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1. Introduction 

 

Two-dimensional graphene which has hexagonal lattice 

structure (Wang and Chan 2015, Zenkour 2016) has 

attracted much attention of researchers in the semiconductor 

field due to its striking properties (Geim and Novoselov 

2007, Bouadi et al. 2018, Rodriguez-Perez et al. 2017). 

GNRs are made up of finite size graphene crystals (Gracia-

Espino et al. 2013) which can be categorized into AGNRs 

and ZGNRs, depending on their edge structure 

(Wakabayashi et al. 1999). They are 30° apart of each other 

in orientation, as shown in Fig. 1. 

 

 

 
Zigzag Armchair 

Fig. 1 Zigzag – edged and armchair – edged GNR 

(Wakabayashi et al. 1999) 
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According to Nakada (Nakada et al. 1996), electronic 

properties of GNRs are highly dependent on their width and 

length. Considering N-AGNR and N-ZGNR, (letting N be 

the number of dimer lines or zigzag lines along the ribbon 

side), N-AGNR varies with width, alternating between 2 

semiconducting states and then followed by a metallic state. 

Unlike AGNR, ZGNR has no significant bandgap, and thus 

it is metallic at any given width. 

Schrödinger’s equation (Schrödinger 1926) is used in 

the study of the electronic properties of carbon-based 

nanostructures by obtaining the energy values from 

quantum transport models. Solving Schrödinger’s equation 

involves the solution of integrals for each energy state 

existing in the whole system. As a system enlarges, the 

mathematical analysis will be more advanced and complex. 

Schrödinger’s equation can be solved by using NEGF 

formalism (Datta 2002). The Hamiltonian operator, H, of 

Eq. (1) holds the complete information containing the 

position of particles in the content and their interaction with 

each other of a particular system. With the defined operator, 

the wave function, ψ paired with H can be used to deduce 

the available energy spectrum, and then the electronic 

properties of the system. With the complete information 

embedded within the Hamiltonian operator, SV defect, 

where there is one atom is missing from the lattices can be 

incorporated in the system. This phenomenon indicates the 

loss of the interactions of that particular atom with 

neighbouring atoms. 
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Abstract.  Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene 

itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene 

nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately 

change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-

idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying 

assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major 

edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) 

defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around 

the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium 

Green’s function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states 

(DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and 

defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, 

numerical DOS and Green’s function DOS of pristine and defective GNRs. 
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   E H   = 
 

(1) 

 

The crystallographic defects should be taken into 

consideration as it is not uncommon due to the constraints 

in present technique for synthesis of carbon-based 

nanostructures, including GNRs (Guseinov et al. 2016). 

Those quantum transport models with ideal physical 

conditions cannot effectively describe the quantum 

mechanical behaviour of defective GNR, due to the defects 

having a significant impact on the electronic characteristics 

of the nanostructures, including their band structure and 

density of states (Chang et al. 2013). In this work, tight 

binding model of GNRs with SV defects based on the 

NEGF formalism (Datta 2002) is presented. The model 

considers the simplifying assumptions proposed by Datta 

(1997) in his work. Our computational work includes the 

automatic generation of the Hamiltonian matrix GNR 

model allows users to define the specifications, for 

educational and research purposes. 

 

 

2. Related research 
 

Previous simulation work has been done by Goh et al. 

(2018) primarily focuses on pristine GNR. An ideal GNR 

model is introduced using the numeric computational 

approach on MATLAB. The electronic properties of ZGNR 

and AGNR have been well discussed in their work, 

demonstrated by the plots of band structure, DOS and the 

transmission properties. In this work, an additional SV 

defects condition is implemented in the tight-binding model 

and simulated under NEGF formalism, with assumptions 

introduced by Datta (1997, 2005). Datta (1997) suggests 

three simplifying assumptions for device modelling. Firstly, 

the use of basis function adapted from Hartree’s assumption 

(Tsuneda 2014), which states that the number of single 

electron wave function equals to the number of electrons in 

the respective system, that allows one to define the system 

by a single-particle electron approach. They represent the 

wave functions of electrons of the molecules that are only 

involved in their respective transport. Considering a one-

dimensional (1D) system that consists of three hydrogen 

atoms as shown in Fig. 2, a free hydrogen atom has a 

valence electron and thus, the wave function of the 

hydrogen 1s electron orbital serves as the basis function. 

