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1. Introduction 

 

Nowadays, a large number of microstructural systems 

used in modern technology components and devices are 

manufactured as nano-scale, so called “Nanotechnology” 

that is becoming increasingly important on account of their 

many advantages for example in nanomechanics, 

nanoelectronics, nanophotonics, medical instruments and 

solar cells. Recently, the nanoscale engineering materials 

become a great interest field of research inspirations in 

advanced Nanotechnology and the major restriction and 

implication of this branch is the ways in which mechanical 

behavior is described correctly of such materials (Akgoz 

and Civalek 2013, Kolahchi and Moniri Bidgoli 2016, Arani 

and Kolahchi 2016, Tahouneh 2016, Madani et al. 2016, 

Bilouei et al. 2016, Zamanian et al. 2017, Barati 2017, 

Kolahchi and Cheraghbak 2017, Kolahchi 2017, 

Hajmohammad et al. 2017, 2018a, b, c, Numanoğlu et al. 

2018, Amnieh et al. 2018, Youcef et al. 2018, Golabchi et 

al. 2018, Karami et al. 2017, 2018a, b, c, d, 2019a, b, c, 

Hosseini and Kolahchi 2018, Fu et al. 2018, Gupta et al. 

2018, Rahaeifard et al. 2009, Farajpour et al. 2019, Hussain 
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and Naeem 2019, Emdadi et al. 2019, Boutaleb et al. 2019). 

As such, several size-dependent continuum models have 

been formulated and investigated to predict the mechanical 

behaviors of this kind of structures by including the small-

scale effects. In fact, investigations from earlier studies 

have been mostly focused on three size-dependent 

continuum theories: nonlocal elasticity, modified couple 

stress and modified strain gradient theories. Based on 

modified strain gradient theory, the strain energy is usually 

included three additional gradients: the dilatation gradient, 

deviatoric stretch gradient and the symmetric curvature. The 

most well-known applications of this theory are reported by 

Nix and Gao (1998) and Lam et al. (2003). In broad terms, 

modified couple stress  can be founded by introducing the 

symmetric curvature tensor representing as conjugate to 

micro-rotations in strain energy; Yang et al. (2002) have 

suggested and inspired this concept by modifying the 

classical couple stress given by Mindlin and Tiersten 

(1962), Toupin (1962) and Koiter (1969). In spite of all 

these theories mentioned above, the nonlocal elasticity 

theory is one of the most commonly used theories to 

investigate the small size effects on nanostructures 

mechanical behaviors. From conceptual theoretical 

frameworks of Eringen (1972), it should be noted that the 

classical elasticity of solid mechanics are applied to 

describe the stress tensor of a material point uniquely 

represented by the strain tensor at that same point; this 
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Hamilton’s principle. By using Navier’s method, analytical solutions for free vibration analysis are obtained through the results 

of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to 
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assumption omits the small-scale effect. Thus, this effect 

plays an important role on mechanical behaviors of nano-

size structures and should be taken into consideration. 

Alternatively, the nonlocal elasticity represents the stress 

tensor for a material point is given by the strain tensor of all 

material points in nanostructures. A good review is 

available for these theories and theirs related mechanical 

models in Thai et al. (2017). On the other hand, 

functionally graded materials are considered as new class of 

advanced composite materials with improved mechanical 

proprieties. These mechanical properties are varied 

continuously and smoothly through the thickness 

coordinate. By this way, the influence of stress concen-

tration are eliminated and reduced in interfaces contrary to 

laminated composites. Moreover, a large-scale utilization of 

FGMs has accelerated their implementation in diverse 

engineering systems and applications at the macroscopic 

level (Avcar 2019, Meksi et al. 2019, She et al. 2018, Attia 

et al. 2018, Fakhar and Kolahchi 2018, Bourada et al. 2018, 

Avcar and Mohammed 2018, Zine et al. 2018, Bouhadra et 

al. 2018, Sekkal et al. 2017a, b, Abdelaziz et al. 2017, 

Mouffoki et al. 2017, Kolahchi et al. 2016a, b, 2017a, b, c, 

d, Bellifa et al. 2017a, b, Zidi et al. 2017, Benadouda et al. 

