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1. Introduction 

 

One can imagine a single-walled carbon nanotube 

(SWCNT) as a rolled two-dimensional single-layered 

graphene sheet (SLGS). Depending on the direction along 

which the graphene sheet is rolled, there are two types of 

armchair and zigzag carbon nanotubes (CNTs). 

Prediction of the behaviors of nanostructures under 

different loads is performed using theoretical analyses. 

Kitipornchai, He and Liew (Kitipornchai et al. 2005) 

studied the vibration of multi layered graphene sheets 

(MLGSs) under simply supported boundary conditions with 

a continuum model based on classical plate theory (CLPT). 

Liew, He and Kitipornchai (Liew et al. 2006) investigated 

the vibration responses of MLSGs embedded in elastic 

matrices with a continuum model. Behfar and Naghdabadi 

(2005) investigated the nanoscale vibration of MLSGs 

embedded in elastic media. They assumed each MLSGs 

layer as an orthotropic plate with different elastic modulus 

in two perpendicular directions. 

Peddieson, Buchanan and McNitt (Peddieson et al.  

2003) used nonlocal elasticity for the evaluation of size 

effects on micro- and nanoscale structures. They 

investigated the bending of micro- and nano-beams with 

nonlocal elasticity and suggested that size had significant 

effect on nano-structures and the amounts of these effects 

depended on the values of nonlocal parameters. Nonlocal 

continuum model has attracted researchers due to its 

simplicity and efficiency in analyzing the behavior of 
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different nanostructures (Shen 2010, Sahmani and Fattahi 

2017, Filiz and Aydogdu 2010, Shen et al. 2010, Safaei and 

Fattahi 2017, Yang et al. 2010, Hao et al. 2010, Alizadeh 

and Fattahi 2019, Kiani 2010, Zenkour 2018). Fattahi and 

Sahmani (2017) studied the postbuckling behavior of 

nanoshells reinforced with FG-CNTs under hydrostatic 

pressures. 

In polymer nanocomposites, like many other nano-

scaled compounds, nanostructures can be embedded in 

elastic surroundings. Generally, these elastic media are 

simulated with Winkler foundation model (Fattahi and 

Sahmani 2017). However, this model cannot take into 

account the continuity of media. Elastic foundation can be 

more practically modeled with Pasternak foundation model 

(Winkler 1867, Pasternak 1954) in which both transverse 

shear stress and normal pressure are considered by 

introducing two modulus parameters corresponding to each 

factor. Liew et al. (2006) employed Pasternak foundation 

model. The interaction of elastic media with graphene 

sheets were simulated by Pradhan and Murmu (2010) who 

achieved good results and verified the correctness of 

foundation modeling. In another work, Azizi et al. (2015) 

investigated the nonlinear free vibration characteristics of 

embedded nanobeams. Dynamic analysis of straight and 

wavy CNT/ polymer composite plates was carried out by 

Moradi-Dastjerdi and Momeni-Khabisi (2016) based on 

mesh free method. 

Researchers have studied the effects of size on the 

mechanical behaviors of materials according to first-order 

shear deformation theory (FSDT) (Jalali et al. 2018) and 

nonlocal elasticity (Shahriari et al. 2018, Mohammadsalehi 

et al. 2017) theories. Free vibration (Moradi-Dastjerdi et al. 

2017), biaxial buckling (Moradi-Dastjerdi et al. 2017), 

thermoelastic dynamic (Safaei et al. 2019) behaviors of 

sandwich plates with aggregated CNTs-reinforced 

nancomposite face sheets on elastic foundations have been 
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investigated with different plate theories. 

Bouadi et al. (2018) developed a new nonlocal higher 

order shear deformation theory (HSDT) for buckling 

properties of single graphene sheet. Ebrahimi and Barati 

(2018) showed that temperature change, thermal loading 

type, surface effect, nonlocal parameter, boundary 

conditions and plate thickness significantly affected the 

buckling loads of flexoelectric nanoplates. Daouadji and 

Adim (2017) compared numerical results with 3D exact, 

quasi-3-dimensional and other HSDT solutions. Qin et al. 

(2019) by using FSDT investigated free vibration of 

rotating functionally graded CNT reinforced composite 

cylindrical shells with arbitrary boundary conditions. 

Moheimani and Ahmadian (2012) and Pasharavesh et al. 

(2011) employed nonlocal continuum theory to analytically 

evaluate the dynamic behavior and nonlinear vibration of 

nano-beams. Their results showed that nonlocal size effect 

potentially played a critical role in the structural analysis of 

nano-scaled dynamic and vibration behaviors of beams. 

Safaei et al. (2016) investigated the critical axial buckling 

strain of CNTs with different chiral angles. Fattahi and 

Safaei (2017) showed that higher CNTs volume fractions 

increased the stiffness of nanocomposite beams, especially 

with long-SWCNT reinforcements. 

The investigation of the behavior and elastic properties 

of graphene plates and graphene-reinforced sheets is among 

the goals of this research. The innovation of this research 

and its difference with other research works is the 

application of Eringen’s nonlocal theory in three plate 

theories as well as using Fourier’s method for solving 

equations and comparing the three obtained modified 

theories for nanoscaled structures. Here, we consider size 

effect on the axial buckling behaviors of embedded SLGSs 

through the incorporation of Eringen’s nonlocal elasticity 

equations (Eringen 1972) into different plate theories and 

introduce equations for critical axial buckling loads for each 

nonlocal plate theory. Then, different numerical results are 

presented to verify the effects of the values of length, mode 

number and nonlocal parameter in both Pasternak and 

Winkler foundation models. 

 

 

2. Overview of different plate theories 
 

A uniform square nanoplate with side length L and 

thickness h is assumed as shown in Fig. 1. Coordinate 

system (𝑥, y, z) is introduced at one corner of nanoplate 

midplane such that x, y and z axes are assumed to be along 

the length, width and depth (thickness) directions of the 

nanoplate, respectively. 