Extending this into a multi-level orbital system, for 

example, a two-dimensional (2D) GNR, only the π-electron 

of the 2pz orbital serve as the basis function of the system, 

despite having 2 shells. 

Secondly, these wave functions are only affected by 

their nearest neighbours. In Fig. 2, the overlapping of wave 

 

 

 

Fig. 2 A 1D system with three hydrogen atoms with 1s 

orbital wave function 

functions of 1s only occurs among the atoms which are 

directly next to each other. This is known as the single-

neighbour tight binding model (Reich 2008) that puts 

limitations on the applied forces. Lastly, the discretization 

of the Hamiltonian operator and its basis functions into 

matrix equations. The structure of the lattice itself consists 

of discrete atoms at an atomic level. Considering the 

assumptions, the Hamiltonian matrix of three hydrogen 

atoms illustrated in Fig. 2 can be constructed as Eq. (2), 

where u1, u2 and u3 represent the 1s orbital wave function. 

The term u11, u22 and u33 are the self-interacting energies, 

whereas u12, u21, u23 and u32 are the interacting energies 

between respective nearest neighbour atoms. 
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(2) 

 

In Eq. (2), the wave function of the Schrödinger 

equation acts as the eigenfunction, and the accompanying 

Hamiltonian operator contains the eigenvalues that 

correspond to the allowable quantum energy states (Oxtoby 

et al. 2015). Applying this concept, the defect properties can 

be well exhibited in the Hamiltonian operator. The 

structural defect applied on GNR causes the changes in the 

interactions among the carbon atoms in GNR, which 

directly affect the components in that particular 

Hamiltonian operator. 

Han et al. (2007) observed that narrower graphene 

nanoribbons have larger band gap during temperature 

dependent conductance measurement. They have also 

conducted an investigation into the electronic transport 

namely on GNR conductance as a function of gate voltage 

measured at different temperatures (Han et al. 2007) which 

we will incorporate in future work. Tight-binding approach 

by Tong (2013) has been carried on deformed GNRs where 

stress was applied on ideal GNRs. However, the work by 

Tong (2013) and Han et al. (2007) focus on structurally 

well-defined graphene rather than single vacancy. de Brito 

Mota et al. (2015) uses Density Functional Theory (DFT) 

method to study and compare the electronic properties of 

perfect and defective nanoribbons by Boron Nitride (BN) 

(de Brito Mota et al. 2015). DFT unable to take into 

account the full interaction between atoms for a large 

system.  As such, tight-binding approach is more suited to 

be used in enormous calculations. It is also demonstrated 

that defects play an important role in graphene 

physicochemical properties (Terrones et al. 2012). In the 

review by Terrones et al., exploration is carried out on 

structure with different types of defects. In addition, most 

first-principles simulations were on the ferromagnetism and 

antiferromagnetism. It is found that minimal work focusses 

on the effects of single vacancy defect and doping on the 

band structure and density of states of carbon-based 

material. As such, these non-idealities in GNR are 

addressed in our study. 

Defects such as vacancy defects (Kim et al. 2011), 

Stone-Wales (S-W) defects and impurity defects (Zhang et 

al. 2011) occur in GNRs. Among the defects, SV defects are 

prevalent, and likely to trigger other defects like 
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Fig. 3 (a) SV defect; (b) DV defect in a AGNR lattice, 

with red dotes represent missing atoms 
 

 

divacancies (DV) (Vicarelli et al. 2015). The changes in the 

geometrical structure after defects are applied is a critical 

issue as it directly affects the periodic configuration of 

carbon atoms, as well as ways of interacting among each 

other. The determination of the actual shape of a defect is 

done through a relaxation procedure (Meyer et al. 2008, 

Zaminpayma et al. 2017) where the lattice length and 

position will re-adjust themselves due to the interaction 

among atoms. This research, however, does not consider the 

bond length, but only the interaction among atoms. Due to 

the interaction among atoms around the defect location, a 

variety of relaxed geometric configuration of carbon atoms 

is formed as shown in Fig. 3. 

