that these 

types of structrues present superior properties e.g., low cost, 

high corrosion resistance and high fatigue life (Gibson 

2016). Moreover, laminated composite structures by 

incorporating together two (or more) constituents usually 

are more complex structures in comparison to isotropic ones 

because of growth in quantity of wrapped variables as well 

as the intrinsic anisotropy behavior of the particular layers 

(Reddy 2004). So, in order to have a safe design in these 

structures, firstly we need an efficient mathematical model. 

Since laminated composites are mainly applied as 

constituent of beams, shells and plates due to of their 

extradionay properties such as bend extensional as well as 

high strength to weight proportion, classical continuum 

theories (Farokhi and Ghayesh 2015, Gholipour et al. 2015, 

Guo et al. 2016, Farokhi and Ghayesh 2018a, Ghayesh et 

al. 2018) can be chosen to model them simply. Classical 

continuum theories have been developed for extensive 

studies relevant to mechancical performance of laminated 

composite structures recently (Sayyad and Ghugal 2015). 

Among these theories, higher-order-shear-deformation 

theories (HOSDTs), which contain variant shape functions 

along with fewer number of unknowns variables is involved 

in the equilibrium equations, satisfy the shear deformation 

effects on both bottom and upper surfaces of plate 

structures without employing any shear correction factor, if 

compared to the assumptions of First-Order Shear 

Deformation theories (FSDTs). For minimizing the total 

number of variables employed in the equilibrium equations, 

(Shimpi 2002) proposed a refined plate theory (RPT) model 

with two variables in order to study on isotropic plates. As 

such, using the RPT can reduced the strain and time of 

computation while it presents very accurate results. 
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Afterwards, various validity studies were carried out based 

on the RPT models (Thai and Kim 2015, Yazid et al. 2018). 

Given that classical continuum theories are not capable 

to predict the behavior of such structures at micro/ 

nanoscale, several non-classical continuum theories such as 

the nonlocal elasticty theory, strain gradient theory, 

nonlocal strain gradient theory and couple stress theories 

which contain additional small-scale parameters have been 

suggested to capture the size effect in terms of linear and 

nonlinear (Ghayesh et al. 2013a, b, c, d, 2014, 2016, 2017a, 

b, Ghayesh and Farokhi 2015, Eltaher et al. 2016, Zenkour 

2016, Bouafia et al. 2017, Farokhi et al. 2017, Karami et al. 

2017, Ebrahimi and Haghi 2018, Farajpour et al. 2018, 

Farokhi and Ghayesh 2018c, Ghayesh 2018a, b, c, Houari et 

al. 2018, Li et al. 2018, Shahsavari et al. 2018b, c, Wu et al. 

2018, Karami et al. 2018a, b, Karami and Janghorban 

2019a, b, c, Karami et al. 2019a, b, c, d, e, Karami and 

Karami 2019, Karami et al. 2019f, g, h, i, j, k, Salari et al. 

2019, She et al. 2019, Tang et al. 2019a, b). As a popular 

model with some benefits, Eringen Nonlocal Differential 

Model (ENDM) (Eringen 2002) for considering the 

softening-stiffness mechanism of nanostructures is widely 

used in which the stress at a point is a function of strains at 

all points in the continuum body. Even though its 

shortcomings and limitations (Romano and Barretta 2017, 

Barretta et al. 2018), it seems this model is more thinkable 

and benefitical for engineering applications owing to its 

smoothly for comparing to the old ones. Up to data, on the 

basis of ENDM many studies have been conducted for 

investigation on size-dependent behvaior of single-walled 

as well as double-walled nanotubes (Zhang et al. 2005) 

nanoshells (Ghavanloo and Fazelzadeh 2013), nanobeams 

(Lim 2010, Aydogdu et al. 2018, Ebrahimi et al. 2018, 

Shahsavari et al. 2019), and nanoplates (Pradhan and 

Phadikar 2009, Chen et al. 2017, Shahsavari et al. 2017, 

Karami et al. 2018c, d, f, h, Shahsavari et al. 2018a, Karami 

and Shahsavari 2019, Karami et al. 2019l). 

The main objective of this article is to examine 

applications of in-plane magnetic field on size-dependent 

vibration responses of laminated composite plates 

embedded in Pasternak foundation. A hyperbolic type of 

refined plate theory, which consider the triple effects of 

axial, bending and shear in conjunction with the ENDM 

which considers size effect are developed and will be 

discussed in Section 2. The equations of motion are derived 

in Section 3 according to Hamilton’s principle. In Section 4, 

closed-form solutions based on the eigenvalue vibration 

response are derived for cross-ply as well as angle-ply 

laminated composite plates. Then, a comprehensive 

parametric study is carried out to show the effects of 

laminated composite plate geometry, foundation 

coefficients, nonlocal parameter, in-plane magnetic field, 

lay-up numbers, lay-up sequences of layers (symmetric as 

well as antisymmetric arrangements), fiber orientations and 

boundary condition (SS-1 and SS-2) on the vibration 

response in Section 5. Afterwards, crucial conclusions are 

drawn in the last section. The originality of this paper may 

be summarized as follows: 

 

 

(1) The influence of the in-plane magnetic field has not 

been yet examined for the vibration response of 

laminated composite structures. 

(2) Size-dependent vibration response of cross-ply as 

well as angle-ply laminated composite plates 

embedded in the elastic foundation are analyzed for 

the first time. 

(3) The study covers the role of changes in the number 

of lay-up, fiber orientations on the size-dependent 

vibration of cross-ply and angle-ply laminated 

composite plates with symmetric as well as 

antisymmetric arrangements. 

(4) Although the presented solution way is based on an 

analytical solution method, it precisely supports the 

results obtained of numerical methods and other 

analytical methods. 

 

 

2. Eringen nonlocal differential model 
 

Eringen’s nonlocal elasticity model (Eringen and Edelen 

1972) is assumed that the stress at a point of x depends not 

only on the strain there but also on strains at all other points 

of the body, which is in harmony with experimental remarks 

of atomic theory as well as lattice dynamics. So, the integral 

formation of nonlocal stress-strain relationship at reference 

point of x in the area of material is shown as 

 

𝜎𝑖𝑗
𝑛𝑙 = ∫𝛼(|𝑥 ′-x|)

𝑉

, 𝜏)𝑡𝑖𝑗(𝑥
′)𝑑𝑣(𝑥 ′) (1) 

 

where 𝛼(|𝑥′-x|), 𝜏)  defines nonlocal kernel function, 

influenced by internal characteristic length, 𝑥′  is any 

arbitrary point in the body and dv is elementary volume. τ = 

e0a/L is small-scale constant, where e0 is a material 

constant, a and L are the internal and external characteristic 

lengths of the structure, respectively. 𝜎𝑖𝑗
𝑛𝑙 and tij are the 

components of nonlocal and conventional stress tensors σnl 

and t, respectively. Classical Stress tensor t defined as 

 

𝑡 = 𝐶: 휀 (2) 

 

herein C is the forth order elasticity tensor and ε is strain 

tensor. By applying a physically admissible kernel 𝛼 ′ , 
integral form in Eq. (1) diminished to simplified differential 

formation of the nonlocal stress-strain relationship (Eringen 

1983) and shown by 

 

(1 − 𝜇𝛻2)𝜎nl = 𝐶: 휀 (3) 

 

where µ = (e0a)2 called the nonlocal parameter, indicating 

the size effect on the response of nanostructures and 𝛻2 is 

the Laplacian operator. 