Displacement components (𝑢1, 𝑢2, 𝑢3) along 

corresponding axes (𝑥, y, z) can be expressed in a general 

form as (Safaei and Fattahi 2017) 

 

𝑢1 = −𝑧
𝜕𝑤

𝜕𝑥
+ 𝜓(z)  

𝜕𝑤

𝜕𝑥
+ 𝜑𝑥  

𝑢2 = −𝑧
𝜕𝑤

𝜕𝑦
+ 𝜓(z)  

𝜕𝑤

𝜕𝑦
+ 𝜑𝑦  

𝑢3 = 𝑤(𝑥, 𝑡) 

(1) 

 

 

Fig. 1 Schematic diagram of a nanoplate 

(Safaei and Fattahi 2017) 

 

 

where w is transverse displacement and 𝜑𝑥  and 𝜑𝑦  are 

angular displacements along x and y directions, 

respectively; 𝜓(z) is shape function. For CLPT, FSDT and 

HSDT we have  𝜓 𝑍 = 0, 𝜓 𝑧 = z ,  and 𝜓 𝑧 = 𝑧 −
4𝑧3

3ℎ2, respectively. 

 

2.1 Classical Plate Theory (CLPT) 
 

Based on Eq. (1), strain-displacement relations suitable 

for CLPT can be given as 

 

𝜀𝑥𝑥 =
𝜕𝑢1

𝜕𝑥
= −𝑧

𝜕2𝑤

𝜕𝑥2
 (2a) 

 

𝜀𝑦𝑦 =
𝜕𝑢2

𝜕𝑦
= −𝑧

𝜕2𝑤

𝜕𝑦2
 (2b) 

 

𝛾𝑥𝑦 =
𝜕𝑢1

𝜕𝑦
+

𝜕𝑢2

𝜕𝑥
= −2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
 (2c) 

 

𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0 (2d) 

 

According to the principle of virtual displacement, the 

following equilibrium equation can be obtained for CLPT 

 

𝜕2𝑀𝑥𝑥

𝜕𝑥2
+

𝜕2𝑀𝑦𝑦

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
− 𝑃(

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) = 0 (3) 

 

where 𝑃 is critical axial buckling load and 𝑀 is  torque 

vector which can be calculated as 

 

𝑀 =  𝑀𝑥𝑥 , 𝑀𝑦𝑦 , 𝑀𝑥𝑦  
𝑇

=   𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑥𝑦  
𝑇
𝑧. 𝑑𝑧

ℎ 2 

−ℎ 2 

 (4a) 

 

𝑀𝑥𝑥 = −𝐷 
𝜕2𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝑤

𝜕𝑦2
  

𝑀𝑦𝑦 = −𝐷 
𝜕2𝑤

𝜕𝑦2
+ 𝜐

𝜕2𝑤

𝜕𝑥2
  

(4b) 
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𝑀𝑥𝑦 = −𝐷(1 − 𝜐)(
𝜕2𝑤

𝜕𝑥𝜕𝑦
) (4c) 

 

𝐷 =
𝐸ℎ3

12(1 − 𝜐2)
 (4d 

 

Eq. (3) can be written in terms of displacements as 

 

−
𝐸ℎ3

12 1 − 𝜈2 
 
𝜕4𝑤

𝜕𝑥4
+ 2𝜈

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
  

−
𝐸ℎ3

6 1 + 𝜈 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝑃 

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 = 0 

(5) 

 

2.2 First Order Shear Deformation Theory (FSDT) 
 

FSDT takes into account the effects of rotational inertia 

and shear deformation and therefore, the straight lines 

vertical to the mid-plane of the plate disappear. However, it 

was assumed that transverse shear stress had linear 

distribution along plate thickness. The following strain-

displacement relations can be expressed based on Eq. (1) as 

 

𝜀𝑥𝑥 =
𝜕𝑢1

𝜕𝑥
= 𝑧

𝜕𝜑𝑥

𝜕𝑥
 (6a) 

 

𝜀𝑦𝑦 =
𝜕𝑢2

𝜕𝑦
= 𝑧

𝜕𝜑𝑦

𝜕𝑦
 (6b) 

 

𝛾𝑥𝑦 =
𝜕𝑢1

𝜕𝑦
+

𝜕𝑢2

𝜕𝑥
= 𝑧(

𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥
) (6c) 

 

𝛾𝑥𝑧 =
𝜕𝑢1

𝜕𝑧
+

𝜕𝑢3

𝜕𝑥
=

𝜕𝑤

𝜕𝑥
+ 𝜑𝑥  (6d) 

 

𝛾𝑦𝑧 =
𝜕𝑢2

𝜕𝑧
+

𝜕𝑢3

𝜕𝑦
=

𝜕𝑤

𝜕𝑦
+ 𝜑𝑦  (6e) 

 

Based on virtual displacement principle, the following 

equilibrium equations are obtained for FSDT 

 

𝜕𝑄𝑥𝑥

𝜕𝑥
+

𝜕𝑄𝑦𝑦

𝜕𝑦
− 𝑃(

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) = 0 (7a) 

 
𝜕𝑀𝑥𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥𝑥 = 0 (7b) 

 
𝜕𝑀𝑦𝑦

𝜕𝑦
+

𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑄𝑦𝑦 = 0 (7c) 

 

  𝑄𝑥 , 𝑄𝑦 
𝑇

= 𝜅  𝜎𝑦𝑧 , 𝜎𝑥𝑧  
𝑇
𝑑𝑧

ℎ 2 

−ℎ 2 

 (7d) 

 

where Q is shear force per unit length and 𝜅  is shear 

correction coefficient. Eq. (7) can be written in terms of 

displacements as 

 

𝜅𝐺ℎ  
𝜕𝜑𝑥

𝜕𝑥
+

𝜕𝜑𝑦

𝜕𝑦
+

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

−𝑃(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) = 0 

(8a) 

 

𝐸ℎ3

(1 − 𝜈2)
 
𝜕2𝜑𝑥

𝜕𝑥2
+ 𝜈

𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
  

+
𝐸ℎ3

24(1 + 𝜈)
 
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝜑𝑥

𝜕𝑦2
 − 𝜅𝐺ℎ  𝜑𝑥 +

𝜕𝑤

𝜕𝑥
 = 0 

(8b) 

 

𝐸ℎ3

12(1 − 𝜈2)
 
𝜕2𝜑𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

+
𝐸ℎ3

24(1 + 𝜈)
 