2017, Barati and Shahverdi 2016, Beldjelili et al. 2016, 

Benferhat et al. 2016, Ahouel et al. 2016, Bounouara et al. 

2016, Bousahla et al. 2016, Belkorissat et al. 2015, Mahi et 

al. 2015, Panda and Katariya 2015, Avcar 2015, Hamidi et 

al. 2015, Belabed et al. 2014, Ahmed 2014). Recently, 

FGMs have become a broad and most important class of 

advanced materials in a wide variety of nanotechnology 

applications, as novel high-performance materials. 

Including their high-performance utilization rates, FGMs 

have been provided quantitative evidence of various 

applications in the main workhorse of electronics and nano-

electromechanical industries such as semiconductors, 

microchips and commercial MEMS and NEMS devices 

(Witvrouw and Mehta 2005, Hasanyan et al. 2008, 

Mohammadi-Alasti et al. 2011, Lee et al. 2011, Zhang and 

Fu 2012), thin films in the form of shape memory alloys (Fu 

et al. 2003, Lu et al. 2007), and atomic force microscopes 

(AFMs) to achieve high sensitivity and desired performance 

(Rahaeifard et al. 2009). In similarity to above applications, 

the effects of small scale also have studied experimentally 

in many researches (Fleck et al. 1994, Stolken and Evans 

1998, Chong et al. 2001, Lam et al. 2003). Concludes that 

tremendous benefits can possess over from their micron- or 

nano-scale dimensions of thus structures, the significant of 

these factors on the mechanical properties such as Young’s 

modules, Poisson’s ratio and mass density, can also be size-

dependency. 

Furthermore, a wide range of studies has been carried 

out to investigate the mechanical modeling of size-

dependent nanoplate structures. Chakraverty and Behera 

(2015) investigated the effects of various parameters on free 

vibration analysis of nanoplates by using classical 

(Kirchhoff) plate theory and nonlocal elasticity theory. 

Bessaim et al. (2015) proposed a nonlocal quasi-3D 

trigonometric plate theory for free vibration behaviour of 

micro/nanoscale plates. This model considers both shear 

deformation and thickness stretching effects. Belkorissat et 

al. (2015) presented a new nonlocal hyperbolic refined plate 

model to study the vibration properties of functionally 

graded nanoplates. Daneshmehr et al (2015) used a higher 

order shear deformation plate theory and GDQ method to 

predict natural frequencies of functionally graded 

nanoplates by applying the Eringen’s nonlocal theory. Zare 

et al. (2015) analyzed the natural frequencies of a 

functionally graded nanoplate with different boundary 

conditions. Bounouara et al. (2016) presented a zeroth-

order shear deformation theory for free vibration analysis of 

functionally graded (FG) nanoscale plates, the equations of 

motion are obtained by using the nonlocal differential 

constitutive expressions of Eringen in conjunction with the 

zeroth-order shear deformation theory via Hamilton’s 

principle. A four-variable plate theory based on nonlocal 

elasticity theory is developed and explored to study free 

vibrations of nanoplates in the thermal environments by 

Barati and Shahverdi (2016). Kiani et al. (2017) assessed 

the influence of both in-plane and out-of-plane elastic 

waves on the frequencies of nanoplates immersed in 

bidirectional magnetic fields, the equations of motion are 

formulated by nonlocal continuum theory of Eringen. 

Moreover, a detailed analysis is communicated to present 

the effects of small scale on exponentially graded 

nanoplates under hygro-thermo-mechanical loads (Sobhy 

2017). In this study, the Eringen’s differential form of 

nonlocal elasticity theory is adopted to derive governing 

equations for four-unknowns shear deformation plate 

model. Besseghier et al. (2017) discussed the influence of 

various parameters on free vibration analysis of nanoplates 

via a novel nonlocal refined trigonometric shear 

deformation theory. Ebrahimi and Heidari (2018) employed 

the Eringen’s nonlocal elasticity theory in conjunction with 

surface elasticity theory to study linear and nonlinear free 

vibration behavior of FG nanoplates using Reddy’s plate 

theory and generalized differential quadrature method. 