 

 

3. Theoretical formulations 
 

Consider a multilayered laminated composite plates 

resting on the Pasternak foundation (see Fig. 1). 
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(a) 
 

 

(b) 

Fig. 1 Geometrical shape of laminated composite plate 

subjected to an in-plane magnetic field (a), Layout of 

layers in the thickness direction (b) 

 

 

3.1 Basic assumptions 
 

The suppositions of the current theory can be shown as 

follow: 
 

(1) The origin of the Cartesian coordinate system is 

considered at the axis of the laminated composite 

plates. 

(2) The displacements are considered small in 

comparison with the thickness of plate and, hence, 

the involved strains are infinitesimal. 

(3) The transverse displacement w contains two 

components of bending wb and shear ws. Also, both 

of them are functions of coordinate x only. 

 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) (4) 

 

(4) The displacements u and v along x- and y-directions 

contain extension, bending, and shear components 

 

𝑢 = 𝑢0 + 𝑢𝑏 + 𝑢𝑠 
𝑣 = 𝑣0 + 𝑣𝑏 + 𝑣𝑠 

(5) 

 

It is assumed that the bending components ub and vb are 

similar to the displacement obtained by the classical plate 

theory. Hence, the expressions for ub and vb can be defined 

as 

𝑢𝑏 = −𝑧
𝜕𝑤𝑏
𝜕𝑥

 

𝑣𝑏 = −𝑧
𝜕𝑤𝑏
𝜕𝑦

 

(6) 

The shear components vb and vs gives rise, in 

conjunction with ws, to the variations of shear strains γxz and 

γyz hence to shear stresses τxz and τyz through the thickness of 

the plate in such a way that shear stresses τxz and τyz are zero 

at the bottom and top surfaces of the plate. Because of this, 

the expression of those can be given as 
 

𝑢𝑠 = −𝜓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

 

𝑣𝑠 = −𝜓(𝑧)
𝜕𝑤𝑏
𝜕𝑦

 

(7) 

 

in which the shape function can be define as below 

(Shahsavari et al. 2018d) 
 

𝜓(𝑧) = −

(

 
 
 (

𝑐𝑜𝑠ℎ (
1

2
)

24 𝑠𝑖𝑛ℎ (
1

2
) − 11 𝑐𝑜𝑠ℎ (

1

2
)
− 1)(

𝑧

ℎ
)

−(
1

24 𝑠𝑖𝑛ℎ (
1

2
) − 11 𝑐𝑜𝑠ℎ (

1

2
)
) 𝑠𝑖𝑛ℎ(

𝑧

ℎ
)

)

 
 
 
ℎ (8) 

 

3.2 Kinematics and fundamental equations 
 

According to the suppositions, which made of in the 

previous section, the displacement field can be defined 

using Eqs. (4)-(8) likewise what obtained in Refs. 

(Benachour et al. 2011, Bourada et al. 2012, Karami et al. 

2018e) as follow 
 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤𝑏
𝜕𝑥

− 𝜓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤𝑏
𝜕𝑦

− 𝜓(𝑧)
𝜕𝑤𝑠
𝜕𝑦

 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤𝑏(𝑥, 𝑦, 𝑡) + 𝑤𝑠(𝑥, 𝑦, 𝑡) 

(9) 

 

Due to the mentioned displacement field (Eq. (9)), the 

following non-zero strains have defined 
 

{

휀𝑥
휀𝑦
𝛾𝑥𝑦

} = {

휀𝑥𝑥
0

휀𝑦𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝜅𝑥
𝑏

𝜅𝑥
𝑏

𝜅𝑥𝑦
𝑏

} + 𝜓(𝑧) {

𝜅𝑥
𝑠

𝜅𝑥
𝑠

𝜅𝑥𝑦
𝑠
} 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧) {

𝛾𝑦𝑧
𝑠

𝛾𝑦𝑧
𝑠 } , 휀𝑧 = 0 

(10) 

 

where 
 

{

휀𝑥
0

휀𝑦
0

𝛾𝑥𝑦
0

} =

{
  
 

  
 
𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

, {

𝜅𝑥
𝑏

𝜅𝑦
𝑏

𝜅𝑥𝑦
𝑏

} =

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕2𝑥

−
𝜕2𝑤𝑏
𝜕2𝑦

−2
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦}

  
 

  
 

 

{

𝜅𝑥
𝑠

𝜅𝑦
𝑠

𝜅𝑥𝑦
𝑠
} =

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕2𝑥

−
𝜕2𝑤𝑠
𝜕2𝑦

−2
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

{
𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } =

{
 

 
𝜕𝑤𝑠
𝜕𝑦
𝜕𝑤𝑠
𝜕𝑥 }

 

 
 

𝑔(𝑧) = 1 −
𝑑𝜓(𝑧)

𝑑𝑧
 

(11) 
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In the present work, laminated plate is made of 

advanced composite materials. The laminated plate is also 

made of several unidirectional plies accumulated in 

different orientations. Orthotropic axes in each lamina 

(indicated by superscript k) are oriented at an arbitrary 

angle  to the (global) plate axis. Due to the nonlocality 

formulation, following constitutive relations for each layer 

can be written as (Raghu et al. 2016). 
 

[
 
 
 
 
 
𝜎𝑥𝑥 − 𝜇∇

2(𝜎𝑥𝑥)

𝜎𝑦𝑦 − 𝜇∇
2(𝜎𝑦𝑦)

𝜏𝑥𝑦 − 𝜇∇
2(𝜏𝑥𝑦)

𝜏𝑦𝑧 − 𝜇∇
2(𝜏𝑦𝑧)

𝜏𝑥𝑧 − 𝜇∇
2(𝜏𝑥𝑧) ]

 
 
 
 
 

=

[
 
 
 
 
 
�̄�11 �̄�12 �̄�16 0 0

�̄�12 �̄�22 �̄�26 0 0

�̄�16 �̄�26 �̄�66 0 0

0 0 0 �̄�44 �̄�45
0 0 0 �̄�45 �̄�55]

 
 
 
 
 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}

 
 

 
 

 

(12) 

 

Considering the rotation of the considered angle  

around z-axis in the x-y plane, the transformation 

composition for the stiffness parameters can be estimated as 

(Reddy 2004) 
 

[
 
 
 
 
 
 
�̄�11
�̄�12
�̄�22
�̄�16
�̄�26
�̄�66]

 
 
 
 
 
 

= 

[
 
 
 