𝜕2𝜑𝑦

𝜕𝑥2
+

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
 − 𝜅𝐺ℎ  𝜑𝑦 +

𝜕𝑤

𝜕𝑦
 = 0 

(8c) 

 

2.3 Higher Order Shear Deformation Theory 
(HSDT) 

 

In third-order shear deformation theory, transverse shear 

stress has a parabolic distribution along the thickness of the 

plate with no shear correction factor to satisfy transverse 

shear stress conditions on the lower and upper layers of 

plate cross-section. Strain-displacement relations for HSDT 

can be written according to Eq. (1) as 

 

𝜀𝑥𝑥 =
𝜕𝑢1

𝜕𝑥
= 𝑧

𝜕𝜑𝑥

𝜕𝑥
−

4𝑧3

3ℎ2
 
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤

𝜕𝑥2
  (9a) 

 

𝜀𝑦𝑦 =
𝜕𝑢2

𝜕𝑦
= 𝑧

𝜕𝜑𝑦

𝜕𝑦
−

4𝑧3

3ℎ2
 
𝜕𝜑𝑦

𝜕𝑦
+

𝜕2𝑤

𝜕𝑦2
  (9b) 

 

𝛾𝑥𝑦 =
𝜕𝑢1

𝜕𝑦
+

𝜕𝑢2

𝜕𝑥
= 𝑧  

𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥
  

−
4𝑧3

3ℎ2
 
𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥
+ 2

𝜕2𝑤

𝜕𝑥𝜕𝑦
  

(9c) 

 

𝛾𝑥𝑧 =
𝜕𝑢1

𝜕𝑧
+

𝜕𝑢3

𝜕𝑥
=  1 −

4𝑧2

ℎ2
  

𝜕𝑤

𝜕𝑥
+ 𝜑𝑥  (9d) 

 

𝛾𝑦𝑧 =
𝜕𝑢2

𝜕𝑧
+

𝜕𝑢3

𝜕𝑦
=  1 −

4𝑧2

ℎ2
  

𝜕𝑤

𝜕𝑦
+ 𝜑𝑦  (9e) 

 

According to the principle of virtual displacement, 

equilibrium equations can be obtained for HSDT as 

 

𝜕𝑄𝑥𝑥

𝜕𝑥
+

𝜕𝑄𝑦𝑦

𝜕𝑦
−

4

ℎ2
 
𝜕𝑆𝑥𝑥

𝜕𝑥
+

𝜕𝑆𝑦𝑦

𝜕𝑦
  

+
4

3ℎ2
 
𝜕2𝑅𝑥𝑥

𝜕𝑥2
+

𝜕2𝑅𝑦𝑦

𝜕𝑦2
+ 2

𝜕2𝑅

𝜕𝑥𝜕𝑦
  

−𝑃(
𝜕2𝑊

𝜕𝑥2
+

𝜕2𝑊

𝜕𝑦2
) = 0 

(10a) 
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𝜕𝑀𝑥𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
−

4

3ℎ2
 
𝜕𝑅𝑥𝑥

𝜕𝑥
+

𝜕𝑅𝑥𝑦

𝜕𝑦
  

−𝑄𝑥𝑥 +
4

ℎ2
𝑆𝑥𝑥 = 0 

(10b) 

 

𝜕𝑀𝑦𝑦

𝜕𝑦
+

𝜕𝑀𝑥𝑦

𝜕𝑥
−

4

3ℎ2
 
𝜕𝑅𝑦𝑦

𝜕𝑦
+

𝜕𝑅𝑥𝑦

𝜕𝑥
  

(10c) 

−𝑄𝑦𝑦 +
4

ℎ2
𝑆𝑦𝑦 = 0 

 

Where 
 

𝑅 =  𝑅𝑥𝑥 , 𝑅𝑦𝑦 , 𝑅𝑥𝑦  
𝑇

=  𝑍3 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑥𝑦  
𝑇
𝑑𝑧

ℎ 2 

−ℎ 2 

 (10d) 

 

And 
 

𝑆 =  𝑆𝑥𝑥 , 𝑆𝑦𝑦  
𝑇

=  𝑍2 𝜎𝑥𝑧 , 𝜎𝑦𝑧  
𝑇
𝑑𝑧

ℎ 2 

−ℎ 2 

 (10e) 

 

The governing equations presented in Eq. (10) can be 

expressed in terms of displacements as 

 
8𝐺ℎ

15
 
𝜕𝜑𝑥

𝜕𝑥
+

𝜕𝜑𝑦

𝜕𝑦
+

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

+
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝜑𝑥

𝜕𝑥3
+

𝜕3𝜑𝑦

𝜕𝑦3
  

 +𝜈  
𝜕3𝜑𝑥

𝜕𝑥𝜕𝑦2
+

𝜕3𝜑𝑦

𝜕𝑥2𝜕𝑦
   

−
4𝐸ℎ3

252(1 − 𝜈2)
 
𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝑦4
+ 2𝜈

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
  

+
4𝐸ℎ3

315 1 + 𝜈 
 

𝜕3𝜑𝑦

𝜕𝑥2𝜕𝑦
+

𝜕3𝜑𝑥

𝜕𝑥𝜕𝑦2
  

−
𝐸ℎ3

126 1 + 𝜈 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝑃 

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑊

𝜕𝑦2
 = 0 

(11a) 

 
17𝐸ℎ3

315(1 − 𝜈2)
 
𝜕2𝜑𝑥

𝜕𝑥2
+ 𝜈

𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝑤

𝜕𝑥3
+ 𝜈

𝜕3𝑤

𝜕𝑥𝜕𝑦2
  

+
17𝐸ℎ3

630 1 + 𝜈 
 
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝜑𝑥

𝜕𝑦2
 −

4𝐸ℎ3

315 1 + 𝜈 

𝜕3𝑤

𝜕𝑥𝜕𝑦2
 

−
8𝐺ℎ

15
 𝜑𝑥 +

𝜕𝑤

𝜕𝑥
 = 0 

(11b) 

 
17𝐸ℎ3

315(1 − 𝜈2)
 