Hosseini-Hashemi and Khaniki (2018) presented a three 

dimensional dynamic simulation based on Eringen’s 

nonlocal theory of functionally graded nanoplates under a 

moving load. In this work, Galerkin, state space and fourth-

order Runge-Kutta methods are employed to solve the 

governing equations. Rong et al. (2018) proposed a new 

analytical approach to various mechanical problems in free 

vibration, buckling and forced vibration of Kirchhoff 

rectangular nanoplates based on Eringen’s nonlocal 

elasticity theory. More recently and for better understanding 

the small scale effect on mechanical behaviors of FG 

nanoplates, Sobhy and Radwan (2017) developed a new 

quasi-3D nonlocal hyperbolic plate theory to analysis both 

vibrat on and buckling problems using Eringen’s nonlocal 

theory, and proved that small scale effect is non-trivial and 

needs to be taken into consideration in order to study the 

mechanical behaviors of nanoplates for wide nanotech-

nology applications. Karami and Karami (2019) presented a 

recent buckling analysis of nanoplate-type temperature-

dependent heterogeneous materials. 

This study has two key aims. Firstly, the free vibration 

analysis is investigated for FG nanoplates by development 

of new 2D and quasi-3D nonlocal plate theories. Both 

theories describe a new description of displacement field, 
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which includes undetermined integral terms. A hyperbolic 

variation is employed for all displacement parts across the 

thickness, which satisfies the stress-free boundary 

conditions on the upper and lower surfaces of the plate 

without requiring any shear correction factor. The equations 

of motion and boundary conditions are derived from 

Hamilton’s principle. The Navier’s method is adopted to 

derive the closed form solutions for simply supported FG 

nanoplates. Various numerical examples are presented and 

compared to those reported in the literature. The second part 

discusses the effect of small sca 

le on free vibration of FG nanoplates based on 

parametrical studies such as nonlocal parameter, power 

index, nanoplate thickness and side to thickness ratio on 

size dependent frequency. Finally, the present results show 

the impact of small scale on free vibration response of 

nanoplaes and can be more useful for processing and design 

of nano-electro-mechanical devices, nanooscillators, and 

nanosensors. 

 

 

2. Theoretical formulation 
 

2.1 Constitutive equations 
 

As mentioned above, the material properties of FG 

plates are assumed to vary continuously through the 

thickness and are dependent on the volume fraction of 

inclusions. The distribution of material properties is 

assumed to obey the power-law distribution as follows 

(Belabed et al. 2014, Bousahla et al. 2014, Meziane et al. 

2014, Bourada et al. 2015, Yahia et al. 2015, Benahmed et 

al. 2017, Fahsi et al. 2017, Hachemi et al. 2017, Benchohra 

et al. 2018, Mehala et al. 2018, Fourn et al. 2018) 

 

 
p

mcmf
h

hz
VVVzV 







 


2

2
)(  (1) 

 

where p is the power law index; and the subscripts m and c 

represent the metallic and ceramic constituents, 

respectively. The Young’s modulus is given as 
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and the related Poisson’s ratio is assumed to be constant for 

convenience. The density 𝜌 is given as 
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2.2 Kinematics 
 

The displacement field of present theory is chosen to 

deduce a 2D and quasi 3D formulation for thick nanoplate 

problems and the following set of reduced number of 

unknowns are derived by these assumptions: (1) The 

transverse into extension, bending and undetermined 

integral terms; (2) the bending parts of the in-plane 

displacements are partitioned into bending and stretching 

parts; (3) the in-plane displacements are partitioned to those 

given by CPT ; and (4) the undetermined integral terms of 

the in-plane displacements give rise to hyperbolic variations 

of shear strains and hence to shear stresses through the 

thickness coordinate of the plate in such a way that the 

shear stresses vanished on the top and bottom surfaces of 

the plate. Based on these assumptions, the following 

displacement field relations can be obtained (Abualnour et 

al. 2018, Younsi et al. 2018, Boukhlif et al. 2019, Khiloun 

et al. 2019, Zaoui et al. 2019) 
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where u0 and v0 denote the displacements along the x and y 

