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1. Introduction 

 

From past to present, scientists and researchers always 

wanted to find material with wonderful properties to using 

in industrial sciences. Thus, they have studied the properties 

of different materials for years to choose the best material 

as it is possible. Functionally Graded Material (FGM) is one 

of the novel materials which researchers discovered it. In 

the mid-1980s Japanese’s scientists have figured it out and 

they realized that this material has supreme features such as 

high temperature resistance, high strength and improved 

corrosion resistance. This kind of materials is a novel 

generation which is microscopically nonhomogeneous will 

be attained by administering the volume fractions, 

microstructure, porosity, and other parameters of the 

material constituents during the manufacturing procedure. 

Fabrication of such materials leads to spatial gradient of 

macroscopic material properties such as thermal 

conductivity and mechanical strength. 

Normally, FGM includes two phases, metal phase that 

resists fracture that is caused by thermal stresses and 

ceramic phase that can tolerate the intense thermal loading. 

Also, owing to the existence of two phases, mechanical 

properties vary through the thickness direction.  Besides, 

FGMs have many advantages that attracted the researchers’ 

attention. These materials are utilized in various 

engineering fields like aerospace structures, military aircraft 

propulsion system and others. The mentioned points are 

sufficient to persuade scientists to investigate on 

 

Corresponding author, Associate Professor, 

E-mail: febrahimy@eng.ikiu.ac.ir 

 

 

characteristics of FGM structures and analyses of their 

behavior (Aydogdu and Taskin 2007, Azadi 2011, Şimşek 

and Reddy 2013, Hebali et al. 2014, Li et al. 2015, Hosseini 

and Rahmani 2016, Ebrahimi and Haghi 2017). For 

example, Thanh et al. (2017) investigated the effect of 

thermal loading on nonlinear dynamic and vibration 

behavior of imperfect functionally graded carbon nanotube 

reinforced composite (FG-CNTRC) plates resting on elastic 

foundations under dynamic in the framework of third-order 

shear deformation plate theory. The nonlinear vibration 

responses of FG-CNTRC annular plates with integrated 

piezoelectric layers resting on Pasternak foundation is 

discussed by Keleshteri et al. (2017). Ebrahimi et al. 

(2017b) have probed vibration analysis of magneto-electro-

elastic (MEE) heterogeneous porous material plates resting 

on elastic medium. Also, thermal loading effect on wave 

propagation analysis of a temperature-dependent FG 

rotating nanosize beam under based on NSGT is carried out 

by Ebrahimi et al. (2017a). Free vibration characteristics of 

FGM sandwich doubly-curved shallow shells has been 

presented by Chen et al. (2017) under simply supported 

conditions. On the basis of the refined four-variable plate 

theory, Ebrahimi et al. (2018a) explored wave propagation 

behavior of an embedded FG nanoplate by considering the 

thermal loading effect. Thermal environments effect on the 

nonlinear forced vibrational analysis of FG laminated 

composite plates reinforced with graphene layers rested on 

the viscoelastic foundation is surveyed by Fan et al. (2018). 

Eringen’s nonlocal elasticity theory is employed by 

Ebrahimi et al. (2018b) to investigate wave propagation 

response of a rotating FGM nanobeam. Shahsavari et al. 

(2018) studied free vibration analysis of FG porous plates 

resting on elastic foundations using quasi-3D hyperbolic 

theory. Lv et al. (2018) have studied the effect of the 
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material defects on the nonlinear vibrational response of 

embedded FG nanobeams based on NSGT. Bending, 

buckling and free vibration characteristics of 

incompressible FG plates have been carried out by 

Mohammadi et al. (2019) employing both higher order 

shear and normal deformable plate theory. Zeng et al. 

(2019) have analyzed the influence of electrical load on 

nonlinear vibration analysis of piezoelectric sandwich 

nanoplates made of FG porous core. 

Porosity is a measure of the void and one of the 

destructive factors which can affect the mechanical 

properties of materials including FGMs. Porosity is usually 

made through the manufacturing process. It is worth 

mentioning that analyzing porosity effect can be surely 

beneficial in investigating the materials’ mechanical 

behavior. Accordingly, many scientists have studied the 

effect of porosity in their investigations. For example, the 

vibrational behavior of FG beams made of porous material 

under different thermal loadings is carried out by Ebrahimi 

et al. (2016b). Moreover, Eltaher et al. (2018) examined 

bending and vibration responses of FG porous nanobeams 

implementing a modified porosity model using the finite 

element method. This porosity model represents the relation 

between density and the elastic modulus and porosity 

parameter. Phung-Van et al. (2019) discussed nonlinear 

transient analysis of FG porous nanoscale plates within the 

framework of higher order shear deformation theory. Free 

and forced vibration analysis of a porous nanoshell 

reinforced by graphene platelets is investigated by  

Pourjabari et al. (2019). 

In the last decade, nanotechnology and nano materials 

have attracted the attention of many scientists. Hence, they 

performed a lot of researches on the behavior of 

nanostructures and they have found out that behavior of 

nanoscale structures possesses size dependency and also 

owing to the inefficiency of the classical continuum theory 

in precisely forecasting the dynamic response mechanical 

properties, it cannot be used for nano structures. As a result, 

there are various continuum theories which have been 

developed and applied to capture correctly size-dependent 

behavior of nano structures. These theories can help 

scientists to take into account the size effects in mechanical 

analysis of nanoscale material and structures. NSGT and 

nonlocal elasticity are two theories that many researchers 

use them to explore size effects in their investigations. Li et 

al. (2015) have developed an analytic model of small-scaled 

FG beams for the flexural wave propagation analysis based 

on NSGT. Size-dependent free vibration analysis of 

nanoplates made of FGMs has been investigated by 

Daneshmehr et al. (2015) based on nonlocal elasticity 

theory with high order theories. Ebrahimi et al. (2016a) 

have studied the wave propagation of an inhomogeneous 

FG nanoplate subjected to nonlinear thermal loading by the 

means of NSGT. Electromechanical buckling of beam-type 

nanoelectromechanical systems (NEMSs) has been studied 

by Shojaeian et al. (2016) based on modified strain gradient 

theory.  A novel size-dependent beam model has been 

proposed for nonlinear free vibration of FG nanobeam with 

immovable ends based on NSGT and Euler-Bernoulli beam 

theory in conjunction with the von-Kármán’s geometric 

nonlinearity has been described by Şimşek (2016). NSGT 

has been used by Ebrahimi and Dabbagh (2017) to capture 

size effects in wave propagation analysis of compositionally 

graded smart nanoplates and Ebrahimi and Barati (2017) 

have investigated buckling characteristics of a curved FG 

nanobeam based on NSGT accounting the stress for not 

only the nonlocal stress field but also the strain gradients 

stress field. Zeighampour et al. (2018) have investigated 

wave propagation in viscoelastic single-walled carbon 

nanotubes by accounting for the simultaneous effects of the 

nonlocal constant and the material length scale parameter. 