SV defect occurs when one carbon atom is missing in 

GNR, resulting in a total of three bonds being lost which are 

between the missing atom and atom A, B and C 

respectively. DV defect occurs when two carbon atoms are 

missing in GNR, that results in a total of five bonds being 

lost which are between the missing atom and atom A, B, C, 

D and E. This configuration of the SV defect is taken for 

modelling framework. The missing bonds is due to the 

vanishing of respective tight-binding energies. 
 

 

3. Research design and implementation 
 

An ideal GNR model is constructed using the 

computational framework by Indra et al. (2018), for ZGNR 

and AGNR. Based on the Hamiltonian operator of ideal 

GNR, the framework script for defected GNR is developed 

respectively that allows a user to define the SV defect 

location on the GNR plane. The modelling algorithm 

simulation scheme is written in MATLAB scripts. The input 

for the scripts are the length of GNR, l, width of GNR, n, 

tight-binding energy, t, and the SV defect location, and the 

output are graphical plots such as subband structure, 

bandgap value, DOS and comparison between pristine and 

defective GNR. In this context, the development of an 

algorithm is carried out to remove the tight-binding energies 

from the Hamiltonian operator due to the missing carbon 

atoms. 
 

3.1 Generation of Hamiltonian Operator 
 

Referring to the simplifying assumptions for device 

modelling discussed in the previous section, the basis 

function used in this work is the wave function of 2pz 

electron. The graphene layer is stable because of the strong 

σ bond formed by sp2 (2s, 2px, 2py) orbitals, however, the 

electronic properties of planar graphene are dominantly 

decided by the 2pz orbitals (Tran et al. 2017). This 2pz 

orbital is not involved in the formation of an σ bond among 

carbon atoms, but involving in a free-moving delocalized π 

orbital, which is responsible in the charge transport. This is 

the only electron band of interest for modelling in this 

research. Generally, there are interactions of each π orbital 

with three of its nearest neighbour π orbitals in a graphene 

layer. However, this may or may not be the case when it 

comes to GNR with finite dimension unlike graphene. In 

this research, the dangling bonds at the edge carbon atoms 

in GNR are assumed to be passivated with hydrogen atoms, 

and they do not contribute the electronic states near the 

Fermi level of the whole system, thus reducing the 

complexity of the problem of the Hamiltonian device. In 

this context, the Hamiltonian device is generated with an 

open boundary condition. The width and length of GNR, 

ZGNR and AGNR are defined in unit cells accordingly, as 

shown in Figs. 4 and 5 respectively. 

The decomposition of a quasi-2D GNR structure into a 

1D structure is done by collapsing in the width direction 

into a single matrix form. They are defined as alpha matrix, 

α, and beta matrix, β that describe the interaction between 

all the alpha matrixes. The number of rows in alpha and 

beta matrices equals to the number of carbon atoms present 

in a GNR unit cell. The numbering sequence of these α and 

β during computational calculations are strictly followed 

throughout the research. 

Once both the alpha matrices and beta matrices are 

defined, they are combined to generate a final Hamiltonian 

matrix. The GNR Hamiltonian will have the same general 

structure for the same widths nanoribbon, but with different 

alpha and beta matrices content. For 4-ZGNR and 4-AGNR 

with lengths of 3, the Hamiltonian is shown in Eq. (3). The 

Hamiltonian matrix of 4-ZGNR in Fig. 4 is written as Eq. 

(4) and the formalism is based on the numbering sequence 

as proposed by Indra et al. (2018). 
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3.2 Generation of defective device Hamiltonian 
 

In this section, methods and algorithm used in this 

computational work to remove the t term automatically 

from the pristine Hamiltonian devices are discussed. 

Various numbers of loops are used in the MATLAB script to 

fulfil the purpose of developing the defective Hamiltonian 

matrix from a pristine one. They are not a single MATLAB 

command, but rather a series of conditions and limitations 

set in algorithms to extend the way of configuration of the 

defect location as discussed previously. The main concepts 

are discussed for a better understanding of the big frame of 

the script. The defect location is annotated as Eq. (5) 

 

𝐷𝑒𝑓𝑒𝑐𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (𝑥, 𝑦)𝑛 (5) 