coordinate directions of a point on the mid-plane of the 

plate; w0 is the bending part of the transverse displacement, 

respectively. The unknown  𝜃(𝑥, 𝑦, 𝑡)  presents the 

undetermined integral term. The coefficients k1 and k2 

depend on the geometry of plate. In this study, the shape 

function f(z) is chosen based on the hyperbolic function 

proposed by Belabed et al. (2018) as 
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In 2D case, the stretching effect presented by θz is 

neglected. The non-zero strains associated with the 

displacement field in Eq. (4) are 
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The integral terms used in this formulation shall be 

resolved by Navier’s method and can be expressed as 
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The coefficients A’ and B’ are derived from Navier’s 

method as 
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where, λ and μ are defined in Eq. (28). 

 

2.3 Equations of motion 
 

The equations of motion for nano-plates are derived 

using Hamilton’s principle. This principle can be stated in 

an analytical form as follows (Al-Basyouni et al. 2015, 

Larbi Chaht et al. 2015, Attia et al. 2015, Bennoun et al. 

2016, Boukhari et al. 2016, Draiche et al. 2016, Ait Atmane 

et al. 2017, Klouche et al. 2017, Bakhadda et al. 2018, Kaci 

et al. 2018, Adda Bedia et al. 2019, Bourada et al. 2019, 

Tlidji et al. 2019, Chaabane et al. 2019, Draoui et al. 2019) 

 

  
T

dtKU
0

0  
 

(11) 

 

where 𝛿𝑈 is the variation of strain energy and 𝛿𝐾 is the 

variation of kinetic energy. The variation of strain energy of 

the plate is given by 
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The variation of kinetic energy of the plate can be 

written in the form 
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Here the mass inertias (I0, I1, J1, I2, J2, K2, 𝐽1
𝑠, 𝐾2

𝑠) are 

defined as follows 
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Substituting the expressions for δU and δK from Eqs. 

(12) and (14) into Eq. (11) and integrating by parts, and 

collecting the coefficients of δu0, δv0, δw0, δθ and δθz, the 

governing partial differential equations are obtained as 

follows 
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2.4 The nonlocal elasticity model for FG nanoplate 
 

According to the nonlocal elasticity theory Eringen 

(1972), and as defined above, the nonlocal relationship 

between stress tensor components associated to the strain 

tensor components at each point x in the Hookean solid can 

be expressed as 

 

  )'()'(,')( xdxtxxx
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where tij(x’) are the components of the classical stress tensor 

at local point given as 
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Herein, α presents the nonlocal modulus or kernel 

function, which considers the influence of the strain at the 

point x’ in the elastic solid, |x′ ‒ x| is defined as the distance 

in Euclidean form, and η is a material constant given as 

follows 

l
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where l represents the relation of a characteristic internal 

length and a characteristic external length, e0 is considered 

as a material constant which evaluated experimentally. 

Eringen (1983) showed that the nonlocal constitutive 

equation given in integral form can be expressed in an 

equivalent differential form as (Heireche et al. 2008, 

Berrabah et al. 2013, Benguediab et al. 2014, Adda Bedia et 

al. 2015, Aissani et al. 2015, Zemri et al. 2015, Besseghier 

et al. 2015, Eltaher et al. 2016, Akbas 2016, Ebrahimi and 

Shaghaghi 2016, Khetir et al. 2017, Bouafia et al. 2017, 

Kadari et al. 2018, Bouadi et al. 2018, Mokhtar et al. 2018, 

Yazid et al. 2018, Bensattalah et al. 2018) 
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Hence, (e0a) is considered as nonlocal parameter, which 

presents the effects of small scale on mechanical responses 

of nanoplates. According to these definitions, the nonlocal 

linear constitutive relations of a FG nanoplate can be 

written as 
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In which ℓ = (e0a)2 where (ζx, ζy, ζz, ηyz, ηxz, ηxy) and (εx, 

εy, εz, γyz, γxz, γxy) are the stress and strain components, 

respectively. The computation of the elastic constants Cij are 

the plane stress reduced elastic constants, depend on which 

assumption of v, we consider. If εz = 0 then Cij are the plane 

stress reduced elastic constants, defined as 
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If εz ≠ 0 (thickness stretching), then Cij are the three-

dimensional elastic constants, given by 
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where 𝜆 𝑧 =
𝑣𝐸(𝑧)

 1−2𝑣 (1+𝑣)
and 𝜇 𝑧 = 𝐺 𝑧 =

𝐸(𝑧)

2(1+𝑣)
 are 

Lamé’s coefficients. The moduli E, G and the elastic 

coefficients Cij vary through the thickness according to Eq. 