Nonlocal strain gradient shell model has been used by 

Sahmani and Aghdam (2018) for axial buckling and 

postbuckling analysis of MEE composite nanoshells. A size-

dependent nonlinear nonlocal strain gradient model for 

nanoscale tubes has been proposed by Ghayesh and 

Farajpour (2018) and the forced mechanical behavior has 

been examined by Barati (2018) modeling the Dynamic 

model of nanoplates constructed from porous FG and metal 

foam materials based on NSGT. Fuschi et al. (2019) have 

studied Size effects of small-scale beams in bending 

addressed with a strain-difference based nonlocal elasticity 

theory. Based on the NSGT and surface elasticity theory, a 

unified size-dependent plate model has been developed by 

Lu et al. (2019)  for buckling analysis of rectangular 

nanoplates. Tan and Chen (2019) have described the size-

dependent electro-thermo-mechanical analysis of multilayer 

cantilever microactuators by Joule heating have used the 

modified couple stress theory. Ebrahimi et al. (2019a) 

employed Eringen’s nonlocal elasticity theory for wave 

propagation behavior of MEE nanotube considering shell 

model. 

On the other hand, there are not many articles that wave 

propagation of porous nano structures based on the different 

theories have been investigated in them. A general bi-

Helmholtz nonlocal strain-gradient elasticity model has 

been developed for wave dispersion analysis of porous 

double-nanobeam systems in thermal environments by 

Barati (2017) and Mahinzare et al. (2019) investigated 

vibrational behavior of functionally graded piezoelectric 

material in a nano circular plate subjected to rotational and 

thermal loads based on NSGT. Based on NSGT, Mirjavadi 

et al. (2019) have transient behavior of a porous FG 

nanoplate due to various impulse loads has been studied. 

Ebrahimi et al. (2019b) have just examined porosity 

influence on wave dispersion behavior of FG nanobeam 

according to NSGT. 

As mentioned above, we have lots of researches in the 

field of wave propagation of FG nanostructures but nobody 

has investigated wave propagation analysis of FG porous 

nanoscale plate based on the NSGT in thermal environment. 

In this paper, we have studied wave propagation 

analysis of FGM by using NSGT to consider the size effects 

in nano scales. To find the equations of motion of the FG 

porous nanoscale plate, we used Hamilton’s principle. 

Temperature dependent is considered by solving a heat 

conduction problem through the thickness of the nanoscale 

plate and in our porosity model that we considered mass 

density and Young’s modulus have a direct relationship 

together. 
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2. Theory and formulation 
 

2.1 Modified power-law homogenization method 
 

First, equivalent mechanical properties of FG nanoplate 

by considering porosity effect is covered on the basis of a 

modified porosity dependent homogenization scheme which 

shows porosity affects wave propagation responses of FG 

nanoplates significantly. By searching in literature, it can be 

found out that in all similar works that explored porosity 

effects on equivalent material properties, a linear function is 

considered for the porosity effect. Although this method can 

describe the decreasing impact of porosity, it cannot be 

assumed as a realistic homogenization method for the 

purpose of regarding porosity effects (Zok and Levi 2001). 

The present method relates the effective Young’s modulus 

of porous FGMs to the mass densities of both perfect and 

porous materials. Moreover, the homogenization is 

constructed based on the primary definition of porosity. The 

equivalent material properties can be expressed in the 

following form 

 

𝐸(𝑧) = (𝐸𝐶 − 𝐸𝑀) (
𝑧

ℎ
+
1

2
)
𝑃

 

+𝐸𝑀 − (
𝑚0 −𝑚1

𝑚0
) (𝐸𝐶 + 𝐸𝑀) 

(1) 

 

𝜌(𝑧) = (𝜌𝐶 − 𝜌𝑀) (
𝑧

ℎ
+
1

2
)
𝑃

+ 𝜌𝑀 −
𝛼

2
(𝜌𝐶 + 𝜌𝑀) (2) 

 

where E and ρ denote Young’s modulus and mass density of 

FG nanoplate, respectively. In addition, C and M subscripts 

are ceramic and metal phases, respectively. The power 

exponent P is defined for the goal of tuning the volume 

fraction of ceramic and metallic phases of the implemented 

FGM. In fact, the higher is the power exponent, the greater 

will be the volume fraction of the ceramic-rich phase. Also, 

α is the porosity volume fraction. Also, m0 and m1 are the 

true and apparent mass densities, respectively and can be 

computed as 

 

 

 

 

 

 

𝑚0 = ∫ 𝜌(𝑧)

ℎ
2⁄

−ℎ 2⁄

𝑑𝑧                   𝑎𝑡    𝛼 = 0 (3a) 

 

𝑚1 = ∫ 𝜌(𝑧)

ℎ
2⁄

−ℎ 2⁄

𝑑𝑧                   𝑎𝑡    𝛼 > 0 (3b) 

 

Temperature-dependent coefficients of material phases 

can be written as 
 

𝑋 = 𝑋0(1 + 𝑋−1 + 𝑋2 + 𝑋3) (4) 

 

In which X0, X-1, X1, X2 and X3 stand for temperature-

dependent coefficients that are presented in Table 1 for 

Si3N4 and SUS304. The top and bottom surfaces of FG 

nanoplate are fully ceramic (Si3N4) and fully metal 

(SUS304), respectively. In this paper, it is presumed that the 

temperature varies nonlinearly through the thickness of 

plate. Temperature distribution can be achieved by solving 

the steady-state heat conduction equation with respect to 

boundary conditions on the top and bottom surfaces of 

nanoplate across the thickness 
 

−
𝑑

𝑑𝑧
(𝐾(𝑧, 𝑇)