 
 
𝑐4 2𝑐2𝑠2 𝑠4 0 4𝑐2𝑠2

𝑐2𝑠2 𝑐4 + 𝑠4 𝑐2𝑠2 0 −4𝑐2𝑠2

𝑠4 2𝑐2𝑠2 𝑐4 2𝑐2𝑠2 0
𝑐3𝑠 𝑐𝑠(−𝑐2 − 𝑠2) −𝑐𝑠3 0 2𝑐𝑠(−𝑐2 + 𝑠2)

𝑐𝑠3 𝑐𝑠(𝑐2 − 𝑠2) −𝑐3𝑠 0 2𝑐𝑠(𝑐2 − 𝑠2)

𝑐2𝑠2 −2𝑐2𝑠2 𝑐2𝑠2 0 𝑐2𝑠2(𝑐2𝑠2 − 2)]
 
 
 
 
 

[
 
 
 
 
𝐶11
𝐶12
𝐶22
𝐶16
𝐶66]

 
 
 
 

 

[

�̄�44
�̄�45
�̄�55

] = [
𝑐2 𝑠2

−𝑐𝑠 𝑐𝑠
𝑠2 𝑐2

] [
𝐶44
𝐶55

] 

(13) 

 

where c = cos(), s = sin(); Cij denote stiffness coefficients 

as 

𝐶11 =
𝐸1

1 − 𝜈12𝜈21
, 𝐶12 =

𝜈12𝐸2
1 − 𝜈12𝜈21

 

𝐶22 =
𝐸2

1 − 𝜈12𝜈21
, 𝐶66 = 𝐺12 

𝐶44 = 𝐺23, 𝐶55 = 𝐺13, 𝜈21 =
𝐸2
𝐸1
𝜈12 

(14) 

 

in which E1 and E2 are Young modulus; ν12, ν21 are the 

Poisson ratios, and Gij are the shear modulus. 
 

3.3 Kinematic relations 
 

Employing Hamilton’s principle as follows, the equation 

of motion can be expressed as 
 

∫ 𝛿(𝑇 − 𝑈𝑃 − 𝑈𝐹 + 𝑉)𝑑𝑡
𝑡

0

= 0. (15) 

where UP, UF, V, and T are, respectively, the strain energy, 

energy owing to the elastic foundation, work done, which 

obtained by the external force, and kinetic energy for the 

plate. The variation of the strain energy for the plate can be 

written by 
 

𝛿𝑈𝑃 = ∫(𝜎𝑥𝛿휀𝑥 + 𝜎𝑦𝛿휀𝑦 + 𝜎𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧
𝑉

+ 𝜎𝑦𝑧𝛿𝛾𝑦𝑧)𝑑𝑉 

= ∫{𝑁𝑥휀𝑥
0 + 𝑁𝑦휀𝑦

0 +𝑁𝑥𝑦𝛾𝑥𝑦
0 +𝑀𝑥

𝑏𝜅𝑥
𝑏 +𝑀𝑦

𝑏𝜅𝑦
𝑏

𝐴

+𝑀𝑥𝑦
𝑏 𝜅𝑥𝑦

𝑏  

+𝑀𝑥
𝑠𝜅𝑥

𝑠 +𝑀𝑦
𝑠𝜅𝑦

𝑠 +𝑀𝑥𝑦
𝑠 𝜅𝑥𝑦

𝑠 + 𝑄𝑥𝑧
𝑠 𝛾𝑥𝑧

𝑠 + 𝑄𝑦𝑧
𝑠 𝛾𝑦𝑧

𝑠 }𝑑𝑥𝑑𝑦 

(16) 

 

where 
 

(𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦) = ∑∫ (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)
𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

𝑑𝑧 

(𝑀𝑥
𝑏, 𝑀𝑦

𝑏, 𝑀𝑥𝑦
𝑏 ) = ∑∫ (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)

𝑧𝑘+1

𝑧𝑘

𝑧

𝑛

𝑘=1

𝑑𝑧 

(𝑀𝑥
𝑠, 𝑀𝑦

𝑠, 𝑀𝑥𝑦
𝑠 ) = ∑∫ (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)

𝑧𝑘+1

𝑧𝑘

𝜓(𝑧)

𝑛

𝑘=1

𝑑𝑧 

{𝑄𝑥𝑧
𝑠 , 𝑄𝑦𝑧

𝑠 } =∑∫ (𝑔(𝑧)𝜏𝑥𝑧, 𝑔(𝑧)𝜏𝑦𝑧)
𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

𝑑𝑧 

(17) 

 

where Zk and Zk+1 indicate, respectively, the lower and 

upper z-coordinates of the kth layer (k = 1 ‒ n). The stress 

resultants are obtained as 
 

[
 
 
 
 
 
 
 
 
 
 
{

(1 − 𝜇𝛻2)𝑁𝑥
(1 − 𝜇𝛻2)𝑁𝑦

(1 − 𝜇𝛻2)𝑁𝑥𝑦

}

{

(1 − 𝜇𝛻2)𝑀𝑥
𝑏

(1 − 𝜇𝛻2)𝑀𝑦
𝑏

(1 − 𝜇𝛻2)𝑀𝑥𝑦
𝑏

}

{

(1 − 𝜇𝛻2)𝑀𝑥
𝑠

(1 − 𝜇𝛻2)𝑀𝑦
𝑠

(1 − 𝜇𝛻2)𝑀𝑥𝑦
𝑠

}

]
 
 
 
 
 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 
 
 
[

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] [

𝐵11
𝑠 𝐵12

𝑠 𝐵16
𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠

𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠
]

[

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] [

𝐷11
𝑠 𝐷12

𝑠 𝐷16
𝑠

𝐷12
𝑠 𝐷22

𝑠 𝐷26
𝑠

𝐷16
𝑠 𝐷26

𝑠 𝐷66
𝑠
]

[

𝐵11
𝑠 𝐵12

𝑠 𝐵16
𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠

𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠
] [

𝐷11
𝑠 𝐷12

𝑠 𝐷16
𝑠

𝐷12
𝑠 𝐷22

𝑠 𝐷26
𝑠

𝐷16
𝑠 𝐷26

𝑠 𝐷66
𝑠
] [

𝐻11
𝑠 𝐻12

𝑠 𝐻16
𝑠

𝐻12
𝑠 𝐻22

𝑠 𝐻26
𝑠

𝐻16
𝑠 𝐻26

𝑠 𝐻66
𝑠
]

]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
{

휀𝑥
0

휀𝑦
0

𝛾𝑥𝑦
0

}

{

𝜅𝑥
𝑏

𝜅𝑦
𝑏

𝜅𝑥𝑦
𝑏

}

{

𝜅𝑥
𝑠

𝜅𝑦
𝑠

𝜅𝑥𝑦
𝑠
}

]
 
 
 
 
 
 
 
 
 
 

 

(18) 

 