(2). By substituting Eq. (6) into Eq. (21) and the subsequent 

results into Eq. (13), the stress resultants are readily 

obtained as 
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2.5 Equations of motion in terms of displacements 
 

Introducing Eq. (25) into Eq. (16), the equations of 

motion can be expressed in terms of displacements (δu0, 

δv0, δw0, δθ, δθz) and the appropriate equations take the 

form 
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where dij, dijl and dijlm are the following differential 

operators 
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2.6 Analytical solutions 
 

Consider a simply supported rectangular nanoplate with 

length a and width b. Based on the Navier’s solution 

method, the following expansions of displacements (u0, v0, 

w0, θ, θz) are assumed as (Hebali et al. 2014, Houari et al. 

2016) 
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(28) 

 

where Umn, Vmn, Wmn, Ξmn and Φmn unknown parameters 

must be determined, 𝜔 is the eigen-frequency associated 

with (m, n)th eigen-mode, λ = mπ/a and μ = mπ/b. 

Substituting Eq. (28) into Eq. (26), the analytical solutions 

can be obtained from the matrix-vector system 
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3. Results and discussion 
 

In order to assess the accuracy of proposed theories, the 

numerical results are presented and compared to verify and 

discuss the effects of small scale in predicting the natural 

frequencies of simply supported functionally graded 

nanoplates. The material properties of FG nanoplates used 

in current study are listed in Table 1. Dimensionless 

frequency is utilized as follow 
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The first case is performed for thick isotropic square 

nanoplates. This example aims to verify the effect of small 

 

 

Table 1 Material properties used in the FG nanoplate 

Properties Metal (aluminum) Ceramic (Alumina Al2O3) 

E (GPa) 70 380 

v 0.30 0.30 

ρ (kg/m3) 2702 3800 
 

 

 

scale on fundamental frequency for various modes; the 

obtained results are compared with those computed by other 

nanoplate theories such as the two-variable refined plate 

theory of Malekzadeh and Shojaee (2013), higher and 

quasi-3D hyperbolic plate theory solutions of Sobhy and 

Radwan (2017). Table 2 presents the computed non-

dimensional fundamental frequency. Obviously, Table 2 

shows that the computations obtained by the new proposed 

theories are in excellent agreement with those predicted by 

higher and quasi-3D plate theories for all modes of 

vibration. It should be noted that above-mentioned higher 

and quasi-3D theories use the same number of unknowns 

and the accuracy of proposed theories is marked by using a 

new description of displacement field. It is also marked that 

the non-local parameter is non-trivial and the non-

dimensional frequency becomes even worse when the 

nonlocal elasticity is omitted. Due to small-scale effect and 

as expected, as the non-local parameter increases, the non-

dimensional frequency continues to decrease for all modes 

of vibration. Thus, the nonlocal elasticity should be taken 

into account for information related to the small-scale 

length of nanoplates. 

Next FG nanoplates with various values of thickness 

ratio (a/h), nonlocal parameter μ and material index 

parameter are analysed, another situation will improve the 

efficiently of current theories. After inspection of Table 3, it 

is pertinent to note that the compared theory given by 

Sobhy and Radwan (2017) and the proposed theory is based 

on the same assumptions (in particular εz = 0) and number 

of unknowns. It is stated that the present theory solutions 

are correlated closely the obtained solutions of Sobhy and 

 

 