𝑑𝑇

𝑑𝑧
) = 0 (5) 

 

Regarding 
 

𝑇 (
ℎ

2
) = 𝑇𝐶  (6a) 

 

𝑇 (−
ℎ

2
) = 𝑇𝑀 (6b) 

 

By solving the noted equation, temperature function can 

be formulated as follow 
 

𝑇 = 𝑇𝑀 + (𝑇𝐶 − 𝑇𝑀)
∫

1

𝐾(𝑧,𝑇)
𝑑𝑧

𝑧

−
ℎ

2

∫
1

𝐾(𝑧,𝑇)
𝑑𝑧

ℎ

2

−
ℎ

2

 (7) 

 

 

Table 1 Temperature-dependent coefficients for Si3N4 and SUS304 (Ebrahimi et al. 2016a) 

Material Properties X0 X-1 X1 X2 X3 

Si3N4 

E (Pa) 348.43e+9 0 −3.070e-4 2.160e-7 −8.946e-11 

α (K-1) 5.8723e-6 0 9.095e-4 0 0 

ρ (Kg/m3) 2370 0 0 0 0 

κ (W/mK) 13.723 0 −1.032e-3 5.466e-7 −7.876e-11 

ν 0.24 0 0 0 0 

SUS304 

E (Pa) 201.04e + 9 0 3.079e-4 −6.534e-7 0 

α (K-1) 12.330e-6 0 8.086e-4 0 0 

ρ (Kg/m3) 8166 0 0 0 0 

κ (W/mK) 15 .379 0 −1.264e-3 2.092e-6 −7.223e-10 

ν 0.3262 0 −2.002e-4 3.797e-7 0 
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2.2 Kinetic relations 
 

According to refined shear deformation plate theories, 

the displacement field of nonlocal FGM nanoscale plate can 

be written as 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 

𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤𝑏(𝑥, 𝑦, 𝑡)

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠(𝑥, 𝑦, 𝑡)

𝜕𝑥
 

(8) 

 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 

𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤𝑏(𝑥, 𝑦, 𝑡)

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠(𝑥, 𝑦, 𝑡)

𝜕𝑥
 

(9) 

 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑦, 𝑡) + 𝑤𝑠(𝑥, 𝑦, 𝑡)` (10) 

 

where u0 and v0 are longitudinal and transverse 

displacements and wb and ws indicate bending deflection 

and shear deflection, respectively. Plus, 𝑓(𝑧) is the shape 

function which demonstrates distribution of shear stress and 

strain through the thickness direction. The shape function 

can be presented as 

 

𝑓(𝑧) = 𝑧 −
sin(𝜁𝑧)

𝜁
 (11) 

 

in which 𝜁 =
𝑧

ℎ
. Furthermore, the nonzero strains of the 

using theory can be calculated in the following form 
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(13) 

 

Next, in order to achieve the Euler–Lagrange equations 

of FG porous nanoplate, Hamilton’s principle has been 

employed that is presented as follow 

 

∫ 𝛿(𝑈 − 𝑇 + 𝑉)𝑑𝑡
𝑡1

𝑡0

= 0 (14) 

 

where 𝛿𝑈, 𝛿𝑇 and 𝛿𝑉 denote variation of strain energy, 

kinetic energy work done by external loadings, respectively. 

Now, the variation of strain energy can be written as 

 

𝛿𝑈 = ∫ (
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)𝑑𝑉

𝑉

 (15) 

 

By substituting Eqs. (12), (13) in Eq. (15), the strain 

energy can be calculated as 
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in which the stress resultants N, M and Q are defined by 

 

[𝑁𝑗 , 𝑀𝑗
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𝐴
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𝑄𝑗 = ∫ 𝑔(𝑧)

𝐴
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where, 𝑔(𝑧) = 1 −
𝑑𝑓(𝑧)

𝑑𝑧
. 

the variation of kinetic energy can be expressed as 
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(18) 

 

where the mass moment of inertias can be computed via 

 
[𝐼0, 𝐼1, 𝐼2, 𝐽1, 𝐽2, 𝐾2]

= ∫[1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧)]𝜌(𝑧)𝑑𝐴

𝐴

 
(19) 

 

The variation of work done by applied forces can be 

expressed in the following form 
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𝛿𝑉 = ∫𝑁𝑇

(

 

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥

𝜕𝛿(𝑤𝑏 +𝑤𝑠)

𝜕𝑥

+
𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑦

𝜕𝛿(𝑤𝑏 +𝑤𝑠)

𝜕𝑦 )

 𝑑𝑥

𝐿

0

 (20) 

 

Where 

 

𝑁𝑇 = ∫
𝐸(𝑧)

1 − 𝜈
𝛼(𝑧, 𝑇)(𝑇 − 𝑇0)𝑑𝑧

ℎ

2

−
ℎ

2

 (21) 

 

By inserting Eqs. (16), (18) and (20) into Eq. (14) and 

setting the coefficients of 𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤𝑏, 𝛿𝑤𝑠 to zero, the 

Euler-Lagrange equations of a FG sinusoidal plate are 

attained as 

 
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑥

= 𝐼0𝑢̈0 − 𝐼1
𝜕𝑤̈𝑏
𝜕𝑥

− 𝐽1
𝜕𝑤̈𝑠
𝜕𝑥

 (22) 

 
𝜕𝑁𝑦
𝜕𝑦

+
𝜕𝑁𝑥𝑦
𝜕𝑥

= 𝐼0𝑣̈0 − 𝐼1
𝜕𝑤̈𝑏
𝜕𝑦

− 𝐽1
𝜕𝑤̈𝑠
𝜕𝑦

 (23) 

 

𝜕2𝑀𝑥
𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
−𝑁𝑇∇2(𝑤𝑏 +𝑤𝑠) 

= 𝐼0(𝑤̈𝑏 + 𝑤̈𝑠) + 𝐼1(
𝜕𝑢̈

𝜕𝑥
+
𝜕𝑣̈

𝜕𝑦
) − 𝐼2∇

2𝑤̈𝑏 − 𝐽2∇
2𝑤̈𝑠 

(24) 

 

𝜕2𝑀𝑥
𝑠

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
+
𝜕𝑄𝑥𝑧
𝜕𝑥

 

+
𝜕𝑄𝑦𝑧
𝜕𝑦

− 𝑁𝑇∇2(𝑤𝑏 + 𝑤𝑠) 