[
(1 − 𝜇𝛻2)𝑄𝑦𝑧

𝑠

(1 − 𝜇𝛻2)𝑄𝑥𝑧
𝑠
] = [

𝐴44
𝑠 𝐴45

𝑠

𝐴45
𝑠 𝐴55

𝑠 ] {
𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } (19) 

 

where 
 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗) = ∫ �̄�𝑖𝑗

ℎ

2

−ℎ

2

(1, 𝑧, 𝑧2)𝑑𝑧 

(𝐵𝑖𝑗
𝑠 , 𝐷𝑖𝑗

𝑠 , 𝐻𝑖𝑗
𝑠 , 𝐴𝑖𝑗

𝑠 )

= ∫ �̄�𝑖𝑗(𝜓(𝑧), 𝑧𝜓(𝑧), 𝜓
2(𝑧), 𝑔2(𝑧))

ℎ

2

−ℎ

2

𝑑𝑧 

(20) 
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Size-dependent vibration analysis of laminated composite plates 

The energy corresponding to the elastic foundation can 

be defined by 
 

𝑈𝐹 = −∫ ∫ 𝑈Pasternak

ℎ

2

−
ℎ

2
𝐴

𝑑𝐴𝑑𝑧 = −𝑞Pasternak (21) 

 

in which 
 

𝑞Pasternak = 𝐾𝑤(𝑤𝑏 +𝑤𝑠) − 𝐾𝑝𝛻
2(𝑤𝑏 +𝑤𝑠) (22) 

 

where KP is shear layer and an KW refers to linear spring 

layer. The work done by external force is given by 

 

𝛿𝑉 = −∫𝑞
𝐴

𝑤𝑑𝐴 (23) 

 

where w = wb = ws; q is the transverse force obtained via 

distribution of in-plane magnetic field, which will be 

defined below 
 

𝑞Lorentz =∑∫ 𝑓𝑧𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

 (24) 

 

where fz is Lorentz force and acts only on the z-direction 

(Karami and Janghorban 2016, Karami et al. 2018g). The 

variation of kinetic energy is determined by 

 

𝛿𝑇 =∬∑∫ 𝜌𝑢𝑖𝛿𝑢𝑖𝑑𝑉
𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1𝑅

= ∫ ∫ ∑∫ 𝜌
𝜕𝑢𝑖
𝜕𝑡

𝜕𝛿𝑢𝑖
𝜕𝑡

𝑑𝑧𝑑𝑦𝑑𝑥
𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

𝑏

0

𝑎

0

 

𝛿𝐾 = ∫ {𝐼0(
𝜕𝑢0
𝜕𝑡

𝜕𝛿𝑢0
𝜕𝑡

+
𝜕𝑣0
𝜕𝑡

𝜕𝛿𝑣0
𝜕𝑡

+ (
𝜕𝑤

𝜕𝑡
+)(

𝜕𝛿𝑤

𝜕𝑡
))

𝐴

 

−𝐼1(
𝜕𝑢0
𝜕𝑡

𝜕2𝛿𝑤𝑏
𝜕𝑡𝜕𝑥

+
𝜕2𝑤𝑏
𝜕𝑡𝜕𝑥

𝜕𝛿𝑢0
𝜕𝑡

+
𝜕𝑣0
𝜕𝑡

𝜕2𝛿𝑤𝑏
𝜕𝑡𝜕𝑦

+
𝜕2𝑤𝑏
𝜕𝑡𝜕𝑦

𝜕𝛿𝑣0
𝜕𝑡

) 

−𝐽1(
𝜕𝑢0
𝜕𝑡

𝜕2𝛿𝑤𝑠
𝜕𝑡𝜕𝑥

+
𝜕2𝑤𝑠
𝜕𝑡𝜕𝑥

𝜕𝛿𝑢0
𝜕𝑡

+
𝜕𝑣0
𝜕𝑡

𝜕2𝛿𝑤𝑠
𝜕𝑡𝜕𝑦

+
𝜕2𝑤𝑠
𝜕𝑡𝜕𝑦

𝜕𝛿𝑣0
𝜕𝑡

) 

+𝐼2(
𝜕2𝑤𝑏
𝜕𝑡𝜕𝑥

𝜕2𝛿𝑤𝑏
𝜕𝑡𝜕𝑥

+
𝜕2𝑤𝑏
𝜕𝑡𝜕𝑦

𝜕2𝛿𝑤𝑏
𝜕𝑡𝜕𝑦

) + 𝐾2(
𝜕2𝑤𝑠
𝜕𝑡𝜕𝑥

𝜕2𝛿𝑤𝑠
𝜕𝑡𝜕𝑥

+
𝜕2𝑤𝑠
𝜕𝑡𝜕𝑦

𝜕2𝛿𝑤𝑠
𝜕𝑡𝜕𝑦

) 

+𝐽2(
𝜕2𝑤𝑏
𝜕𝑡𝜕𝑥

𝜕2𝛿𝑤𝑏
𝜕𝑡𝜕𝑥

+
𝜕2𝑤𝑠
𝜕𝑡𝜕𝑥

𝜕2𝛿𝑤𝑠
𝜕𝑡𝜕𝑥

+
𝜕2𝑤𝑏
𝜕𝑡𝜕𝑦

𝜕2𝛿𝑤𝑏
𝜕𝑡𝜕𝑦

+
𝜕2𝑤𝑠
𝜕𝑡𝜕𝑦

𝜕2𝛿𝑤𝑠
𝜕𝑡𝜕𝑦

)} 𝑑𝐴 

(25) 

 

herein ρ is the mass density; (I0, I1, J1, I2, J2, K2) are mass 

inertias as below 
 

{𝐼0, 𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐾2}

= ∑∫ {1, 𝑧, 𝜓, 𝑧2, 𝑧𝜓, 𝜓2}𝜌(𝑧)𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

 
(26) 

The governing equations for a refined four-variable 

laminated composite plate in terms of the displacement can 

be derived by substituting Eqs. (16)-(26) into Eq. (15) as 

follows 

 

𝛿𝑢0:
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 

(1 − 𝜇𝛻2)(𝐼0
𝜕2𝑢0
𝜕𝑡2

− 𝐼1
𝜕3𝑤𝑏
𝜕𝑥𝜕𝑡2

− 𝐽1
𝜕3𝑤𝑠
𝜕𝑥𝜕𝑡2

) 

(27) 

 

𝛿𝑣0:
𝜕𝑁𝑥𝑦
𝜕𝑥

+
𝜕𝑁𝑦
𝜕𝑦

= 

(1 − 𝜇𝛻2)(𝐼0
𝜕2𝑣0
𝜕𝑡2

− 𝐼1
𝜕3𝑤𝑏
𝜕𝑦𝜕𝑡2

− 𝐽1
𝜕3𝑤𝑠
𝜕𝑦𝜕𝑡2

) 

(28) 

 

𝛿𝑤𝑏: [
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
] 

+(1 − 𝜇𝛻2)(𝑞Lorentz − 𝑞Pasternak) 