 

where x represents the x-coordinate of the defect point; y is 

the y-coordinate of the defect point; and lastly, n is the 

direction of the defect point in the particular unit cell. The x 

term follows the unit cell sequence of the structure 

(extending horizontally), where the y term depends on the 

length of the GNR structure (extending vertically). Both x 

and y must be integers within the dimension of GNR 

structure, where n is in a string format, that can be either A, 

B or N, depending on the configuration of a desired SV 

defect location. Users must firstly have a good 

understanding of these configurations to define the desired 

defective Hamiltonian operator for the simulation. Figs. 4 

and 5, which are 4-AGNR and 4-ZGNR, respectively, well 

illustrate the definition of a defect point location. Fig. 4 

shows a 4-AGNR structure with numbered carbon atoms in 

the second unit cell. A red dot is noticeable at the position 

of 2A in the second unit cell. If a SV defect is to be at the 

location represented by the red dot as shown in Fig. 4, the 

annotation shall be (2,3)A. If one wants the other opposite 

carbon atom in the same unit cell to be the defect point as 

represented by the green dot in Fig. 4, then the defect 

location is annotated as (2,3)B. 

A similar method is applied to the ZGNR structure as 

well, except for the definition of n term. Fig. 5 shows a 4-

ZGNR structure with numbered carbon atoms in the second 

unit cell as well. For instance, the defect location at the 

location represented by the red dot in Fig. 5 is annotated as 

(2,3)N. In the case of ZGNR, the n value is consistently 

written as N because the ZGNR unit cell does not have a 

mirrored component like the AGNR unit cell. One can note 

that the numbering for ZGNR is in a vertically extending 

manner. 

 

 

 

Fig. 4 4-AGNR with defect locations at (2,3)A (red dot), 

and (2,3)B (green dot) 
 

 

Fig. 5 4-ZGNR with defect locations at (2,3)N (red dot) 
 

 

3.2.1 Defective alpha 
Alpha matrix shows how the carbon atoms interact 

among each other in the defined unit cell. As carbon atoms 

are arranged in a honeycomb configuration periodically in 

the GNR structure, the interactions among carbon atoms are 

periodically traceable. In the Hamiltonian matrix, the loss of 

the bonds will cause the neighbouring t terms to be 

removed, as long as they are within the boundary of the 

defined unit cell. As such, find() function is used to scan the 

surrounding t terms at the defect point. The defect location 

shown by the red dot in Fig. 5 is (2,3)N. In the matric form, 

it is expressed by Eq. (6) where the defect points appear to 

be at the third column of the second unit cell. Here, the t 

component that are likely to be removed are highlighted. In 

comparison to Eq. (4), one can easily find the affected t 

components that are removed due to the loss of bonds. The 

find() function is used to find those relevant t components in 

unit cells, and substitute them with zeroes. 
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(6) 

 

Similar approach applies to AGNR, except in a few 

cases due to the uniqueness configuration of their unit cell. 

Unlike ZGNR where each carbon atom interacts with two 

neighbours at most in one unit cell, the carbon atoms in 

AGNR interact with three carbon atoms within one unit 
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cell, most of the time. Knowing that the red dot point defect 

location in Fig. 4 is (2,3)A, losing a carbon atom at the 3A 

position will cause the bonding of 2A-3A, 3A-4A and 3A-

3B to be removed, as illustrated as in Eq. (7), where t terms 

are removed and replaced with highlighted ‘0’. In such 

cases, find() function cannot be implemented. Therefore, a 

manual loop of condition checking is written in the script to 

overcome the shortcoming. 
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 (7) 

 

3.2.2 Defective beta 
The construction of defective beta matrix in AGNR is 

more easily achieved than in the alpha matrix. In Fig. 4, the 

first carbon atom starts at the 2A position and the 

numbering continues clockwise (Indra et al. 2018). From 

the fourth atom onwards, bonding to other unit cells occur, 

that contributes to t terms in the beta matrix, and this is 

repeated at every 2-atom interval. Following this pattern, a 

combination of looping script is written to scan whether the 

checking condition meets the defect point given by users, 

where the values of y and n take important roles. When the 

condition meets, the particular t term will be removed and 

replaced with the value of zero in the pristine Hamiltonian 

matrix. However, there are some cases that the t term in 

beta matrix are not removed because the defect point does 

not occur at the situation aforementioned. In Eq. (7), the 

defect location of (2,3)A does not impact the respective beta 

matrix, as they do not interact with any other neighbouring 

unit cells. 