= 𝐼0(𝑤̈𝑏 + 𝑤̈𝑠) + 𝐽1(
𝜕𝑢̈

𝜕𝑥
+
𝜕𝑣̈

𝜕𝑦
) − 𝐽2∇

2𝑤̈𝑏 − 𝐾2∇
2𝑤̈𝑠 

(25) 

 

2.3 The nonlocal strain gradient theory 
 

Based on size-dependent continuum theory the stress-

strain relationship in FG nanoplates is found and it should 

be mixed stress-strain relation with Euler-Lagrange 

equations in order to gather the nonlocal governing 

equations of problem. Accordingly, NSGT is implemented 

for FG porous nanoplate and can be defined in the 

following form 

 
(1 − 𝜇2∇2)𝜎 = (1 − 𝜆2∇2)𝐶: 𝜀 (26) 

 

where  𝜇  , 𝜆  and 𝐶  are nonlocal and length scale 

parameters and elasticity tensor, respectively. Also, in above 

equation, ∇2 stands for Laplacian operator which can be 

described as 

 

∇2=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
 (27) 

 

 

 

 

the stress-strain relationships of a refined plate can be 

modified as follow 

 

(1 − 𝜇2∇2) {

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

}

= (1 − 𝜆2∇2)

[
 
 
 
 
 
 
 

[
𝐴11 𝐴12 0
𝐴21 𝐴22 0
0 0 𝐴33

]

{
 
 

 
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑥

𝜕𝑢0
𝜕𝑥

+
𝜕𝑣0
𝜕𝑥 }
 
 

 
 

+ [

𝐵11 𝐵12 0
𝐵21 𝐵22 0
0 0 𝐵66

]

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑏
𝜕𝑦2

−2
𝜕𝑤𝑏
𝜕𝑥𝜕𝑦}

  
 

  
 

+ [

𝐵11
𝑠 𝐵12

𝑠 0

𝐵21
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠
]

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑦2

−2
𝜕𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

]
 
 
 
 
 
 
 

 

(28) 

 

 

(1 − 𝜇2∇2) {

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥𝑦
𝑏

}

= (1 − 𝜆2∇2)

[
 
 
 
 
 
 
 

[

𝐵11 𝐵12 0
𝐵21 𝐵22 0
0 0 𝐵66

]

{
 
 

 
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑥

𝜕𝑢0
𝜕𝑥

+
𝜕𝑣0
𝜕𝑥 }
 
 

 
 

+ [

𝐷11 𝐷12 0
𝐷21 𝐷22 0
0 0 𝐷66

]

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑏
𝜕𝑦2

−2
𝜕𝑤𝑏
𝜕𝑥𝜕𝑦}

  
 

  
 

+ [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷21
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
]

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑦2

−2
𝜕𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

]
 
 
 
 
 
 
 

 

(29) 

 

329



 

Farzad Ebrahimi, Ali Seyfi and Ali Dabbagh 

(1 − 𝜇2∇2) {

𝑀𝑥
𝑠

𝑀𝑦
𝑠

𝑀𝑥𝑦
𝑠
}

= (1 − 𝜆2∇2)

[
 
 
 
 
 
 
 

[

𝐵11
𝑠 𝐵12

𝑠 0

𝐵21
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠
]

{
 
 

 
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑥

𝜕𝑢0
𝜕𝑥

+
𝜕𝑣0
𝜕𝑥 }
 
 

 
 

+ [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷21
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
]

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑏
𝜕𝑦2

−2
𝜕𝑤𝑏
𝜕𝑥𝜕𝑦}

  
 

  
 

+ [

𝐻11
𝑠 𝐻12

𝑠 0

𝐻21
𝑠 𝐻22

𝑠 0

0 0 𝐻66
𝑠
]

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑦2

−2
𝜕𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

]
 
 
 
 
 
 
 

 

(30) 

 

(1 − 𝜇2∇2) {
𝑄𝑥
𝑄𝑦
} = (1 − 𝜆2∇2)

[
 
 
 
 

[
𝐴44
𝑠 0

0 𝐴55
𝑠 ]

{
 

 
𝜕𝑤𝑠
𝜕𝑥
𝜕𝑤𝑠
𝜕𝑦 }

 

 

]
 
 
 
 

 (31) 

 

In the aforesaid equations the cross sectional rigidities 

are given as follow 

 

{

𝐴11 𝐵11 𝐵11
𝑠    

𝐴12 𝐵12 𝐵12
𝑠    

𝐴66 𝐵66 𝐵66  
𝑠  

𝐷11 𝐷11
𝑠 𝐻11

𝑠

𝐷12 𝐷12
𝑠 𝐻12

𝑠

𝐷66 𝐷66
𝑠 𝐻66

𝑠
}

= ∫[1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧)]
𝐸(𝑧)

1 − 𝜈2
{
1
𝜈

1 − 𝜈
} 𝑑𝐴

𝐴

 

(32a) 

 
(𝐴22   𝐵22   𝐵22

𝑠    𝐷22   𝐷22
𝑠    𝐻22

𝑠 ) 
= (𝐴11   𝐵11   𝐵11

𝑠    𝐷11   𝐷11
𝑠    𝐻11

𝑠 ) 
(32b) 

 

𝐴44
𝑠 = 𝐴55

𝑠 ∫ 𝑔2(𝑧)𝐺(𝑧)𝑑𝐴

𝐴

 (32c) 

 

where  𝐺(𝑧) =
𝐸(𝑧)

2(1 + 𝜈)
. 