= (1 − 𝜇𝛻2)(𝐼0(
𝜕2𝑤𝑏
𝜕𝑡2

+
𝜕2𝑤𝑠
𝜕𝑡2

) + 𝐼1(
𝜕3𝑢0
𝜕𝑥𝜕𝑡2

+
𝜕3𝑣0
𝜕𝑦𝜕𝑡2

) 

−𝐼2(
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑏
𝜕𝑦2𝜕𝑡2

) − 𝐽2(
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑠
𝜕𝑦2𝜕𝑡2

)) 

(29) 

 

𝛿𝑤𝑠: [
𝜕2𝑀𝑥

𝑠

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
+
𝜕𝑄𝑥𝑧

𝑠

𝜕𝑥
+
𝜕𝑄𝑦𝑧

𝑠

𝜕𝑦
] 

+(1 − 𝜇𝛻2)(𝑞Lorentz − 𝑞Pasternak) 

= (1 − 𝜇𝛻2)(𝐼0(
𝜕2𝑤𝑏
𝜕𝑡2

+
𝜕2𝑤𝑠
𝜕𝑡2

) + 𝐽1(
𝜕3𝑢0
𝜕𝑥𝜕𝑡2

+
𝜕3𝑣0
𝜕𝑦𝜕𝑡2

) 

−𝐽2(
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑏
𝜕𝑦2𝜕𝑡2

) − 𝐽2(
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑠
𝜕𝑦2𝜕𝑡2

)) 

(30) 

 
According to the mentioned relations, the equations of 

motion defined for the size-dependent laminated composite 

plate can be shown in terms of fourfold displacements (u0, 

v0, wb, ws) as follow 

 
[𝐴11𝑑11 + 2𝐴16𝑑12 + 𝐴66𝑑22]𝑢0 
+[𝐴16𝑑11 + (𝐴12 + 𝐴66)𝑑12 + 𝐴26𝑑22]𝑣0 

−[
𝐵11𝑑111 + 3𝐵16𝑑112

+(𝐵12 + 2𝐵66)𝑑122 + 𝐵26𝑑222
]𝑤𝑏 

−[
𝐵11
𝑠 𝑑111 + 3𝐵16

𝑠 𝑑112
+(𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑122 + 𝐵26

𝑠 𝑑222
]𝑤𝑠 

= {1 − 𝜇(𝑑11 + 𝑑22)} 

     (𝐼0
𝜕2𝑢0
𝜕𝑡2

− 𝐼1𝑑1
𝜕2𝑤𝑏
𝜕𝑡2

− 𝐽1𝑑1
𝜕2𝑤𝑠
𝜕𝑡2

) 

(31) 

 
[𝐴16𝑑11 + (𝐴12 + 𝐴66)𝑑12 + 𝐴26𝑑22]𝑢0 
+[𝐴66𝑑11 + 2𝐴26𝑑12 + 𝐴22𝑑22]𝑣0 

−[
𝐵16𝑑111 + (𝐵12 + 2𝐵66)𝑑112
+3𝐵26𝑑122 + 𝐵22𝑑222

]𝑤𝑏 

−[
𝐵16
𝑠 𝑑111 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑112

+3𝐵26
𝑠 𝑑122 + 𝐵22

𝑠 𝑑222
]𝑤𝑠 

= {1 − 𝜇(𝑑11 + 𝑑22)} 

     (𝐼0
𝜕2𝑣0
𝜕𝑡2

− 𝐼1𝑑2
𝜕2𝑤𝑏
𝜕𝑡2

− 𝐽1𝑑2
𝜕2𝑤𝑠
𝜕𝑡2

) 

(32) 
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[
𝐵11𝑑111 + 3𝐵16𝑑112

+(𝐵12 + 2𝐵66)𝑑122 + 𝐵26𝑑222
] 𝑢0 

+[
𝐵16𝑑111 + (𝐵12 + 2𝐵66)𝑑112
+3𝐵26𝑑122 + 𝐵22𝑑222

] 𝑣0 

−[
𝐷11𝑑1111 + 4𝐷16𝑑1112 + 2(𝐷12 + 2𝐷66)𝑑1122

+4𝐷26𝑑1222 + 𝐷22𝑑2222
]𝑤𝑏 

−[
𝐷11
𝑠 𝑑1111 + 4𝐷16

𝑠 𝑑1112 + 2(𝐷12
𝑠 + 2𝐷66

𝑠 )𝑑1122
+4𝐷26

𝑠 𝑑1222 + 𝐷22
𝑠 𝑑2222

]𝑤𝑠 

+[
𝐾𝑤{1 − 𝜇(𝑑11 + 𝑑22)} + (𝜂ℎ𝐻𝑥

2 − 𝐾𝑃)
{(𝑑11 + 𝑑22) − 𝜇(𝑑1111 + 2𝑑1122 + 𝑑2222)}

]𝑤 

= {1 − 𝜇(𝑑11 + 𝑑22)}(𝐼0(
𝜕2𝑤𝑏
𝜕𝑡2

+
𝜕2𝑤𝑠
𝜕𝑡2

) 

+𝐼1 (𝑑1
𝜕2𝑢0
𝜕𝑡2

+ 𝑑2
𝜕2𝑣0
𝜕𝑡2

)

− 𝐼2 (𝑑11
𝜕2𝑤𝑏
𝜕𝑡2

+ 𝑑22
𝜕2𝑤𝑏
𝜕𝑡2

) 

−𝐽2(𝑑11
𝜕2𝑤𝑠
𝜕𝑡2

+ 𝑑22
𝜕2𝑤𝑠
𝜕𝑡2

)) 

(33) 

 

[
𝐵11
𝑠 𝑑111 + 3𝐵16

𝑠 𝑑112
+(𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑122 + 𝐵26

𝑠 𝑑222
] 𝑢0 

+[
𝐵16
𝑠 𝑑111 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑112

+3𝐵26
𝑠 𝑑122 + 𝐵22

𝑠 𝑑222
] 𝑣0 

−[
𝐷11
𝑠 𝑑1111 + 4𝐷16

𝑠 𝑑1112 + 2(𝐷12
𝑠 + 2𝐷66

𝑠 )𝑑1122
+4𝐷26

𝑠 𝑑1222 + 𝐷22
𝑠 𝑑2222

]𝑤𝑏 

−[
𝐻11
𝑠 𝑑1111 + 4𝐻16

𝑠 𝑑1112 + 2(𝐻12
𝑠 + 2𝐻66

𝑠 )𝑑1122
+4𝐻26

𝑠 𝑑1222 + 𝐻22
𝑠 𝑑2222

 

−𝐴55
𝑠 𝑑11 − 𝐴44

𝑠 𝑑22 − 2𝐴45
𝑠 𝑑12]𝑤𝑠 

+[
𝐾𝑤{1 − 𝜇(𝑑11 + 𝑑22)} + (𝜂ℎ𝐻𝑥

2 − 𝐾𝑃)
{(𝑑11 + 𝑑22) − 𝜇(𝑑1111 + 2𝑑1122 + 𝑑2222)}

]𝑤 

= {1 − 𝜇(𝑑11 + 𝑑22)}(𝐼0(
𝜕2𝑤𝑏
𝜕𝑡2

+
𝜕2𝑤𝑠
𝜕𝑡2

) 