Table 2 Comparison of non-dimensional fundamental frequency 𝜔  of simply supported homogeneous square 

nanoplate 

a/h Mode μ2 

Theory 

Malekzadeh(a) Sobhy(b) Sobhy(b) Present Present 

εz = 0 εz = 0 εz ≠ 0 εz = 0 εz ≠ 0 

10 

(1,1) 

0 0.093029 0.093031 0.093228 0,093031 0.093228 

1 0.085016 0.085017 0.085197 0.085017 0.085197 

2 0.078771 0.078772 0.078939 0.078772 0.078939 

3 0.073726 0.073728 0.073884 0.073728 0.073884 

(2,2) 

0 0.340640 0.340649 0.342212 0.340649 0.342212 

1 0.254640 0.254643 0.255812 0.254643 0.255812 

2 0.212120 0.212114 0.213087 0.212114 0.213088 

3 0.167040 0.185599 0.186450 0.185599 0.186451 

(3,3) 

0 0.644000 0.688960 0.688998 0.688960 0.688998 

1 0.410490 0.410468 0.413491 0.410468 0.413492 

2 0.320550 0.320538 0.322898 0.320538 0.322899 

3 .271840 0.271858 0.273861 0.271858 0.273861 

20 (1,1) 

0 0.023864 0.023864 0.023895 0.023864 0.023895 

1 0.021808 0.021808 0.021837 0.021808 0.021837 

2 0.020206 0.020206 0.020233 0.020206 0.020233 

3 0.018912 0.018912 0.018937 0.018912 0.018937 
 

(a) Given by Malekzadeh and Shojaee (2013); (b) Given by Sobhy and Radwan (2017) 
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Table 3 Comparison of non-dimensional fundamental frequency 𝜔  of simply supported FG square nanoplate (εz = 0) 

a/h p 

Nonlocal parameter μ 

0 0.5 1 1.5 2 

Sobhy(a) Present Sobhy(a) Present Sobhy(a) Present Sobhy(a) Present Sobhy(a) Present 

5 

Ceramic 5,10702 5,10702 4,98549 4,98549 4,66713 4,66713 4,24976 4,24975 3,81763 3,81761 

1 3,01860 3,01765 2,94677 2,94580 2,75859 2,75768 2,51190 2,51110 2,25648 2,25575 

5 2,42443 2,42445 2,36674 2,36676 2,21560 2,21562 2,01747 2,01747 1,81232 1,81233 

Metal 2,11261 2,11262 2,06234 0,06234 1,93064 1,93065 1,75799 1,75799 1,57923 1,57924 

10 

Ceramic 1,38829 1,38830 1,35525 1,35526 1,26871 1,26871 1,15525 1,15525 1,03778 1,30778 

1 0,82250 0,82293 0,80292 0,80334 0,75165 0,75205 0,68443 0,68479 0,61484 0,61516 

5 0,66485 0,66515 0,64903 0,64932 0,60758 0,60785 0,55325 0,55350 0,49699 0,49722 

Metal 0,57695 0,57596 0,56322 0,56323 0,52725 0,52726 0,48010 0,48011 0,43128 0,43129 

20 

Ceramic 0,35558 0,35558 0,34712 0,34712 0,32495 0,32496 0,29589 0,29589 0,26581 0,26581 

1 0,21083 0,21098 0,20581 0,20595 0,19267 0,19280 0,17544 0,17556 0,15760 0,15771 

5 0,17077 0,17086 0,16671 0,16680 0,15606 0,15615 0,14210 0,14218 0,12765 0,12772 

Metal 0,14799 0,14800 0,14447 0,14448 0,13524 0,13525 0,12315 0,12315 0,11063 0,11063 

50 

Ceramic 0,05730 0,05730 0,05593 0,05593 0,05236 0,05236 0,04768 0,04768 0,04283 0,04283 

1 0,03398 0,03400 0,03317 0,03320 0,03105 0,33108 0,02827 0,02830 0,02540 0,02542 

5 0,02754 0,02756 0,02688 0,02690 0,02517 0,02518 0,02291 0,02293 0,02058 0,02060 

Metal 0,02385 0,02386 0,02329 0,02329 0,02180 0,02180 0,01985 0,01985 0,01783 0,01774 
 