By coupling above relations with Euler-Lagrange 

equations can be reached to the nonlocal governing 

equations of FG porous nanoplate. For this goal, Eqs. (26)-

(29) are superseded in Eqs. (22)-(25) and the governing 

equations can be obtained as 

 

(1 − 𝜆2∇2)

(

 
 
 
 
𝐴11

𝜕2𝑢0
𝜕𝑥2

+ 𝐴66
𝜕2𝑢0
𝜕𝑦2

+ (𝐴12 + 𝐴66)
𝜕2𝑣0
𝜕𝑥𝜕𝑦

−𝐵11
𝜕3𝑤𝑏
𝜕𝑥3

− (𝐵12 + 2𝐵66)
𝜕3𝑤𝑏
𝜕𝑥𝜕𝑦2

−𝐵11
𝑠
𝜕3𝑤𝑠
𝜕𝑥3

− (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑤𝑠
𝜕𝑥𝜕𝑦2 )

 
 
 
 

 

+(1 − 𝜇2∇2) (−𝐼0𝑢̈0 + 𝐼1
𝜕𝑤̈𝑏
𝜕𝑥

+ 𝐽1
𝜕𝑤̈𝑠
𝜕𝑥

) = 0 

(33) 

 

 

(1 − 𝜆2∇2)

(

 
 
 
 
𝐴22

𝜕2𝑣0
𝜕𝑦2

+ 𝐴66
𝜕2𝑣0
𝜕𝑥2

+ (𝐴12 + 𝐴66)
𝜕2𝑢0
𝜕𝑥𝜕𝑦

−𝐵22
𝜕3𝑤𝑏
𝜕𝑦3

− (𝐵12 + 2𝐵66)
𝜕3𝑤𝑏
𝜕𝑥2𝜕𝑦

−𝐵22
𝑠
𝜕3𝑤𝑠
𝜕𝑦3

− (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑤𝑠
𝜕𝑥2𝜕𝑦 )

 
 
 
 

 

+(1 − 𝜇2∇2) (−𝐼0𝑣̈0 + 𝐼1
𝜕𝑤̈𝑏
𝜕𝑦

+ 𝐽1
𝜕𝑤̈𝑠
𝜕𝑦

) = 0 

(34) 

 

 

(1 − 𝜆2∇2)

(

 
 
 
 
 
 
 
 
 

𝐵11
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12 + 2𝐵66)
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+𝐵22
𝜕3𝑣0
𝜕𝑦3

+ (𝐵12 + 2𝐵66)
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

−𝐷11
𝜕4𝑤𝑏
𝜕𝑥4

− 2(𝐷12 + 2𝐷66)
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

−𝐷22
𝜕4𝑤𝑏
𝜕𝑦4

− 𝐷11
𝑠
𝜕4𝑤𝑠
𝜕𝑥4

−2(𝐷12
𝑠 + 2𝐷66

𝑠 )
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

− 𝐷22
𝑠
𝜕4𝑤𝑠
𝜕𝑦4 )

 
 
 
 
 
 
 
 
 

 

+(1 − 𝜇2∇2)

(

 
 
−𝐼0(𝑤̈𝑏 + 𝑤̈𝑠) − 𝐼1 (

𝜕𝑢̈0
𝜕𝑥

+
𝜕𝑣̈0
𝜕𝑦
)

+𝐼2∇
2𝑤̈𝑏 + 𝐽2∇

2𝑤̈𝑠
−𝑁𝑇∇2(𝑤𝑏 +𝑤𝑠) )

 
 
= 0 

(35) 

 

 

(1 − 𝜆2∇2)

(

 
 
 
 
 
 
 
 
 
 
 
 

𝐵11
𝑠
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+𝐵22
𝑠
𝜕3𝑣0
𝜕𝑦3

+ (𝐵12
𝑠 + 2𝐵66

𝑠 )
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

−𝐷11
𝑠
𝜕4𝑤𝑏
𝜕𝑥4

− 2(𝐷12
𝑠 + 2𝐷66

𝑠 )
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

−𝐷22
𝑠
𝜕4𝑤𝑏
𝜕𝑦4

−𝐻11
𝑠
𝜕4𝑤𝑠
𝜕𝑥4

−2(𝐻12
𝑠 + 2𝐻66

𝑠 )
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

−𝐻22
𝑠
𝜕4𝑤𝑠
𝜕𝑦4

+ 𝐴44
𝑠 ∇2𝑤𝑠 )

 
 
 
 
 
 
 
 
 
 
 
 

 

+(1 − 𝜇2∇2)

(

 
 
−𝐼0(𝑤̈𝑏 + 𝑤̈𝑠) − 𝐽1 (

𝜕𝑢̈0
𝜕𝑥

+
𝜕𝑣̈0
𝜕𝑦
)

+𝐽2∇
2𝑤̈𝑏 + 𝐾2∇

2𝑤̈𝑠
−𝑁𝑇∇2(𝑤𝑏 +𝑤𝑠) )

 
 
= 0 

(36) 
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3. Solution procedure 
 

Exponential solution functions are assumed for 

displacement fields to solve the wave propagation of porous 

nanoplate with porosity analytically which are given in the 

following form 

 

𝑢0 = 𝑈𝑒
𝑖(𝑘1𝑥+𝑘2𝑦−𝜔𝑡) (37a) 

 

𝑣0 = 𝑉𝑒
𝑖(𝑘1𝑥+𝑘2𝑦−𝜔𝑡) (37b) 

 

𝑤𝑏 = 𝑊𝑏𝑒
𝑖(𝑘1𝑥+𝑘2𝑦−𝜔𝑡) (37c) 

 

𝑤𝑠 = 𝑊𝑠𝑒
𝑖(𝑘1𝑥+𝑘2𝑦−𝜔𝑡) (37d) 

 

where U, V ; Wb and Ws denote the coefficients of wave 

amplitude, 𝑘1, 𝑘2 and ω indicate the wave numbers of 

wave dispersion along x and y directions and natural 

frequency, respectively. 

By substituting Eqs. (35a)-(35d) into Eqs. (31)-(34) the 

eigenvalue equation can be obtained as 

 

([𝐾]4×4 −𝜔
2[𝑀]4×4) [

𝑈
𝑉
𝑊𝑏

𝑊𝑠

] = 0 (38) 

 

in which K and M are stiffness and mass matrices, 

respectively. In order to obtain natural frequency of an 

eigenvalue problem, the following determinant must be set 

to zero, afterward wave frequency and phase velocity of FG 

porous nanoscale plate can be attained. 

 
|[𝐾 − 𝜔2𝑀]4×4| = 0 (39) 

 

By setting 𝑘1 = 𝑘2 = 𝑘 , the phase velocities of FG 

porous nanoplate can be expressed such as below 

 

𝑐𝑝 =
𝜔

𝑘
 (40) 

 

Moreover, the escape frequency of FG nanoplate can be 

derived by setting 𝛽 → ∞. Actually, it is obvious that the 

flexural waves won’t propagate anymore after the escape 

frequency. 