+𝐽1 (𝑑1
𝜕2𝑢0
𝜕𝑡2

+ 𝑑2
𝜕2𝑣0
𝜕𝑡2

)

− 𝐽2 (𝑑11
𝜕2𝑤𝑏
𝜕𝑡2

+ 𝑑22
𝜕2𝑤𝑏
𝜕𝑡2

) 

−𝐾2(𝑑11
𝜕2𝑤𝑠
𝜕𝑡2

+ 𝑑22
𝜕2𝑤𝑠
𝜕𝑡2

)) 

(34) 

 

in which dij, dijk, and dijkl denote differential operators 

defined below 
 

𝑑𝑖𝑗 =
𝜕2

𝜕𝑥𝑖𝑥𝑗
, 𝑑𝑖𝑗𝑘 =

𝜕3

𝜕𝑥𝑖𝑥𝑗𝑥𝑘
, 𝑑𝑖𝑗𝑘𝑙 =

𝜕4

𝜕𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙
 (35) 

 

 

4. Solution procedure 
 

In this section, Navier solution is used for a simply 

supported rectangular laminated plate. In this study, two 

models of simply supported boundary conditions namely 

SS-1 and SS-2 are considered for the rectangular laminated 

plate when is influenced by magnetic field along the x-axis. 
 

4.1 Antisymmetric cross-ply laminates with SS-1 
boundary condition 

 

For this model, the following elements of plate stiffness 

are considered equal to zero 

𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 𝐷16
𝑠  

= 𝐷26
𝑠 = 𝐻16

𝑠 = 𝐻26
𝑠 = 0, 

𝐵12 = 𝐵16 = 𝐵26 = 𝐵66 = 𝐵12
𝑠  

= 𝐵16
𝑠 = 𝐵26

𝑠 = 𝐵66
𝑠 = 𝐴45 

= 𝐴45
𝑠 = 𝐷45 = 0, 𝐵22 = −𝐵11 = 𝐵22

𝑠 = −𝐵11
𝑠 , 

(36) 

 

 

The following SS-1 boundary conditions are inflicted at 

the side edges: 
 

(1) On edges x = 0, a 
 

{𝑣0, 𝑤𝑏 , 𝑤𝑠 ,
𝜕𝑤𝑏
𝜕𝑦

,
𝜕𝑤𝑠
𝜕𝑦

,𝑁𝑥, 𝑀𝑥
𝑏, 𝑀𝑥

𝑠} = 0 (37) 

 

(2) On edges y = 0, b 
 

{𝑢0, 𝑤𝑏, 𝑤𝑠 ,
𝜕𝑤𝑏
𝜕𝑥

,
𝜕𝑤𝑠
𝜕𝑥

, 𝑁𝑦, 𝑀𝑦
𝑏, 𝑀𝑦

𝑠} = 0 (38) 

 

To satisfy the mentioned boundary conditions, following 

Navier series are adopted as 
 

{

𝑢0
𝑣0
𝑤𝑏
𝑤𝑠

} = ∑∑

{
 
 

 
 𝑈𝑚𝑛 𝑐𝑜𝑠( 𝛼𝑥) 𝑠𝑖𝑛 (𝛽𝑦)𝑒𝑖𝜔𝑡

𝑉𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑐𝑜𝑠( 𝛽𝑦)𝑒
𝑖𝜔𝑡

𝑊𝑏𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛 (𝛽𝑦)𝑒𝑖𝜔𝑡

𝑊𝑠𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛 (𝛽𝑦)𝑒𝑖𝜔𝑡 }
 
 

 
 ∞

𝑛=1

∞

𝑚=1

 (39) 

 

where ω is the eigen-frequency related to the (m,n)-th 

eigen-mode, and α = mπ/a, β = nπ/b. 
 

4.2 Antisymmetric angle-ply laminates with SS-2 
boundary condition 

 

For this model, the following elements of plate stiffness 

are considered equal to zero 

 

𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 𝐷16
𝑠 = 𝐷26

𝑠 = 𝐻16
𝑠 = 𝐻26

𝑠

= 0, 
𝐵12 = 𝐵16 = 𝐵26 = 𝐵66 = 𝐵12

𝑠 = 𝐵16
𝑠 = 𝐵26

𝑠 = 𝐵66
𝑠

= 0, 
𝐴45 = 𝐴45

𝑠 = 𝐷45 = 0 

(40) 

 

The following SS-2 boundary conditions are inflicted at 

the side edges: 
 

(1) On edges x = 0, a 
 

{𝑢0, 𝑤𝑏, 𝑤𝑠,
𝜕𝑤𝑏
𝜕𝑦

,
𝜕𝑤𝑠
𝜕𝑦

,𝑁𝑥𝑦, 𝑀𝑥
𝑏, 𝑀𝑥

𝑠} = 0 (41) 

 

(2) On edges y = 0, b 
 

{𝑣0, 𝑤𝑏 , 𝑤𝑠 ,
𝜕𝑤𝑏
𝜕𝑥

,
𝜕𝑤𝑠
𝜕𝑥

, 𝑁𝑥𝑦, 𝑀𝑦
𝑏, 𝑀𝑦

𝑠} = 0 (42) 

 

Likewise to the cross-ply laminate case model, the 

solution satisfies the boundary conditions using following 

series 
 

{

𝑢0
𝑣0
𝑤𝑏
𝑤𝑠

} = ∑∑

{
 
 

 
 𝑈𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑐𝑜𝑠 (𝛽𝑦)𝑒𝑖𝜔𝑡

𝑉𝑚𝑛 𝑐𝑜𝑠( 𝛼𝑥) 𝑠𝑖𝑛( 𝛽𝑦)𝑒
𝑖𝜔𝑡

𝑊𝑏𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛 (𝛽𝑦)𝑒𝑖𝜔𝑡

𝑊𝑠𝑚𝑛 𝑠𝑖𝑛( 𝛼𝑥) 𝑠𝑖𝑛 (𝛽𝑦)𝑒𝑖𝜔𝑡 }
 
 

 
 ∞

𝑛=1

∞

𝑚=1

 (43) 
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Table 2 Comparison of the normalized natural frequency �̄� 

of simply supported square nanoplates (𝜈12 =

𝜈21 = 0.3, 𝑏 = 𝑎, 𝐸1 = 𝐸2 = 30(MPa), 𝜌 = 1(
𝑘𝑔

𝑚3)) 

a/h µ NFSDT*a NTSDT*a NTVRPT*b Present 

10 

0 0.0930 0.0935 0.09303 0.09303 

1 0.0850 0.0854 0.08502 0.08502 

2 0.0788 0.0791 0.07877 0.07877 

20 

0 0.0239 0.0239 0.02386 0.02386 

1 0.0218 0.0218 0.0218 0.02181 

2 0.0202 0.0202 0.0202 0.02021 
 

*a Ref. (Aghababaei and Reddy 2009), 

*b Ref. (Malekzadeh and Shojaee 2013) 

 
 

4.3 Eigenvalue approach for vibration problems 
 

By substituting Eqs. (39)-(43) into Eqs. (31)-(34), the 

following eigenvalue equations for any fixed value of m and 

n, for the free vibration case can be obtained 
 

([𝐾] − 𝜔2[𝑀]){𝛥} = {0} (44) 
 

where [K], [M], and {𝛥} are the stiffness matrix, matrix of 

mass, and the unknown amplitude vector, respectively. 
 