𝜕2𝜑𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝑤

𝜕𝑦3
+ 𝜈

𝜕3𝑤

𝜕𝑦𝜕𝑥2
  

+
17𝐸ℎ3

630 1 + 𝜈 
 
𝜕2𝜑𝑦

𝜕𝑥2
+

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315 1 + 𝜈 

𝜕3𝑤

𝜕𝑦𝜕𝑥2
−

8𝐺ℎ

15
 𝜑𝑦 +

𝜕𝑤

𝜕𝑦
 = 0 

(11c) 

 

 

 

Fig. 2 Geometric schematic diagram of rectangular plate 

subjected to axial loads embedded in elastic medium 

modeled with Pasternak foundation model 

 

 

3. Nonlocal plate theories for axial buckling of 
SLGSs 
 

Eringen (1972) was the first person to introduce 

nonlocal elasticity theory. For isotropic and homogenous 

elastic continuum, linear nonlocal elasticity theory can be 

written as 
 

 1 − 𝜇∇2 𝜎𝑘𝑙 ,𝑙 𝑥 = 𝜎𝑘𝑙 𝑥  (12) 
 

where 𝜇 is nonlocal or small scale parameter appropriate 

to material and internal characteristic constant and ∇ is 

Laplacian operator. The value of non-local parameter is not 

constant and depends on the nature of motion, number of 

modes, supporting conditions, and the number of walls and 

layers and so far, there have been only a few reports on its 

exact value. Available data shows that the acceptable range 

for non-local parameter is 0 to 4 nm (Peddieson et al. 2003) 

and therefore, we use this interval for this parameter in this 

study. 

Elastic medium surrounded the SLGSs investigated in 

this work. Pasternak foundation model (Pasternak 1954) 

(Fig. 2) is used to simulate elastic surrounding. The loading 

of this foundation model is expressed as 
 

𝑄𝑝𝑎𝑠𝑡𝑒𝑟𝑛𝑎𝑘 = 𝑘𝑤𝑤 − 𝑘𝑆  
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  (13) 

 

where 𝑘𝑤  is Winkler modulus parameter corresponding to 

normal pressure and 𝑘𝑆  is Pasternak modulus parameter 

relevant to transverse shear stress. Neglecting shear 

deformation effects (𝑘𝑆 = 0) reduces the foundation model 

to Winkler model (Winkler 1867). 
 

3.1 Classical Plate Theory (CLPT) 
 

By the addition of the terms of elastic medium to the 

governing equation of CLPT, we find 
 

−
𝐸ℎ3

12 1 − 𝜈2 
 
𝜕4𝑤

𝜕𝑥4
+ 2𝜈

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
  (14) 
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−
𝐸ℎ3

6 1 + 𝜈 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝑃 

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑊

𝜕𝑦2
 − 𝑘𝑤𝑤 

+𝑘𝑆  
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 = 0 

 

According to Eq. (12), the only constitutive relation for 

nonlocal CLPT model with elastic medium is obtained as 

−
𝐸ℎ3

12 1 − 𝜈2 
 
𝜕4𝑤

𝜕𝑥4
+ 2𝜈

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
  

−
𝐸ℎ3

6 1 + 𝜈 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝑃 

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑊

𝜕𝑦2
  

+𝜇𝑃  
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑊

𝜕𝑦4
 − 𝑘𝑤𝑤 

+𝑘𝑆  
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 + 𝜇𝑘𝑤  

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

−𝜇𝑘𝑆  
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
 = 0 

(15) 

 

3.2 First Order Shear Deformation Theory (FSDT) 
 

Introducing elastic medium terms into governing 

equations of FSDT gives 

 

𝑘𝐺ℎ  
𝜕𝜑𝑥

𝜕𝑥
+

𝜕𝜑𝑦

𝜕𝑦
+

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 − 𝑃  

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

−𝑘𝑤𝑤 + 𝑘𝑆  
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 = 0 

(16a) 

 
𝐸ℎ3

12(1 − 𝜈2)
 
𝜕2𝜑𝑥

𝜕𝑥2
+ 𝜈

𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
  

+
𝐸ℎ3

24(1 + 𝜈)
 
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝜑𝑥

𝜕𝑦2
 − 𝜅𝐺ℎ  𝜑𝑥 +

𝜕𝑤

𝜕𝑥
 = 0 

(16b) 

 
𝐸ℎ3

12(1 − 𝜈2)
 
𝜕2𝜑𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

+
𝐸ℎ3

24(1 + 𝜈)
 
𝜕2𝜑𝑦

𝜕𝑥2
+

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
 − 𝜅𝐺ℎ  𝜑𝑦 +

𝜕𝑤

𝜕𝑦
 = 0 

(16c) 

 
Based on Eq. (12), constitutive relations for nonlocal 

FSDT model with elastic medium are obtained as 

 

κ𝐺ℎ  
𝜕𝜑𝑥

𝜕𝑥
+

𝜕𝜑𝑦

𝜕𝑦
+

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 − 𝑃  

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

+𝜇𝑃  
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
 − 𝑘𝑤𝑤 

+𝑘𝑆  
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 + 𝜇𝑘𝑤  

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

−𝜇𝑘𝑆  
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
 = 0 

(17a) 

 

𝐸ℎ3

12(1 − 𝜈2)
 
𝜕2𝜑𝑥

𝜕𝑥2
+ 𝜈

𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
  

+
𝐸ℎ3

24 1 + 𝜈 
 
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝜑𝑥

𝜕𝑦2
 − 𝜅𝐺ℎ  𝜑𝑥 +

𝜕𝑤

𝜕𝑥
 = 0 

(17b) 

 

 

𝐸ℎ3

12(1 − 𝜈2)
 
𝜕2𝜑𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

+
𝐸ℎ3

24(1 + 𝜈)
 
𝜕2𝜑𝑦

𝜕𝑥2
+

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
 − 𝜅𝐺ℎ  𝜑𝑦 +

𝜕𝑤

𝜕𝑦
 = 0 

(17c) 

 

3.3 Higher Order Shear Deformation Theory 
(HSDT) 

 

Introducing elastic medium terms into the governing 

equations of HSDT gives 

 

8𝐺ℎ

15
 
𝜕𝜑𝑥

𝜕𝑥
+

𝜕𝜑𝑦

𝜕𝑦
+

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

+
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝜑𝑥

𝜕𝑥3
+

𝜕3𝜑𝑦

𝜕𝑦3
  

 +𝜈  
𝜕3𝜑𝑥

𝜕𝑥𝜕𝑦2
+

𝜕3𝜑𝑦

𝜕𝑥2𝜕𝑦
   

−
4𝐸ℎ3

252(1 − 𝜈2)
 
𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝑦4
+ 2𝜈

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
  

+
4𝐸ℎ3

315 1 + 𝜈 
 

𝜕3𝜑𝑦

𝜕𝑥2𝜕𝑦
+

𝜕3𝜑𝑥

𝜕𝑥𝜕𝑦2
  

−
𝐸ℎ3

126 1 + 𝜈 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝑃 

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

−𝑘𝑤𝑤 + 𝑘𝑆  
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 = 0 

(18a) 

 

17𝐸ℎ3

315(1 − 𝜈2)
 
𝜕2𝜑𝑥

𝜕𝑥2
+ 𝜈

𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝑤

𝜕𝑥3
+ 𝜈

𝜕3𝑤

𝜕𝑥𝜕𝑦2
  

+
17𝐸ℎ3

630 1 + 𝜈 
 
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝜑𝑥

𝜕𝑦2
  

−
4𝐸ℎ3

315 1 + 𝜈 

𝜕3𝑤

𝜕𝑥𝜕𝑦2
−

8𝐺ℎ

15
 𝜑𝑥 +

𝜕𝑤

𝜕𝑥
 = 0 

(18b) 

 

17𝐸ℎ3

315(1 − 𝜈2)
 
𝜕2𝜑𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝑤

𝜕𝑦3
+ 𝜈

𝜕3𝑤

𝜕𝑦𝜕𝑥2
  

+
17𝐸ℎ3

630 1 + 𝜈 
 
𝜕2𝜑𝑦

𝜕𝑥2
+

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315 1 + 𝜈 

𝜕3𝑤

𝜕𝑦𝜕𝑥2
−

8𝐺ℎ

15
 𝜑𝑦 +

𝜕𝑤

𝜕𝑦
 = 0 

(18c) 
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According to Eq. (13), constitutive relations for nonlocal 

HSDT model with elastic medium are obtained as 

 

8𝐺ℎ

15
 
𝜕𝜑𝑥

𝜕𝑥
+

𝜕𝜑𝑦

𝜕𝑦
+

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  (19a) 

 

+
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝜑𝑥

𝜕𝑥3
+

𝜕3𝜑𝑦

𝜕𝑦3
  

 +𝜈  
𝜕3𝜑𝑥

𝜕𝑥𝜕𝑦2
+

𝜕3𝜑𝑦

𝜕𝑥2𝜕𝑦
   

−
4𝐸ℎ3

252(1 − 𝜈2)
 
𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝑦4
+ 2𝜈

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
  

+
4𝐸ℎ3

315 1 + 𝜈 
 

𝜕3𝜑𝑦

𝜕𝑥2𝜕𝑦
+

𝜕3𝜑𝑥

𝜕𝑥𝜕𝑦2
  

−
𝐸ℎ3

126 1 + 𝜈 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝑃 

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

+𝜇𝑃  
𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
 − 𝑘𝑤𝑤 

+𝑘𝑆  
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 + 𝜇𝑘𝑤  

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
  

−𝜇𝑘𝑆  
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
 = 0 

(19a) 

 

17𝐸ℎ3

315(1 − 𝜈2)
 
𝜕2𝜑𝑥

𝜕𝑥2
+ 𝜈

𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝑤

𝜕𝑥3
+ 𝜈

𝜕3𝑤

𝜕𝑥𝜕𝑦2
  

+
17𝐸ℎ3

630 1 + 𝜈 
 
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝜑𝑥

𝜕𝑦2
  

−
4𝐸ℎ3

315 1 + 𝜈 

𝜕3𝑤

𝜕𝑥𝜕𝑦2
−

8𝐺ℎ

15
 𝜑𝑥 +

𝜕𝑤

𝜕𝑥
 = 0 

(19b) 

 

17𝐸ℎ3

315(1 − 𝜈2)
 
𝜕2𝜑𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315(1 − 𝜈2)
 
𝜕3𝑤

𝜕𝑦3
+ 𝜈

𝜕3𝑤

𝜕𝑦𝜕𝑥2
  

+
17𝐸ℎ3

630 1 + 𝜈 
 
𝜕2𝜑𝑦

𝜕𝑥2
+

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
  

−
4𝐸ℎ3

315 1 + 𝜈 

𝜕3𝑤

𝜕𝑦𝜕𝑥2
−

8𝐺ℎ

15
 𝜑𝑦 +

𝜕𝑤

𝜕𝑦
 = 0 

(19c) 

 

 

4. Analytical solution for simply supported SLGSs 
 
4.1 Exact solutions for critical axial buckling load 
 

Exact solutions are provided to achieve critical axial 

buckling loads for each nonlocal theory for SLGSs in 

elastic media. Simply supported boundary conditions can be 

expressed as 

 

At   x = 0   and   x = L 

𝑤 = 0,    𝜑𝑦 = 0,    𝑀𝑥𝑥 = 0 
(20a) 

 

At   y = 0   and   y = L 

𝑤 = 0,    𝜑𝑥 = 0,    𝑀𝑦𝑦 = 0 
(20b) 

Angular and transverse displacements are assumed in 

the following general form to satisfy boundary conditions 

 

𝑤 𝑥, 𝑦 =   𝑊𝑚𝑛 sin  
𝑚𝜋𝑥

𝐿
 sin  

𝑛𝜋𝑦

𝐿
 

∞

𝑛=1

∞

𝑚=1
 (21a) 

 

𝜑𝑥 𝑥, 𝑦 =   𝐴𝑚𝑛 cos  
𝑚𝜋𝑥

𝐿
 sin  

𝑛𝜋𝑦

𝐿
 

∞

𝑛=1

∞

𝑚=1
 (21b) 

 

𝜑𝑦 𝑥, 𝑦 =   𝐵𝑚𝑛 sin  
𝑚𝜋𝑥

𝐿
 cos  

𝑛𝜋𝑦

𝐿
 

∞

𝑛=1

∞

𝑚=1
 (21c) 

 