(a) Given by Sobhy and Radwan (2017) 

Table 4 Comparison of non-dimensional fundamental frequency of simply supported FG square nanoplate (εz = 0) 

a/h p 

Nonlocal parameter μ 

0 0.5 1 1.5 2 

Sobhy(a) Present Sobhy(a) Present Sobhy(a) Present Sobhy(a) Present Sobhy(a) Present 

5 

Ceramic 5,12377 5,12377 5,00184 5,00184 4,68243 4,68243 4,26370 4,26370 3,83015 3,83015 

1 3,04445 3,04260 2,97200 2,97020 2,78221 2,78053 2,53340 2,53187 2,27580 2,27442 

5 2,44172 2,44052 2,38362 2,38244 2,23140 2,23030 2,03185 2,03085 1,82525 1,82435 

Metal 2,12231 2,12231 2,07180 2,07181 1,93950 1,93951 1,76606 1,76606 1,58648 1,58648 

10 

Ceramic 1,39015 1,390158 1,35707 1,357077 1,27041 1,270416 1,15680 1,156806 1,03917 1,039178 

1 0,82782 0,82785 0,80812 0,80815 0,75652 0,75654 0,68886 0,68889 0,61882 0,61884 

5 0,66890 0,66875 0,65299 0,65284 0,61129 0,61115 0,55662 0,55650 0,50002 0,49991 

Metal 0,57817 0,57818 0,56441 0,56442 0,52837 0,52837 0,48112 0,48112 0,43220 0,43220 

20 

Ceramic 0,35584 0,35585 0,34737 0,34738 0,32519 0,32519 0,29611 0,29611 0,26600 0,26600 

1 0,21205 0,21209 0,20701 0,20704 0,19379 0,19382 0,17646 0,17649 0,15851 0,15854 

5 0,17175 0,171726 0,16767 0,167640 0,15696 0,156934 0,14292 0,14290 0,12839 0,12837 

Metal 0,14819 0,14819 0,14466 0,14467 0,13543 0,13543 0,12331 0,12332 0,11078 0,11078 

50 

Ceramic 0,05733 0,05733 0,05596 0,05597 0,05239 0,05239 0,04770 0,04771 0,04285 0,04286 

1 0,03417 0,03418 0,03335 0,03336 0,03122 0,03123 0,02843 0,02844 0,02554 0,02555 

5 0,02769 0,02769 0,02703 0,02703 0,02531 0,02531 0,02304 0,02304 0,02070 0,02070 

Metal 0,02388 0,02389 0,02331 0,02332 0,02182 0,02183 0,01987 0,01988 0,01785 0,01786 
 

(a) Given by Sobhy and Radwan (2017) 
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Radwan (2017). As can be seen, the obtained non-

dimensional fundamental frequency 𝜔  decreases when 

material index parameter increases for all values of 

thickness ratio (a/h). The significant decrease is due to the 

material transforming from the fully ceramic material to the 

fully metal material and the ceramic materials are 

considered as relatively stiff and strong-stiffnesses and 

strengths compared to metallic materials. Furthermore, 

increasing nonlocal parameter results a decrease in the non-

dimensional fundamental frequency. These findings might 

be explained by the fact that the nonlocal elasticity includes 

the small-scale effects presented as nonlocal parameter in 

which corrects prediction of nanoplates fundamental 

frequencies. 

Finally, the last example is performed to present the 

stretching effect on free vibration analysis of thick FG 

square nanoplates, for this aim, the obtained results are 

compared with the hyperbolic quasi 3D plate theory (v) 

solutions of Sobhy and Radwan (2017). The values of non-

dimensional fundamental frequency are given in Table 4 for 

different values of thickness ratio a/h, material index 

parameter and nonlocal parameter μ. Since the higher order 

nanoplate theory omits stretching effect, it over-estimates 

the frequency of thick nanoplates, noticeably. As it can be 

seen, the obtained values of non-dimensional fundamental 

frequencies which consider the stretching effect are higher 

than those obtained by higher order nanoplate theory (εz = 

0) and decrease when the thickness ratio a/h increases for 

all values of nonlocal parameter μ. 