 

5. Numerical results 
 

In this section, in order to find the numerical results and 

make a comparison with published works, the following 

factors are defined (Shen et al. 2003, Murmu et al. 2013) 
 

�̄� = 𝜔ℎ√
𝜌

𝐺
,     �̃� = 𝜔𝑎2√

𝜌

𝐸2ℎ
2
,     𝑀𝑃 =

𝜂ℎ𝐻𝑥
2𝑎2

𝐷0
, 

K̄𝑊 =
𝐾𝑊𝑎

4

𝐸2ℎ
3
,     �̄�𝑃 =

𝐾𝑃𝑎
2

𝐸2ℎ
3
,     𝐺 =

𝐸1
2(1 + 𝜈12)

, 

𝐷0 =
𝐸2ℎ

3

12(1 − 𝜈12𝜈21)
 

 

To investigate the vibrational behavior of laminated 

composite plates, two different types of lamina are 

considered in which these material properties are tabulated 

in in Table 1. It is note that, in the current work the length 

of the plate is fixed. 
 

5.1 Validation 
 

In Table 2, the normalized natural frequency of simply 

supported isotropic square nanoplate with various quantities 

 

 

of the nonlocal parameter and thickness ratio are compared 

with the results in the open literature (Aghababaei and 

Reddy 2009, Malekzadeh and Shojaee 2013). As can be 

observed from this table, the results from different methods 

(Nonlocal First Order Shear Deformation Theory (NFSDT), 

Nonlocal Third Order Shear Deformation Theory (NTSDT), 

and Nonlocal Two Variable Refined Plate Theory 

(NTVRPT)) including the present one all agree well with 

each other and that the frequencies of nanoplate in the 

presence of nonlocality are lower than the ones without a 

nonlocal parameter. This is expected since when larger 

nanoplates are considered, the effect of the nonlocal 

parameter will decrease. 
 

5.2 Free vibration analysis of laminated structures 
 

5.2.1 Effect of moduli ratio and magnetic field 
In Table 3, the natural frequencies of the antisymmetric 

cross-ply laminated plates with two-layer [0/90]and six-

layer [0/90]3 are given for fixed aspect a/h = 5. For different 

moduli ratios, our results compare well with the 3D model 

by (Noor 1973) and the results by other methods (Higher 

Order Shear Deformation Theory (HSDT) and Hyperbolic 

Shear Deformation Theory (HSDT)) (Reddy 1984, Akavci 

2007), especially when the ratios are E1/E2 = 3, 10, 20. 

Under the combined effects of the nonlocal parameter and 

magnetic force, it is observed that while the natural 

frequencies of the plate increase with increasing moduli 

ratio, increasing magnetic strength, or increasing number of 

layers, they decrease with increasing nonlocal parameter. 
 

5.2.2 Effect of thickness ratio and elastic 
foundations 

The natural frequencies of the laminated plates 

containing the cross-ply [0/90/0] with three layers and 

angle-ply [45/-45] with four layers rested on Winkler-

Pasternak foundation are listed in Table 4 for diverse values 

of thickness ratio a/h = 5,10,20,50 and as further compared 

to those using other method (higher order shear deformation 

theory (HSDT)) (Shen et al. 2003). It can be observed that 

for the reduced case (without the nonlocal parameter), the 

results by the present theory are in excellent agreement with 

those from other methods for the plate ranging from very 

thin to moderately thick. As listed in the Table, (1) existence 

of the elastic foundation raises the frequency of the 

laminated composite plate. This increment is relevant to the 

hardness effect of the foundation. Hence, a laminated 

composite plate with a foundation is stiffer than the one 

without foundation. (2) the natural frequency of the 

laminated plate on the Pasternak foundation with extra 

shear layer is higher than that of the plate on the Winkler 

foundation. (3) it is observed that the influence of the elastic 

foundation is more obvious in the low values of the 

Table 1 Material properties used in the laminated composite plates 

 E2 (GPa) E1 G12 G13 G23 ν12 Ρ (kg/m3) 

Material 1*a 1 (3,10,20,30,40)E2 0.6E2 0.6E2 0.5E2 0.25 1 

Material 2*b 1 25E2 0.5E2 0.5E2 0.2E2 0.25 1 
 

*a Ref. (Noor 1975), *b Ref. (Phan and Reddy 1985) 
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Table 3 Normalized natural frequencies �̃� of antisymmetric cross-ply square laminated composite 

plates (a = b) with two and six layers for various values of moduli ratio, magnetic field, and 

nonlocal parameter (Material 1, a/h = 5, and SS-1) 

 MP μ Method 
E1/E2 

3 10 20 30 40 

[0/90] 

0 

0 

3D Model*a 6.2578 6.9845 7.6745 8.1763 8.5625 

HSDT*b 6.2169 6.9887 7.8210 8.5050 9.0871 

HSDT*c 6.2181 6.9939 7.8324 8.5228 9.1114 

Present 6.2168 6.9881 7.8197 8.5028 9.0841 

1 Present 5.6813 6.3862 7.1461 7.7704 8.3016 

2 Present 5.2640 5.9171 6.6212 7.1996 7.6918 

50 

0 Present 7.0466 7.8762 8.7902 9.5460 10.1910 

1 Present 6.7345 7.5137 8.3794 9.0971 9.7105 

2 Present 6.5424 7.2860 8.1200 8.8134 9.4068 

100 

0 Present 7.7634 8.6443 9.6332 10.4555 11.1595 

1 Present 7.6005 8.4417 9.4003 10.2008 10.8879 

2 Present 7.5407 8.3556 9.2994 10.0914 10.7729 

[0/90]3 

0 

0 

3D Model*a 6.61 8.4143 9.8398 10.695 11.272 

HSDT*b 6.5552 8.4041 9.9175 10.854 11.500 

HSDT*c 6.5563 8.4057 9.9188 10.856 11.503 

Present 6.5558 8.4053 9.9181 10.8546 11.5009 

1 Present 5.9911 7.6813 9.0638 9.9196 10.5103 

2 Present 5.5510 7.1170 8.3980 9.1910 9.7382 

50 

0 Present 7.4533 9.5586 11.2907 12.3630 13.1014 

1 Present 7.1318 9.1490 10.8125 11.8425 12.5515 

2 Present 6.9379 8.9041 10.5296 11.5368 12.2297 

100 

0 Present 8.2338 10.5679 12.4981 13.6940 14.5168 

1 Present 8.0792 10.3787 12.2881 13.4725 14.2870 

2 Present 8.0364 10.3360 12.2542 13.4461 14.2657 
 

*a Ref. (Noor 1973), *b Ref. (Reddy 1984), *c Ref. (Akavci 2007) 