By the substitution of Eq. (22) in the constitutive 

equations of different nonlocal plate theories and solving 

the obtained eigenvalue problems, critical axial buckling 

loads of SLGSs embedded in elastic media are achieved as: 
 

For CLPT 
 

𝑃𝐶𝐿𝑃𝑇 = −(3𝐿4𝑘𝑤 − 3𝐿4𝐾𝑤𝜈2 + 12𝜋4𝑘𝑠𝑚
4𝜇 

+𝐸𝜋4ℎ3𝑚4 + 6𝐿2𝜋2𝑘𝑠𝑚
2 + 6𝐿2𝜋2𝑘𝑤𝑚2𝜇 

−12𝜋4𝑘𝑠𝑚
4𝜇𝜈2 − 6𝐿2𝜋2𝑘𝑠𝑚

2𝜈2 

−6𝐿2𝜋2𝑘𝑤𝑚2𝜇𝜈2)/ 

6𝜋2𝑚2(𝐿2 + 2𝜋2𝜇𝑚2)(𝜈 − 1)(𝜈 + 1)) 

(22) 

 

For FSDT 
 

𝑃𝐹𝑆𝐷𝑇 =(6𝐺𝜅𝐿6𝑘𝑤 − 6𝐺𝜅𝐿6𝑘𝑤𝜈2 + 12𝐺𝐿4𝜋2𝜅𝑘𝑠𝑚
2 

+4𝐸𝜋6ℎ2𝑘𝑠𝑚
6𝜇 + 2𝐸𝐿2𝜋4ℎ2𝑘𝑤𝑚2 

+24𝐺𝐿2𝜋4𝜅𝑘𝑠𝑚
4𝜇 + 12𝐺𝐿4𝜋2𝜅𝑘𝑤𝑚2𝜇 

+2𝐸𝐺𝐿2𝜋4ℎ3𝜅𝑚4 + 2𝐸𝐿2𝜋4ℎ2𝑘𝑤𝑚4𝜇 

−12𝐺𝐿4𝜋2𝜅𝑘𝑠𝑚
2𝜈2 − 24𝐺𝐿2𝜋4𝜅𝑘𝑠𝑚

4𝜇𝜈2 

−12𝐺𝐿4𝜋2𝜅𝑘𝑤𝑚2𝜇𝜈2)/ 

(2𝜋2𝑚2(𝐿2 + 2𝜋2𝜇𝑚2) 

(−6𝐺𝜅𝐿2𝜈2 + 6𝐺𝜅𝐿2 + 𝐸𝜋2ℎ2𝑚2)) 

(23) 

 

For HSDT 
 

𝑃𝐻𝑆𝐷𝑇 = (−17640G𝐿6𝑘𝑤 + 99𝐸2𝜋6ℎ5𝑚6 

−35280𝐺𝐿6𝑘𝑤𝜈2 + 17640𝐺𝐿6𝑘𝑤𝜈4 

+35280𝐺𝐿4𝜋2𝑘𝑠𝑚
2 + 85𝐸2𝜋6ℎ5𝑚6𝜈 

−70560𝐺𝐿4𝜋2𝑘𝑠𝑚
2𝜈2 

+35280𝐺𝐿4𝜋2𝑘𝑠𝑚
2𝜈4 

+14280𝐿2𝜋4𝑘𝑠𝑚
4𝜇 + 35280𝐺𝐿4𝜋2𝑘𝑤𝑚2𝜇 

+14280𝐸𝜋6ℎ2𝑘𝑠𝑚
6𝜇 + 6300𝐸𝐺𝐿2𝜋4ℎ3𝑚4 

+7140𝐸𝐿2𝜋4𝑘𝑠ℎ
2𝑚4 + 3570𝐸𝐿4𝜋2𝑘𝑤ℎ2𝑚2 

+420𝐸𝐺𝐿2𝜋4ℎ3𝑚4𝜈 + 7140𝐸𝐿2𝜋4𝑘𝑤ℎ2𝑚4𝜇 

(24) 
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−141120𝐺𝐿2𝜋4𝑘𝑠𝑚
4𝜇𝜈2 

+70560𝐺𝐿2𝜋4𝑘𝑠𝑚
4𝜇𝜈4 

−70560𝐺𝐿4𝜋2𝑘𝑤𝑚2𝜇𝜈2 

−35280𝐺𝐿4𝜋2𝑘𝑤𝑚2𝜇𝜈4 

−14280𝐸𝜋6ℎ2𝑘𝑠𝑚
6𝜇𝜈2 

−6300𝐸𝐺𝐿2𝜋4ℎ3𝑚4𝜈2 

−420𝐸𝐺𝐿2𝜋4ℎ3𝑚4𝜈3
 

(24) 

 

 

 

−7140𝐸𝐿2𝜋4𝑘𝑠ℎ
2𝑚4𝜈2 

−3570𝐸𝐿4𝜋2𝑘𝑤ℎ2𝑚2𝜈2 

−7140𝐸𝐿2𝜋4𝑘𝑤ℎ2𝑚4𝜇𝜈2)/ 

(420𝜋2𝑚2 𝐿2 + 2𝜋2𝜇𝑚2  𝜈 − 1  𝜈 + 1  

−84𝐺𝐿2𝜈2 + 84𝐺𝐿2 + 17𝐸𝜋2ℎ2𝑚2)) 

(24) 

 

It should be noted that the above explicit expressions 

were obtained by assuming 𝑚 = 𝑛. 
 