 

 

 

 

 

 

Fig. 1 Geometry of FG nanoplate 

4. Numerical results and discussion 
 
NSGT is extended for wave propagation analysis of FG 

porous nanoscale plate in a thermal environment. Moreover, 

the thickness of nanoplate which is illustrated in Fig. 1 is 

regarded as h = 100 nm. Also, a relative dimensionless size-

dependent coefficient is presented for the sake of simplicity 

as 

𝑐 =
𝜆

𝜇
 (41) 

 

where c is scale factor which will be utilized in the 

following illustrations. The validity of the proposed 

nonlocal strain gradient based plate model can be seen in 

the Fig. 2. In this diagram, the variation of the 

dimensionless natural frequency of a double nanoplate 

system against length scale parameter is drawn in order to 

show the accuracy of the presented methodology. As can be 

seen, answers achieved from our modeling are in an 

excellent agreement with those reported by Barati and 

Shahverdi (2017). 

Fig. 3 indicates porosity coefficient effect on variation 

of phase velocity of porous nanoplate versus wave number 

for various gradient indices at ΔT = 100, c > 1. It is clear 

that by rising amount of wave number, the phase velocities 

of nanoplate increase. Furthermore, gradient index has 

decreasing effect such a way that in constant wave number 

and porosity coefficient, the highest phase velocity happens 

in the least gradient index and whenever gradient index is 

enlarged, the phase velocity is decreased. As can be seen, 

porosity has a notable effect on phase velocity. Also, in 

every gradient index, pure nanoplate possesses greater value 

than porous nanoplate. The reason for this behavior is that 

porosity makes nanostructure weaker. 

 

 

 

 

Fig. 2 Comparison of the natural frequency responses of FG 

double nanoplate systems with those presented in a 

formerly published paper by Barati and Shahverdi 

(2017) once a/h = 10, p = 1, and µ = 0.2 
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Fig. 3 Variation of phase velocity of porous nanoplate 

versus wave number for various gradient indices and 

porosity coefficients (ΔT = 100, c > 1) 

 

 

 

Fig. 4 The effect of porosity coefficient on variation of 

phase velocity versus wave number for various 

temperature differences (p = 2, c > 1) 

 

 
The both effect of porosity coefficient and temperature 

change on variation of phase velocity versus wave number 

is shown in Fig. 4 at p = 2, c > 1. It can be inferred that the 

phase velocity has an inverse relation with temperature 

change and porosity coefficient. In constant porosity 

coefficient, by rising temperature change phase velocity of 

nanoplate is declined and this because of that stiffness of 

nanostructure decreases. Similar Fig. 2, by rising wave 

number and porosity coefficient, phase velocity value 

increases and decreases, respectively. 

Variation of phase velocity versus wave number 

considering scale factors and porosity coefficients 

influences is demonstrated in Fig. 5 at ΔT = 100, p = 2. It 

can be observed obviously that in constant porosity 

coefficient, there are three different trends for phase 

velocity because of various scale factors. Once c > 1, the 

trend of diagram is ascending and phase velocity of 

nanoplate increases gradually. Once c = 1, at first, by rising 

wave number until k < 0.1 (1/nm) phase velocity increases 

and after k = 0.1 (1/nm) phase velocity remains at a 

constant value. The trend of c < 1 differs from others. In 

other word, after a gradual increase, the trend is descending 

and an increase in wave number resulted in a decrease in 

the amount of phase velocity. Plus, pure and porous 

diagrams have a same trend with a difference in amount of 

phase velocity which higher phase velocity happens in pure 

diagrams. 
 

 

 

Fig. 5 Illustration of variation of phase velocity versus 

wave number for different scale factors and 

porosity coefficients (ΔT = 100, p = 2) 
 

 

 

Fig. 6 Variation of wave frequency of porous nanoplate 

versus wave number for various scale factors and 

porosity coefficients (p = 2, ΔT = 100) 
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Fig. 6 reveals an illustration of variation of wave 

frequency versus wave number for different scale factors 

and porosity coefficients at p = 2, ΔT = 100. According to 

this diagram, it can be inferred that whenever wave number 

raises, wave frequency enlarges with a slight slope and 

gradually, in higher wave numbers, wave frequency 

increases with a steep slope. In addition, wave frequency 

can be intensified while scale factor is assumed to be 

greater than one. As same as mentioned point about porosity 

effect in previous figures, in this diagram, the porosity has 

decreasing influence on amount of wave frequency. 

The influence of temperature change on variation of 

wave frequency of nanoplate versus wave number for 

different porosity coefficients is depicted in Fig. 7 at p = 2, 

 

 

 

Fig. 7 Both effect of temperature differences and porosity 

coefficient on wave frequency of porous nanoplate 

versus wave number (p = 2, c < 1) 

 

 

 

Fig. 8 Variation of escape frequency versus gradient 

index for different temperature differences and 

porosity coefficients (c > 1) 

c < 1. The trend of this figure is similar to Fig. 6 and wave 

frequency has an uptrend. As can be seen, due to all 

diagrams are approximately same, the magnifier has been 

used in order to show more detail and clarify the effects of 

each parameter. Based on magnifying diagram, both 

temperature change and porosity coefficient possess 

decreasing effect. On the other hand, by rising temperature 

change while porosity coefficient is constant, wave 

frequency of nanoplate is lessened. 

Variation of escape frequency versus gradient index for 

various temperature change and porosity coefficients is 

plotted in Fig. 8 at c > 1. In this diagram, magnifier can 

help us to realize better the effect of temperature change 

and porosity. It is obvious that both pure and porous 

material follow same trend. A decrease with a steep slope at 

first can be reported for pure and porous material and then 

every diagram leads to a constant value. The stiffness of 

nanoscale plate decreases owing to increase of the 

temperature change and porosity coefficient and because of 

that, the highest escape frequency is observed in pure 

material with low temperature change. 

 

 

5. Conclusions 
 

Wave dispersion of FG nanoscale plate in thermal 

environment considering porosity effect within the 

frameworks of a newly developed porosity-dependent 

homogenization technique by applying a refined plate 

theory is explored. NSGT is used to account for small scale 

effect and Hamilton’s principle is employed in order to 

derive governing equation. Herein, the most important 

remarks are presented in review: 

 

● The porosity has a remarkable effect on behavior of 

structure and also it must be regarded in design and 

analysis. 

● The newly developed porosity homogenization 

method can cover better than conventional porosity-

dependent homogenization methods by taking into 

account the coupling effects between Young’s 

modulus and mass density. 