Due to the fact that the two-dimensional nanoplate 

theories assume the transverse displacement through the 

thickness as constant and for thick nanoplate theories must 

be considered the transverse shear and normal deformations 

at the same time. In fact, this affect can play a crucial role 

on the thick FG nanoplates and should be taken into 

consideration. 

The numerical results for free vibration nanoplates with 

different geometrical and material parameters are given in 

graphical form in Figs. 1 and 2. Fig. 1(a) illustrates the 

effect of thickness ratio (a/h) on non-dimensional 

 

 

fundamental frequency of nanoplate obtained for different 

values of power law index p with nonlocal parameter μ = 1 

nm. 

It is observed that the obtained fundamental frequency 

decreases when the thickness ratio (a/h) is increases. As 

mentioned above, the ceramic material is considered as    

a stiff material compared to metallic material. Indeed, the 

highest values are presented in ceramic material and the 

lowest values are observed in the metallic one, according to 

the material proprieties of each material can be used. The 

thickness ratio contributes to a reduction in the difference 

fundamental frequency from thick to thin nanoplates. The 

variation of non-dimensional fundamental frequency versus 

the aspect ratio (b/a) and nonlocal parameter µ is presented 

in Fig. 1(b). According to the figure, the increase in aspect 

ratio (b/a) leads to a decrease in non-dimensional 

fundamental frequency for all power law index p values, on 

the other hand, the fully ceramic nanoplate provides results 

higher than those with fully metallic nanoplate. The 

different results of used power law index p are slightly 

influenced by the increase in aspect ratio (b/a). 

Fig. 2 shows the variation of non-dimensional 

fundamental frequency versus thickness ratio (a/h) and the 

aspect ratio (b/a) respectively for various values of the 

nonlocal parameter µ. It can be seen explicitly the effect of 

small scale on non-dimensional fundamental frequency, 

since the continuum mechanics omits the dependency size 

dealing with nanostructures, hence the effect of nonlocal 

parameter plays an important role and enhances 

fundamental frequency in thus nanostructures. Another 

observation is seen that increase of aspect ratio (b/a) and 

thickness ratio (a/h) decreases non-dimensional 

fundamental frequency. 

 

 

4. Conclusions 
 

Based on new displacement fields and nonlocal 

elasticity, a theoretical study on the effects of small scale on 

free vibration analysis of functionally graded material 

 

 

 

  

   (a)      (b) 

Fig. 1 Variation of non-dimensional fundamental frequency versus power law index p of Al/Al2O3 square nanoplates 

(μ = 1 nm): and (a) the thickness ratio a/h; (b) the aspect ratio (b/a) 
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(FGM) nanoplates is formulated. Unlike other higher order 

and quasi-3D shear nanoplate theories, the proposed new 

2D and quasi-3D theories contain a new description of 

displacement by using undetermined integral terms. 

Mechanical proprieties of FG nanoplate are assumed to be 

graded smoothly through thickness coordinate according 

power law material distribution. The equations of motion 

are derived using Hamilton’s principle and nonlocal 

constitutive relations of Eringen. Afterwards, the exact 

closed-form solutions are derived for simply supported FG 

thick rectangular nanoplates by employing Navier’s 

analytical method. In order to assess the accuracy of the 

present theories, a comparative study is founded on various 

factors such as thickness ratio, aspect ratio and nonlocal 

parameter and where a closely agreement was observed in 

all cases. Additionally, the both stretching and small-scale 

effects have been also reported. Finally, these findings may 

provide strong potential usefulness in the future works and 

will make many contributions to offer valuable insights of 

mechanical responses for design and development in 

nanotechnology applications. Furthermore, future 

investigated would usefully supplement and extend to other 

mechanical behaviors as thermo-mechanical FG plate/shell 

at nanoscale. An improvement of present formulation will 

be considered in the future work to consider the thermal 

effect (Bouderba et al. 2013 and 2016, Tounsi et al. 2013, 

Zidi et al. 2014, Chikh et al. 2017, El-Haina et al. 2017, 

Menasria et al. 2017, Cherif et al. 2018, Semmah et al. 

2019). 
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