 

Table 1 Axial buckling loads for the first buckling mode 

L/h µ 

P_CLPT(nN) 

KW = 0 

KS = 0 

P_CLPT(nN) 

KW = 107 

KS = 2×105 

P_FSDT(nN) 

KW = 0 

KS = 0 

P_FSDT(nN) 

KW = 107 

KS = 2×105 

P_HSDT(nN) 

KW = 0 

KS = 0 

P_HSDT(nN) 

KW = 107 

KS = 2×105 

10 

0 5.7397 5.7458 5.4821 5.4881 5.9578 5.9638 

0.5 3.0962 3.1023 2.9572 2.9633 3.2139 3.2199 

1 2.1199 2.1260 2.0247 2.0308 2.2004 2.2065 

1.5 1.6117 1.6177 1.5393 1.5454 1.6729 1.6790 

2 1.3000 1.3061 1.2417 1.2477 1.3494 1.3555 

2.5 1.0894 1.0954 1.0405 1.0465 1.1308 1.1368 

3 0.9375 0.9435 0.8954 0.9014 0.9731 0.9791 

3.5 0.8227 0.8288 0.7858 0.7919 0.8540 0.8600 

4 0.7330 0.7391 0.7001 0.7062 0.7609 0.7669 

20 

0 1.4349 1.4586 1.4183 1.4419 1.5372 1.5608 

0.5 1.1825 1.2062 1.1688 1.1924 1.2668 1.2904 

1 1.0056 1.0293 0.9940 1.0176 1.0773 1.1009 

1.5 0.8748 0.8984 0.8646 0.8882 0.9371 0.9607 

2 0.7741 0.7977 0.7651 0.7887 0.8292 0.8528 

2.5 0.6941 0.7178 0.6861 0.7097 0.7436 0.7672 

3 0.6292 0.6528 0.6219 0.6455 0.6740 0.6976 

3.5 0.5753 0.5990 0.5686 0.5923 0.6163 0.6399 

4 0.5300 0.5536 0.5238 0.5474 0.5677 0.5914 

30 

0 0.6377 0.6907 0.6344 0.6873 0.6873 0.7402 

0.5 0.5825 0.6354 0.5795 0.6324 0.6277 0.6806 

1 0.5360 0.5890 0.5333 0.5862 0.5777 0.6306 

1.5 0.4965 0.5494 0.4939 0.5468 0.5350 0.5879 

2 0.4623 0.5152 0.4599 0.5128 0.4982 0.5511 

2.5 0.4326 0.4855 0.4303 0.4832 0.4662 0.5191 

3 0.4064 0.4593 0.4043 0.4572 0.4380 0.4909 

3.5 0.3833 0.4362 0.3813 0.4342 0.4130 0.4659 

4 0.3626 0.4155 0.3607 0.4136 0.3907 0.4436 

40 

0 0.3587 0.4526 0.3577 0.4516 0.3874 0.4813 

0.5 0.3406 0.4345 0.3396 0.4335 0.3678 0.4617 

1 0.3241 0.4180 0.3232 0.4171 0.3500 0.4439 

1.5 0.3092 0.4031 0.3083 0.4022 0.3339 0.4278 

2 0.2956 0.3895 0.2948 0.3887 0.3193 0.4132 

2.5 0.2832 0.3771 0.2823 0.3763 0.3058 0.3997 

3 0.2717 0.3656 0.2709 0.3648 0.2935 0.3874 

3.5 0.2612 0.3551 0.2604 0.3543 0.2821 0.3760 

4 0.2514 0.3453 0.2507 0.3446 0.2715 0.3654 
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5. Results and discussion 
 

5.1 Validation 
 

In this section, we give the selected numerical results for 

the analytical solutions provided in the previous section. 

For validation, we assume the following properties for 

SLGSs: 𝜈 = 0.16, E = 1 TPa, h = 0.34 nm and the side 

length (L) of the square SLGSs range between 
𝐿

ℎ
=10 and 

40 (Pradhan et al. 2010). These results are compared with 

those reported by Pradhan et al. (2010) for buckling and is 

shown in Fig. 3. The results are perfectly matched. Because, 

unlike reference, graphene is placed on an elastic medium, 

we use 𝑘𝑠 = 0 and 𝑘𝑤 = 0. 
 

5.2 Effect of various parameters on critical buckling 
load 

 

Axial buckling load values of SLGSs for the first three 

buckling modes are summarized in Tables 1-3. By 

increasing the values of nonlocal parameter and aspect 

 

 

 

 

Fig. 3 Comparison and validation of the proposed model 

with Pradhan and Murmu model 
 

 

ratio, buckling load decreases but by increasing mode 

number, it increases. This is more significant for lower 

aspect ratios and higher mode numbers. Furthermore, it is 

observed that by introducing the effect of transverse shear 
 

 

Table 2 Axial buckling loads for the second buckling mode 

L/h µ 

P_CLPT(nN) 

KW = 0 

KS = 0 

P_CLPT(nN) 

KW = 107 

KS = 2×105 

P_FSDT(nN) 

KW = 0 

KS = 0 

P_FSDT(nN) 

KW = 107 

KS = 2×105 

P_HSDT(nN) 

KW = 0 

KS = 0 

P_HSDT(nN) 

KW = 107 

KS = 2×105 

10 

0 22.9588 22.9605 19.3258 19.3274 21.2349 21.2366 

0.5 5.2001 5.2018 4.3772 4.3789 7.8096 4.8113 

1 2.9321 2.9338 2.4681 2.4698 2.7119 2.7136 

1.5 2.0416 2.0433 1.7186 1.7202 1.8883 1.88900 

2 1.5661 1.5677 1.3182 1.3199 1.4485 1.4501 

2.5 1.2702 1.2718 1.0692 1.0708 1.1748 1.1765 

3 1.0683 1.0700 0.8993 0.9009 0.9881 0.9898 

3.5 0.9218 0.9235 0.7760 0.7776 0.8526 0.8543 

4 0.8107 0.8123 0.6824 0.6841 0.7498 0.7515 

20 

0 5.7397 5.7458 5.4821 5.4881 5.9578 5.9638 

0.5 3.0962 3.1023 2.9572 2.9633 3.2139 3.2199 

1 2.1199 2.1260 2.0247 2.0308 2.2004 2.2065 

1.5 1.6117 1.5393 1.5393 1.5454 1.6729 1.6790 

2 1.3000 1.3061 1.2417 1.2477 1.3494 1.3555 

2.5 1.0894 1.0954 1.0405 1.0465 1.1308 1.1368 

3 0.9375 0.9435 0.8954 0.9014 0.9731 0.9791 

3.5 0.8227 0.8288 0.7858 0.7919 0.8540 0.8600 

4 0.7330 0.7391 0.7001 0.7062 0.7609 0.7669 

30 

0 2.5510 2.5644 2.4988 2.5122 2.7102 2.7235 

0.5 1.8493 1.8626 1.8114 1.8248 1.9647 1.9780 

1 1.4503 1.4637 1.4206 1.4340 1.5408 1.5542 

1.5 1.1930 1.2063 1.1686 1.1819 1.2674 1.2808 

2 1.0132 0.0265 0.9924 1.0058 1.0764 1.0898 

2.5 0.8805 0.8939 0.8625 0.8758 0.9354 0.9488 

3 0.7785 0.7919 0.7626 0.7760 0.8271 0.8405 

3.5 0.6977 0.7111 0.6834 0.6968 0.7413 0.7546 

4 0.6321 0.6455 0.6192 0.6326 0.6716 0.6849 
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stress into FSDT and HSDT, axial buckling load values are 

decreased for all nonlocal parameter values and this 

decrease is more significant for lower aspect ratios and 
 

 

 

 

higher mode numbers. 