●  Thermal environment has decreasing influence on 

natural frequency of FG porous nanoplate. 

● The wave frequency and phase velocity can be 

intensified by assuming a high value for scale factor. 

 

 

References 
 
Aydogdu, M. and Taskin, V. (2007), “Free vibration analysis of 

functionally graded beams with simply supported edges”, Mater. 

Des., 28(5), 1651-1656. 

https://doi.org/10.1016/j.matdes.2006.02.007 

Azadi, M. (2011), “Free and forced vibration analysis of fg beam 

considering temperature dependency of material properties”, J. 

Mech. Sci. Technol., 25(1), 69-80. 

https://doi.org/10.1007/s12206-010-1015-y 

Barati, M.R. (2017), “On wave propagation in nanoporous 

materials”, Int. J. Eng. Sci., 116, 1-11. 

https://doi.org/10.1016/j.ijengsci.2017.03.007 

Barati, M.R. (2018), “A general nonlocal stress-strain gradient 

333



 

Farzad Ebrahimi, Ali Seyfi and Ali Dabbagh 

theory for forced vibration analysis of heterogeneous porous 

nanoplates”, Eur. J. Mech. - A/Solids, 67, 215-230. 

https://doi.org/10.1016/j.euromechsol.2017.09.001 

Barati, M.R. and Shahverdi, H. (2017), “Hygro-thermal vibration 

analysis of graded double-refined-nanoplate systems using 

hybrid nonlocal stress-strain gradient theory”, Compos. Struct., 

176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004 

Chen, H., Wang, A., Hao, Y. and Zhang, W. (2017), “Free vibration 

of fgm sandwich doubly-curved shallow shell based on a new 

shear deformation theory with stretching effects”, Compos. 

Struct., 179, 50-60. 

https://doi.org/10.1016/j.compstruct.2017.07.032 

Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), “Size 

dependent free vibration analysis of nanoplates made of 

functionally graded materials based on nonlocal elasticity theory 

with high order theories”, Int. J. Eng. Sci., 95, 23-35. 

https://doi.org/10.1016/j.ijengsci.2015.05.011 

Ebrahimi, F. and Barati, M.R. (2017), “A nonlocal strain gradient 

refined beam model for buckling analysis of size-dependent 

shear-deformable curved fg nanobeams”, Compos. Struct., 159, 

174-182. https://doi.org/10.1016/j.compstruct.2016.09.058 

Ebrahimi, F. and Dabbagh, A. (2017), “On flexural wave 

propagation responses of smart fg magneto-electro-elastic 

nanoplates via nonlocal strain gradient theory”, Compos. Struct., 

162, 281-293. 

https://doi.org/10.1016/j.compstruct.2016.11.058 

Ebrahimi, F. and Haghi, P. (2017), “Wave propagation analysis of 

rotating thermoelastically-actuated nanobeams based on nonlocal 

strain gradient theory”, Acta Mechanica Solida Sinica, 30(6), 

647-657. https://doi.org/10.1016/j.camss.2017.09.007 

Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), “A nonlocal 

strain gradient theory for wave propagation analysis in 

temperature-dependent inhomogeneous nanoplates”, Int. J. Eng. 

Sci., 107, 169-182. 

https://doi.org/10.1016/j.ijengsci.2016.07.008 

Ebrahimi, F., Ghasemi, F. and Salari, E. (2016b), “Investigating 

thermal effects on vibration behavior of temperature-dependent 

compositionally graded euler beams with porosities”, 

Meccanica, 51(1), 223-249. 

https://doi.org/10.1007/s11012-015-0208-y 

Ebrahimi, F., Barati, M.R. and Haghi, P. (2017a), “Thermal effects 

on wave propagation characteristics of rotating strain gradient 

temperature-dependent functionally graded nanoscale beams”, J. 

Thermal Stress., 40(5), 535-547. 

https://doi.org/10.1080/01495739.2016.1230483 

Ebrahimi, F., Jafari, A. and Barati, M.R. (2017b), “Vibration 

analysis of magneto-electro-elastic heterogeneous porous 

material plates resting on elastic foundations”, Thin-Wall. Struct., 

119, 33-46. https://doi.org/10.1016/j.tws.2017.04.002 

Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2018a), “Wave 

propagation in embedded inhomogeneous nanoscale plates 

incorporating thermal effects”, Waves Random Complex Media, 

28(2), 215-235. 

https://doi.org/10.1080/01495739.2016.1230483 

Ebrahimi, F., Barati, M.R. and Haghi, P. (2018b), “Wave 

propagation analysis of size-dependent rotating inhomogeneous 

nanobeams based on nonlocal elasticity theory”, J. Vib. Control, 

24(17), 3809-3818. https://doi.org/10.1177/1077546317711537 

Ebrahimi, F., Dehghan, M. and Seyfi, A. (2019a), “Eringen’s 

nonlocal elasticity theory for wave propagation analysis of 

magneto-electro-elastic nanotubes”, Adv. Nano Res., Int. J., 7(1), 

1-11. https://doi.org/10.12989/anr.2019.7.1.001 

Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019b), “A novel 

porosity-dependent homogenization procedure for wave 

dispersion in nonlocal strain gradient inhomogeneous 

nanobeams”, Eur. Phys. J. Plus, 134(5), 226. 

https://doi.org/10.1140/epjp/i2019-12547-8 

Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), 

“Modified porosity model in analysis of functionally graded 

porous nanobeams”, J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. 

https://doi.org/10.1007/s40430-018-1065-0 

Fan, Y., Xiang, Y. and Shen, H.-S. (2018), “Nonlinear forced 

vibration of fg-grc laminated plates resting on visco-pasternak 

foundations”, Compos. Struct., 209, 443-452. 

https://doi.org/10.1016/j.compstruct.2018.10.084 

Fuschi, P., Pisano, A.A. and Polizzotto, C. (2019), “Size effects of 

small-scale beams in bending addressed with a strain-difference 

based nonlocal elasticity theory”, Int. J. Mech. Sci., 151, 661-

671. https://doi.org/10.1016/j.ijmecsci.2018.12.024 

Ghayesh, M.H. and Farajpour, A. (2018), “Nonlinear mechanics of 

nanoscale tubes via nonlocal strain gradient theory”, Int. J. Eng. 