On the other hand, there is an alternate construction of 

the defective beta matrix in ZGNR where the interaction 

between unit cells occurs in a special way, as shown in 

Table 1. 

 

 

Table 1 Bonding pairs of unit cell o and p in 4-ZGNR 

 Unit cell o Unit cell p 

Bonding 

pairs 

o1 p2 

o4 p3 

o5 p6 

o8 p7 
 

The table is constructed based on the interaction 

between first and second unit cell of 4-ZGNR from Fig. 5, 

namely o and p, respectively. The carbon atoms are bonded 

to each other in ascending order, but jumping alternatively 

in between two unit cells. o1 will be paired with p2; p3 will 

be paired with o4, and this pattern will continue till the end 

of the width of the ZGNR structure. Thus, a script is written 

to find the bonding sequence of ZGNR between unit cells. 

Whenever a condition where the defect point location meets 

any of the bonding sequences, the particular t terms will be 

removed. For the 4-ZGNR defect location of (2,3)N in Fig. 

5, the affected bonding pair will be between the third atom 

from second unit cell and fourth atom from the first unit 

cell. The resulting Hamiltonian is the same as in Eq. (6), 

where one can see the single highlighted ‘0’ at β12 and β21 

areas, respectively. 
 

3.2.3 Defective Hamiltonian 
With the well-defined method of defective alpha and 

beta matrices generation, the defective Hamiltonian matrix 

is formed by simply substituting it with a zero value at the 

particular coordinates given by defective alpha and beta 

matrices in the previous section. In the script, H is the 

pristine Hamiltonian operator, and H_defected is a clone of 

H, which is modified to obtain the defective Hamiltonian 

operator. The coordinates that are specified by the 

preceding defective alpha and beta matrices generation are 

then replaced with zeroes, by using the command 

H_defected(m,n) = 0 in the script, where m represents x 

coordinate in Hamiltonian matrix, and n is the y coordinate. 

The complete defective Hamiltonian matrix of 4-AGNR 

with a defect location at (2,3)A and 4-ZGNR with defect 

location at (2,3)N are shown in Eqs. (6)-(7), respectively. 
 

3.3 Plotting of sub-band structure 
 

By applying basis functions as the constraint, the 

dispersion relation is the relationship between band 

energies, E, and the wave-number, k. Dispersion relation of 

a system describes the effect of dispersion in the system 

over the travel of waves within the system. It simply relates 

the electron energy to the respective wave vector (Datta 

1997). When the basis functions are considered as the 

constraint, the dispersion relation describes the relationship 

between band energies, E and the wavenumber, k. When 

one sums up all the allowed energy levels at k-points for a 

given momentum, the band structure of a system can be 

obtained. From the visualization of the band structure, one 

can induce the intrinsic characteristics of the system (either 

metallic, semiconducting or insulating) from the minimum 

band-gap between the minimum conduction band (CB) and 

maximum valence band (VB). The range of k values is 

usually taken from the first Brillouin Zone (BZ) which is 

from π to π. 
 

 

 

Fig. 6 1D N – atom chain 
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Thus, corresponding to this, the Hamiltonian matrix can 

be refined with the derivation of dispersion relation in a 

general form of Eq. (8), with the visual aids as shown in 

Fig. 6. 
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(8) 

 

By definition, ε represents the self-interacting energies 

of the atoms, represented by a black cross, whereas t 

represents the interaction energies of atoms amongst each 

other. A periodic boundary condition is added in the chain 

as the bolded t that shows that the first atom and N-th are 

adjacent to each other. The added condition allows the 

expression of the overall matrix equation into a single linear 

equation form as shown in Eq. (9) 
 

1 1n nn nE t t  −  += + +
 (9) 

 

Due to the fact that the linear matrix equation is time-

independent, the approximation of a wave function can be 

done with a plane wave Eq. (10) (Datta 1997), simplifying 

it into a function of wave number, k, as shown in Eq. (11). 
 

i

0 e nka

n

+ = 
 

(10) 
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i kan
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n

e
e

e

+ −
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(11) 

 

Thus, the final dispersion relation is formed as Eq. (12), 

and it is ready to be used for the energy spectra calculation 

throughout this research. 
 