Table 4 Normalized natural frequencies �̃� of angle-ply and cross-ply square laminated composite plates 

with diverse values of thickness ratios, magnetic field, and nonlocal parameter, (Material 1 with 

E1/E2 = 40 and SS-1) 

 
  

µ Method 
a/h 

5 10 20 50 

[45/-45]2 

0 0 

0 
HSDT* 12.544 18.333 21.812 23.225 

Present 12.534 18.324 21.807 23.224 

1 Present 11.455 16.746 19.929 21.224 

2 Present 10.613 15.516 18.465 19.664 

100 

0 

0 
HSDT* 16.022 20.868 23.989 25.285 

Present 16.009 20.857 23.983 25.284 

1 Present 15.178 19.485 22.289 23.460 

2 Present 14.556 18.438 20.990 22.059 

10 

0 
HSDT* 21.278 25.132 27.789 28.924 

Present 17.207 25.118 27.783 28.923 

1 Present 15.725 23.990 26.334 27.343 

2 Present 14.570 23.148 25.244 26.151 
 

*Ref. (Shen et al. 2003) 
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Fig. 2 Variation of normalized natural frequency �̃� vs. the 

number of layers of the laminated composite square 

plate (a = b) with different nonlocal parameters 

(Material 1 with a/h = 10 and SS-2) 

 

 

 

 
thickness ratios than that in the high ones. Again, for a fixed 

moduli ratio, the natural frequency decreases with 

increasing nonlocal parameter. (4) it is concluded further 

that the natural frequency increases with increasing moduli 

ratios. 

 

5.2.3 Effect of lay-up numbers 
The natural frequencies vs. layer number of the 

antisymmetric angle-ply [45/-45] laminated composite 

square plate (a = b = 10 h) are shown in Fig. 2. It is 

observed: (1) For a fixed nonlocal parameter, the frequency 

reaches a minimum when the number of layer is 2 and the 

frequency corresponding to an even number of layers is 

usually smaller than those in its adjacent odd ones; (2) The 

frequency reaches its asymptotic value when the number of 

layers is close to 20; (3) a large nonlocal parameter 

corresponds to a small natural frequency. (4) It is 

noteworthy that, the maximum natural frequencies attribute 

to the laminated plate containing higher moduli ratios. 

 

 

Table 4 Continued 

 
  

µ Method 
a/h 

5 10 20 50 

[0/90/0] 

0 0 

0 
HSDT* 10.263 14.702 17.483 18.689 

Present 11.770 15.940 17.994 18.738 

1 Present 10.756 14.567 16.444 17.124 

2 Present 9.966 13.497 15.236 15.866 

100 

0 

0 
HSDT* 14.244 17.753 20.132 21.152 

Present 15.401 18.795 20.578 21.238 

1 Present 14.650 17.645 19.237 19.829 

2 Present 14.080 16.773 18.215 18.753 

10 

0 
HSDT* 19.879 22.596 24.536 25.390 

Present 20.801 23.423 24.903 25.462 

1 Present 20.244 22.518 23.807 24.299 

2 Present 19.835 21.841 22.989 23.429 
 

*Ref. (Shen et al. 2003) 

Table 5 Higher-order normalized natural frequencies �̃�𝑚𝑛of cross-ply laminated composite plates, 

(Material 1 with E1/E2 = 40 and [0/90/90/0]) 

  MP = 0 MP = 100 

(�̄�𝑊, �̄�𝑃) μ �̃�11 �̃�22 �̃�33 �̃�11 �̃�22 �̃�33 

(0,0) 

0 17.9938 63.7613 123.395 18.0786 64.0594 123.9680 

1 16.4439 47.6632 74.0539 16.5549 48.3730 76.6606 

2 15.2359 39.7027 57.8292 15.3754 40.9210 63.1476 

(100,0) 

0 20.5776 64.5341 123.7960 20.6517 64.8286 124.366 

1 19.237 48.6922 74.7189 19.3319 49.3870 77.3026 

2 18.2152 40.9323 58.6784 18.3318 42.1144 63.9246 

(100,10) 

0 24.9030 70.3386 130.7020 24.9641 70.6084 131.241 

1 23.8072 56.1586 85.6764 23.8837 56.7603 87.9310 

2 22.9894 49.5814 72.1155 23.0817 50.5575 76.4210 
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5.2.4 Effect of eigen-modes 
Some higher-order natural frequencies ((m, n) = (1,1), 

(2,2), (3,3)) are listed in Table 5 for the laminated 

composite plates resting on elastic foundation with distinct 

values of foundation parameters, mode numbers and 

nonlocal parameter, and in the absence and presence of the 

in-plane magnetic field. It can be observed that while a 

higher frequency corresponds to a higher-order mode 

number (m, n), the frequency increases with increasing 

magnetic field and hardness of elastic foundation (or 

decreasing nonlocal parameter). This feature is consistent 

with the results observed in other examples of this paper. 

Moreover, it is noted that at the high mode numbers, the 

nonlocal parameter has a dominant role and leads to sharp 

change in the frequency responses. For soft and hard 

foundations with and without magnetic effect, the trend of 

higher frequency changes remains relatively constant. 

 

 

6. Conclusions 
 

Size-dependent free vibrations of the symmetric as well 

as antisymmetric laminated composite plates on Pasternak 

foundation are presented considering the in-plane magnetic 

field effects. A refined plate theory and ENDM is adopted 

to obtain the governing equations where the virtual work of 

Hamilton’s principle is used. Then, an analytical technique 

based on Navier series is employed to find the natural 

frequencies of the structure. Further, the impacts of two-

different simply supported lateral boundary conditions 

including both of angle-ply and cross-ply laminated plates 

are analyzed. The reported numerical results show that: 
 

● The present methodology with only four variables is 

accurate and comparable in compression with those 

of other higher-order-shear-deformation theories for 

size-dependent analysis. 

● The impact of the nonlocality on the frequency rises 

monotonically with growing aspect ratio and mode 

numbers. 

● The natural size-dependent frequencies of the 

laminated composite plate increase with growth in 

moduli ratio, magnetic strength, number of layers. 

● In all values of moduli ratio, the applied magnetic 

field plays an important role on the natural 

frequencies of the plates with different lay-up 

numbers. 

● The elastic foundation raises the frequency of size-

dependent laminated composite plate, although, its 

influence is more obvious in the low values of the 

thickness ratio. 
 

For the laminated composite plate consisted of an odd 

number of layers, the frequency is higher than that consisted 

of an even number of layers adjacent to the odd number. 
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