Sci., 129, 84-95. https://doi.org/10.1016/j.ijengsci.2018.04.003 

Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, 

E.A.A. (2014), “New quasi-3d hyperbolic shear deformation 

theory for the static and free vibration analysis of functionally 

graded plates”, J. Eng. Mech., 140(2), 374-383. 

https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665 

Hosseini, S. and Rahmani, O. (2016), “Free vibration of shallow 

and deep curved fg nanobeam via nonlocal timoshenko curved 

beam model”, Appl. Phys. A, 122(3), 169. 

https://doi.org/10.1007/s00339-016-9696-4 

Keleshteri, M., Asadi, H. and Wang, Q. (2017), “Large amplitude 

vibration of fg-cnt reinforced composite annular plates with 

integrated piezoelectric layers on elastic foundation”, Thin-Wall. 

Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035 

Li, L., Hu, Y. and Ling, L. (2015), “Flexural wave propagation in 

small-scaled functionally graded beams via a nonlocal strain 

gradient theory”, Compos. Struct., 133, 1079-1092. 

https://doi.org/10.1016/j.compstruct.2015.08.014 

Lu, L., Guo, X. and Zhao, J. (2019), “A unified size-dependent 

plate model based on nonlocal strain gradient theory including 

surface effects”, Appl. Math. Model., 68, 583-602. 

https://doi.org/10.1016/j.apm.2018.11.023 

Lv, Z., Qiu, Z., Zhu, J., Zhu, B. and Yang, W. (2018), “Nonlinear 

free vibration analysis of defective fg nanobeams embedded in 

elastic medium”, Compos. Struct., 202, 675-685. 

https://doi.org/10.1016/j.compstruct.2018.03.068 

Mahinzare, M., Jannat Alipour, M., Sadatsakkak, S.A. and 

Ghadiri, M. (2019), “A nonlocal strain gradient theory for 

dynamic modeling of a rotary thermo piezo electrically actuated 

nano fg circular plate”, Mech. Syst. Signal Process., 115, 323-

337. https://doi.org/10.1016/j.ymssp.2018.05.043 

Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A.M. 

S. (2019), “Transient response of porous fg nanoplates subjected 

to various pulse loads based on nonlocal stress-strain gradient 

theory”, Eur. J. Mech. - A/Solids, 74, 210-220. 

https://doi.org/10.1016/j.euromechsol.2018.11.004 

Mohammadi, M., Mohseni, E. and Moeinfar, M. (2019), 

“Bending, buckling and free vibration analysis of incompressible 

functionally graded plates using higher order shear and normal 

deformable plate theory”, Appl. Math. Model., 69, 47-62. 

https://doi.org/10.1016/j.apm.2018.11.047 

Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel Wahab, 

M. (2019), “Porosity-dependent nonlinear transient responses of 

functionally graded nanoplates using isogeometric analysis”, 

Compos. Part B: Eng., 164, 215-225. 

https://doi.org/10.1016/j.compositesb.2018.11.036 

Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and 

Safarpour, H. (2019), “Effect of porosity on free and forced 

vibration characteristics of the gpl reinforcement composite 

nanostructures”, Comput. Math. Appl., 77(10), 2608-2626. 

https://doi.org/10.1016/j.camwa.2018.12.041 

Sahmani, S. and Aghdam, M.M. (2018), “Nonlocal strain gradient 

shell model for axial buckling and postbuckling analysis of 

334



 

Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment 

magneto-electro-elastic composite nanoshells”, Compos. Part B: 

Eng., 132, 258-274. 

https://doi.org/10.1016/j.compositesb.2017.09.004 

Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), “A 

novel quasi-3d hyperbolic theory for free vibration of fg plates 

with porosities resting on winkler/pasternak/kerr foundation”, 

Aerosp. Sci. Technol., 72, 134-149. 

https://doi.org/10.1016/j.ast.2017.11.004 

Shojaeian, M., Beni, Y.T. and Ataei, H. (2016), “Electro-

mechanical buckling of functionally graded electrostatic 

nanobridges using strain gradient theory”, Acta Astronautica, 

118, 62-71. https://doi.org/10.1016/j.actaastro.2015.09.015 

Şimşek, M. (2016), “Nonlinear free vibration of a functionally 

graded nanobeam using nonlocal strain gradient theory and a 

novel hamiltonian approach”, Int. J. Eng. Sci., 105, 12-27. 

https://doi.org/10.1016/j.ijengsci.2016.04.013 

Şimşek, M. and Reddy, J. (2013), “Bending and vibration of 

functionally graded microbeams using a new higher order beam 

theory and the modified couple stress theory”, Int. J. Eng. Sci., 

64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002 

Tan, Z.-Q. and Chen, Y.-C. (2019), “Size-dependent electro-

thermo-mechanical analysis of multilayer cantilever 

microactuators by joule heating using the modified couple stress 

theory”, Compos. Part B: Eng., 161, 183-189. 

https://doi.org/10.1016/j.compositesb.2018.10.067 

Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. 

(2017), “Nonlinear dynamic response and vibration of 

functionally graded carbon nanotube-reinforced composite (fg-

cntrc) shear deformable plates with temperature-dependent 

material properties and surrounded on elastic foundations”, J. 

Thermal Stress., 40(10), 1254-1274. 

https://doi.org/10.1080/01495739.2017.1338928 

Zeighampour, H., Tadi Beni, Y. and Botshekanan Dehkordi, M. 

(2018), “Wave propagation in viscoelastic thin cylindrical 

nanoshell resting on a visco-pasternak foundation based on 

nonlocal strain gradient theory”, Thin-Wall. Struct., 122, 378-

386. https://doi.org/10.1016/j.tws.2017.10.037 

Zeng, S., Wang, B.L. and Wang, K.F. (2019), “Nonlinear vibration 

of piezoelectric sandwich nanoplates with functionally graded 

porous core with consideration of flexoelectric effect”, Compos. 

Struct., 207, 340-351. 

https://doi.org/10.1016/j.compstruct.2018.09.040 

Zok, F.W. and Levi, C.G. (2001), “Mechanical properties of 

porous‐matrix ceramic composites”, Adv. Eng. Mater., 3(1‐2), 

15-23.  

https://doi.org/10.1002/1527-2648(200101)3:1/2<15::AID-

ADEM15>3.0.CO;2-A 

 

 

CC 

 

335