2 cos
ika ika

E te te t ka 
− +

= + +  +
 

(12) 

 

 

 

3.4 Plotting of Density-of-States (DOS) 
 

DOS describes the number of states available to be 

occupied at each energy level. For a zero DOS, it simply 

means that none of the states at that particular energy level 

is available to be occupied. In semi-classical physics, DOS 

of a semiconductor represents the energy of the number of 

solutions to Schrödinger’s equation. There are various ways 

for the DOS calculation, one being done mathematically 

with the delta δ function (Datta 2005). Eq. (13) represents 

the total DOS of a particular system with N bands. The 

value of N is twice the number of electrons that are 

involved in the transport due to conduction-valence sub-

band pair by each electron. 
 

( ) 
1

1
( )

2

N

i

i

DOS E E k E dk
=

= − 
 

(13) 

 

Solving the delta function gives Eq. (14), which is used 

to compute one of the DOS. 
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2
i
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G
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(14) 

 

Another equation to compute DOS is by the methods of 

Green’s function (Datta 1997, Li and Lu 2008). The relation 

between Green’s function and DOS is described by Eq. 

(15). 

  ( )
1

Im
F

DOS E Trace G


=

 

(15) 

 

where GF is the retarded Green’s function expressed by 
 

( ) 
1

*
retarded

G E i I H
−

= + −
 

(16) 

 

Note that η is a very small imaginary value preventing 

the inverse matrix from diverging, I is an identity matrix, 

and H is the Hamiltonian operator matrix. 

 
 

             

Fig. 7 Simulated sub-band structure for AGNR with widths 6, 7 and 8 respectively 
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One should note that the calculation of DOS via band 

structure will not contain any lengthy information of the 

system unlike Green’s function method, due to the existence 

of the Hamiltonian operator. Both methods are used in this 

work for comparison purposes. 
 

 

4. Results, analysis and discussion 
 
4.1 Simulated sub-band structure 
 

AGNR electronic properties depend on width, 

alternating between 2 semiconducting states, followed by a 

metallic state, as shown in the sub-band structure in Fig. 7. 

The simulated result has a close agreement with other 

works (Tong 2013), as shown in Fig. 8. AGNR is 

semiconducting for widths n = 3p and n = 3p + 1, whereas it 

 

 

 

 

is metallic when having widths of n = 3p + 2. These are 

consistent with the simulated result for 6-AGNR, 7-AGNR 

and 8-AGNR, respectively. 

For ZGNR, the sub-band structure is degenerated at 

points k = 2/3. This goes for all widths of ZGNR, where the 

increasing widths increase the number of bands, as shown 

in Fig. 9. When SV defect is introduced inside the atomic 

structure of AGNRs, the shape of the sub-band structure and 

bandgap will change. Figs. 10, 11 and 12 show the 

simulated defective sub-band structure for 6-AGNR, 7-

AGNR and 8-AGNR at length of 3, 10 and 20. The SV 

defect is fixed at the intersection of 2𝑛𝑑 row and 5𝑡ℎ 

column. The blue lines represent the pristine AGNR sub-

band structures, and the red lines represent the defective 

AGNR sub-band structures. For the annotations on the top 

of sub-band structures, ‘Bandgap’ represents the band gap 

of defective AGNRs and the ‘Bandgap2’ represents the 
 

 

 

Fig. 8 Sub-band structures benchmark (Tong 2013) 

           

Fig. 9 Simulated sub-band structure for 4-ZGNR, 5-ZGNR and 30-ZGNR 
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Fig. 10 Defective sub-band structure for 6-AGNR at length of 3, 10 and 20 

           

Fig. 11 Defective sub-band structure for 7-AGNR at length of 3, 10 and 20 

           

Fig. 12 Defective sub-band structure for 8-AGNR at length of 3, 10 and 20 
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band gap of pristine AGNRs. One can notice that red lines 

and blue lines do not coincide with each other at most of the 

energy level, indicating that SV defect does cause changes 

in sub-band structure. This is because SV defect will cause 

removing of -2.7eV tight-binding energy at certain position 

inside the Hamiltonian matrix. 

When we observe the sub-band structure of defective 6-

AGNR at length of 3, 10 and 20, we found that red lines 

deviate significantly when compared with blue lines for the 

defected sub-band structures of 6-AGNR at the length of 3. 

However, for the defected sub-band structures of 6-AGNR 

at the length of 20, red lines almost coincide with blue lines. 