It is found that by increasing the values of both aspect 

ratio and nonlocal parameter, the difference between the 
 

 

 

Table 2 Continued 

L/h µ 

P_CLPT(nN) 

KW = 0 

KS = 0 

P_CLPT(nN) 

KW = 107 

KS = 2×105 

P_FSDT(nN) 

KW = 0 

KS = 0 

P_FSDT(nN) 

KW = 107 

KS = 2×105 

P_HSDT(nN) 

KW = 0 

KS = 0 

P_HSDT(nN) 

KW = 107 

KS = 2×105 

40 

0 1.4349 1.4586 0.4183 1.4419 1.5372 1.5608 

0.5 1.1825 1.2062 1.1688 1.1924 1.2668 1.2904 

1 1.0056 1.0293 0.9940 1.0176 1.0773 1.1009 

1.5 0.8748 0.8984 0.8646 0.8882 0.9371 0.9607 

2 0.7741 0.7977 0.7651 0.7887 0.8292 0.8528 

2.5 0.6941 0.7178 0.6861 0.7097 0.7436 0.7672 

3 0.6292 0.6528 0.6219 0.6455 0.6740 0.6973 

3.5 0.5753 0.5990 0.5686 0.5923 0.6163 0.6399 

4 0.5300 0.5536 0.5238 0.5474 0.5677 0.5914 
 

Table 3 Axial buckling loads for the second buckling mode 

L/h µ 

P_CLPT(nN) 

KW = 0 

KS = 0 

P_CLPT(nN) 

KW = 107 

KS = 2×105 

P_FSDT(nN) 

KW = 0 

KS = 0 

P_FSDT(nN) 

KW = 107 

KS = 2×105 

P_HSDT(nN) 

KW = 0 

KS = 0 

P_HSDT(nN) 

KW = 107 

KS = 2×105 

10 

0 51.6574 51.6583 36.3022 36.303 40.6365 40.6374 

0.5 5.9486 5.9495 4.1804 4.1812 4.6795 4.6804 

1 3.156 3.1569 2.2179 2.2187 2.4827 2.4835 

1.5 2.1478 2.1486 1.5093 1.5102 1.6895 1.6904 

2 1.6277 1.6286 1.1439 1.1447 1.2805 1.2813 

2.5 1.3104 1.3113 0.9209 0.9218 1.0309 1.0317 

3 1.0967 1.0975 0.7707 0.7715 0.8627 0.8636 

3.5 0.9429 0.9437 0.6626 0.6634 0.7417 0.7426 

4 0.8269 0.8277 0.5811 0.582 0.6505 0.6513 

20 

0 12.9144 12.9172 11.6793 11.6821 12.7508 12.7536 

0.5 4.4212 4.424 3.9984 4.0012 4.3652 4.368 

1 2.6672 2.67 2.4121 2.4149 2.6334 2.6362 

1.5 1.9096 1.9124 1.727 1.7298 1.8854 1.8882 

2 1.4872 1.49 1.3449 1.3477 1.4683 1.4711 

2.5 1.2178 1.2206 1.1013 1.1041 1.2023 1.2051 

3 1.031 1.0338 0.9324 0.9352 1.018 1.0208 

3.5 0.8939 0.8967 0.8084 0.8112 0.8826 0.8854 

4 0.789 0.7918 0.7136 0.7164 0.779 0.7818 

30 

0 5.7397 5.7458 5.4821 5.4881 5.9578 5.9638 

0.5 3.0962 3.1023 2.9572 2.9633 3.2139 3.2199 

1 2.1199 2.126 2.0247 2.0308 2.2004 2.2065 

1.5 1.6117 1.6177 1.5393 1.5454 1.6729 1.679 

2 1.3 1.3061 1.2417 1.2477 1.3494 1.3555 

2.5 1.0894 1.0954 1.0405 1.0465 1.1308 1.1368 

3 0.9375 0.9435 0.8954 0.9014 0.9731 0.9791 

3.5 0.8227 0.8288 0.7858 0.7919 0.854 0.86 

4 0.733 0.7391 0.7001 0.7062 0.7609 0.7669 
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predicted values of critical axial buckling load obtained 

from Winkler and Pasternak foundation models is also 

increased. In addition, it is observed that all nonlocal plate 

theories have almost similar patterns, especially regarding 

the variations of aspect ratio. 

In this work, we investigate the axial buckling behavior 

of SLGSs embedded in elastic media. Winkler and 

Pasternak foundation models are employed for the 

simulation of surrounding elastic media. To consider small-

scale effect on buckling, Eringen’s nonlocal continuum 

elasticity is employed in different plate theories including 

CLPT, FSDT, and HSDT. Exact solutions are obtained for 

SLGSs with simply supported boundary conditions. Explicit 

equations are obtained to calculate the axial buckling loads 

of SLGSs for different nonlocal plate theories. 

According to our findings, considering elastic 

foundation increases axial buckling loads for all nonlocal 

parameter values, which is more significant at higher aspect 

ratios for all mode numbers. In addition, we find that, 

nonlocality has the strongest effect on FSDT among all 

nonlocal plate theories, especially for a specific range of 

nonlocal parameter values. 

In addition, we conclude that the critical axial buckling 

load of embedded SLGSs simulated by Pasternak 

foundation model is relatively higher than those simulated 

by Winkler foundation model this difference is almost 

constant for all nonlocal plate theories, especially in the 

case of the variation of aspect ratio and is more significant 

at higher aspect ratio and nonlocal parameter values. 
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