For pristine 6-AGNR at length of 3, there is 36 carbon 

atoms inside the atomic structure. With SV defect, defective 

percentage is calculated to be 2.78% whereas the defective 

percentage for the 6-AGNR at length of 20 is only 0.42% as 

there are 240 carbon atoms inside a pristine atomic 

 

 

 

 

structure. Higher defective percentage will cause larger 

deviation inside the atomic structure. The same patterns 

also can be observed at the sub-band structure of defective 

7-AGNR and 8-AGNR. In addition, it is found that 

defective AGNR has narrower bandgap compared with 

pristine AGNR. This is in agreement with the result of 

Chang et al. (2013). 

Similar to AGNR, the shape of the sub-band structure of 

ZGNR will change when SV defect is introduced inside the 

atomic structure. Figs. 13 and 14 show the simulated 

defective sub-band structure for 4-ZGNR and 5-ZGNR at 

length of 15, 20 and 30. The SV defect is fixed at the 

intersection of 2nd row and 5th column. The blue lines 

represent the pristine ZGNR sub-band structures, whereas 

the red lines represent the defective ZGNR sub-band 

structures. For the annotations on the top of sub-band 

structures, ‘Bandgap’ depicts the band gap value of 

           

Fig. 13 Defective sub-band structure for 4-AGNR at length of 15, 20 and 30 

           

Fig. 14 Defective sub-band structure for 5-AGNR at length of 15, 20 and 30 
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defective ZGNRs whereas ‘Bandgap2’ shows the band gap 

value of pristine ZGNRs. One can notice that red lines and 

blue lines do not coincide with each other at every energy 

level, indicating that SV defect prompted changes in sub-

band structure of ZGNR. This is due to the fact that tight-

binding energy of -2.7eV are removed at affected position 

inside the Hamiltonian matrix. As ZGNR is metallic, 

pristine ZGNR has zero band gap and remains the same 

when SV defect is introduced inside the atomic structure. 

Nevertheless, when the sub-band structure of defective 

4-ZGNR at length of 15, 20 and 30 is observed, the red 

lines diverge from blue lines for the defective sub-band 

structures of 4-ZGNR at the length of 15. The defective 

sub-band structure of ZGNR is not as smooth as pristine 

ZGNR or defective AGNR. There are many Van Hove 

singularities peaks at the defective ZGNR sub-band 

structure. However, for the defected sub-band structures of 
 

 

 

 

4-ZGNR at the length of 30, the deviation is much smaller. 

For pristine 4-ZGNR at length of 15, there is 120 carbon 

atoms inside the atomic structure. As such, SV defective 

percentage is at 0.83% whereas defective percentage for the 

4-ZGNR at length of 30 is lower at 0.42% since it contains 

240 carbon atoms inside the pristine atomic structure. Thus, 

a higher defective percentage will cause larger deviation 

inside the atomic structure. Similar patterns can also be 

observed at the sub-band structure of defective 5-ZGNR. 

 

4.2 Numerical computation of DOS 
 

The computation of DOS for both AGNR and ZGNR is 

done using the delta equation substituted with distribution 

function from Eq. (14). Numerical DOS does not contain 

information regarding length of GNR. Numerical DOS 

varies with widths, converging to approximately the same 
 

 

 

 

           

Fig. 15 Numerical DOS plots for 6-AGNR, 7-AGNR and 30-AGNR respectively at length of 10 

           

Fig. 16 Numerical DOS plots for 4 – ZGNR, 5 – ZGNR and 30 – ZGNR respectively at length of 10 
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shape, by increasing the structure widths. These applied to 

both AGNR and ZGNR structures, which are illustrated in 

Figs. 15 and 16, respectively. Fig. 15 shows the numerical 

DOS plots for 6-AGNR, 7-AGNR and 30-AGNR 

respectively at length of 10 for pristine and defective 

structure where the defective location is at the intersection 

of 2nd row and 5th column. Fig. 16 shows the numerical 

DOS plots for 4 – ZGNR, 5 – ZGNR and 30 – ZGNR 

respectively at length of 10 for pristine and defective 

structure where the defective location is at the intersection 

of 2nd row and 5th column. At large enough widths, the 

plot takes the form similar to that of a 2D graphene sheet. 

Note that the energy peaks of numerical DOS for either 

AGNR or ZGNR correspond to the value of 2.7 eV, the 

tight-binding energy for the 2pz π-orbital. 

The blue and red lines represent the characterizes of 
 

 

 

 

pristine and defective AGNR and ZGNR numerical 

computation DOS respectively. The removal of tight 

binding energies affects the numerical DOS as well as sub-

band structures. From the red lines in Figs. 15 and 16, it is 

observed that the value of defective numerical computation 

DOS is lower than the value of pristine numerical 

computation DOS. 

 

4.3 Green’s function approach 
 

The DOS plotting in this section is simulated using the 

retarded Green’s function from Eq. (16) which is a 

subcomponent of the DOS equation in Eq. (15). The DOS 

equation directly involves the Hamiltonian operator. Thus, 

any changes in the content of the Hamiltonian matrix will 

affect the Green’s function DOS plot, including the removal 
 

 

 

 

 

Fig. 17 Green’s function DOS for 6 – ZGNR, 6 – AGNR, 7 – AGNR and 8 – AGNR of lengths of 3, respectively. Blue 

lines represent the pristine GNR plots; red lines represent the defective GNR plots 

 

Fig. 18 Green’s function DOS for 20 – ZGNR, 20 – AGNR, 50 – ZGNR and 50 – AGNR of lengths of 3, respectively. 

Blue lines represent the pristine GNR plots; red lines represent the defective GNR plots 
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of tight-binding energies due to the SV defect. Fig. 17 

depicts the resulting Green’s function DOS plot, where 6-

ZGNR, 6-AGNR, 7-AGNR and 8-AGNR at length of 3 

with defect location at row of 2 and column of 5 are 

illustrated. The blue and red lines represent the pristine and 

defective GNR Green’s function DOS respectively. One can 

notice that both lines do not coincide with each other at 

most of the energy level, indicating that SV defect does 

cause an energy peak shift in DOS. Electron confinement 

occurs at different specific energy levels when SV defect is 

applied. 

However, the effect of the SV defect is significant for 

GNRs below a width of 10. At fixed length of 3 with width 

larger 20, Green’s function DOS for pristine and defective 

GNR begin to coincide with each other. Both 20-AGNR and 

20-ZGNR in Fig. 18 has moderate agreement with one 

another. The agreement improves dramatically when the 

widths are increased to 50. Both lines are overlapping with 

each other, showing that the effects of SV defect becomes 

lesser in a large-scale GNR due to the lower percentage of 

defect. For a smaller width GNRs, the percentage of SV 

defect is higher and vice versa. 
 

 

5. Conclusions 
 

A computational nanoelectronics algorithm based on 

tight-binding model for GNR with point defect is 

implemented in MATLAB. The GNR model is simulated 

under NEGF formalism, with three main simplifying 

assumption that are the utilization of basis function, 

Hamiltonian operator discretization and plane wave 

approximation. The tight-binding model is generated by 

collapsing a quasi-2D structure of GNR into an equivalent 

1D matrix system by using alpha and beta matrices, which 

represent the interactions in the unit cell and between unit 

cells, respectively. With SV defects, the components within 

these matrices change due to the disappearance of tight 

binding energies of carbon atoms in graphene. Our findings 

show that there are differences between band structures and 

numerical computation DOS of pristine and defective GNR 

as the Hamiltonian operator is changed due to 

disappearance of tight binding energies of carbon atoms in 

GNRs. These defects decrease the value of numerical DOS 

and band structure. Green Function’s DOS shows that the 

defects shift the energy confinement on GNR, making 

different energy peak at specific energy levels. However, 

the effect of defects is not significant in GNR with widths 

beyond 20 units of carbon atoms. The model could be 

further improved by including other common vacancy 

defects such as divacancy and S-W defect (Chang et al. 

2013). In addition, our future work will also include by the 

addition of substitutional impurities atoms in GNR. In this 

context, it can be implemented by substituting the bonding 

energy, t term. The possible atoms to be bonded with carbon 

atoms in GNR are boron and nitrogen (Ashrafi et al. 2013). 

A simple GNR simulator known as GNRSIM has been 

developed using graphical user interface (GUI) that can be 

utilized as educational and development kits in the learning 

and teaching processes (Wong et al. 2018). 
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