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Dynamic analysis of nanosize FG rectangular plates
based on simple nonlocal quasi 3D HSDT
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Abstract. In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of
nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the
natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to introduce
the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the
impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by
implementing Hamilton’s principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are
compared and examined with available results in the literature and a good agreement is observed. Finally, the influence of the
various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to length ratio on the

dynamic properties of the FG nanoplates is illustrated and discussed in detail.
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1. Introduction

The discovery of carbon nanotubes (CNTSs) introduced a
novel era in the nano scientific world (lijima 1991). Since
then, several investigations have been realized in the topic
of the physical, electrical, mechanical and chemical
behaviors of the nanostructures. The primary works
demonstrate that the mechanic properties of the nano-
structures are different from other well-employed materials
(Miller and Shenoy 2000, Bellifa et al. 2017a, Bensaid
2017, Ehyaei et al. 2017, Karami et al. 2017, Bouadi et al.
2018, Bensaid et al. 2018, Mehar and Panda 2018,
Bakhadda et al. 2018, Akbas 2018, Tang and Liu 2018,
Yazid et al. 2018, Youcef et al. 2018, Mokhtar et al. 2018,
Kadari et al. 2018, Karami et al. 2018a, b, c, d, Cherif et al.
2018, Draoui et al. 2019, Adda Bedia et al. 2019, Karami et
al. 2019a, b, Semmah et al. 2019). The important properties
of such structures have favored their applications in several
fields such as nanodevices, nano-bearings, nanooscillators,
hydrogen storage, and electrical batteries.

The plate-as nanostructures like nanoplates or nano-
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scale sheets are very important kinds of the nanostructures
with 2D shapes (Shahadat et al. 2018). They contain
important mechanic properties (lijima 1991, Miller and
Shenoy 2000, Shen and Zhang 2010, Pradhan and Phadikar
2009, Eltaher et al. 2012, 2016, Ebrahimi and Salari 2015,
Khorshidi et al. 2015, Chemi et al. 2015, Akbas 2016,
Ghorbanpour Arani et al. 2012, Janghorban 2016, Wu et al.
2018) and with these unique characteristics they become
ideal candidates for multifarious field of nanotechnology
industry incorporating energy storage (Ma et al. 2008),
nano electrome-chanical systems, strain, mass and pressure
sensors (Sakhaee-Pour et al. 2008a, b), solar cells (Aagesen
and Sorensen 2008), photo-catalytic degradation of organic
dye (Ye et al. 2006), composite materials (Rafiee et al.
2010) and ect. The size-dependent continuum modeling of
the nanostructures has taken a wide attention by the
scientific community because the controlled
experimentations in nanosize are difficult and molecular
dynamic simulations are highly expensive computationally.
We can found in the literature various size dependent
continuum models such as modified couple stress theory
(Koiter 1969, Mindlin and Tiersten 1962, Toupin 1962),
strain gradient elasticity theory (Nix and Gao 1998, Lam et
al. 2003, Aifantis 1999, Li et al. 2016) and nonlocal
elasticity theory (Eringen 1972). Among these models, the
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theory of nonlocal elasticity has been widely employed
(Peddieson et al. 2003, Reddy 2007, Reddy and Pang 2008,
Heireche et al. 2008, Murmu and Pradhan 2009a, b, Wang
2009). To overcome the shortcomings of the conventional
elasticity theory, Eringen and Edelen (1972) proposed the
nonlocal elasticity model in 1972. They modified the
conventional continuum mechanics to consider the small
scale influences. It should be noted that in the nonlocal
elasticity theory, the tensor of stress at an arbitrary point in
the continuum of nano-material is related not only on the
tensor of strain at that point but also on the tensor of strain
at all other points in the continuum. Both the atomistic
simulation data and the experimental studies on phonon
dispersion indicated the accuracy of this remark (Eringen
1983, Chen et al. 2004).

The functionally graded materials (FGMSs) are the novel
generation of new composite materials in the family of
engineering composites, whose characteristics are changed
smoothly between two surfaces and the benefits of this
combination lead to new structures which can withstand in
important mechanical loads under high temperature
environments (Ebrahimi and Rastgoo 2008a, b). Presenting
new characteristics, FGMs have also attracted considerable
research interests, which were principally focused on their
bending, buckling and dynamic properties of FG structures
(Ebrahimi et al. 2009a, b, Bouderba et al. 2013, 2016,
Hebali et al. 2014, Meziane et al. 2014, Houari et al. 2016,
Boukhari et al. 2016, Bennoun et al. 2016, Bousahla et al.
2016, Bellifa et al. 2017b, Sekkal et al. 2017a, b, Benahmed
et al. 2017, Atmane et al. 2017, Shahsavari et al. 2018,
Benchohra et al. 2018, Younsi et al. 2018, Faleh et al.
2018a, b, Bouazza et al. 2018, Zine et al. 2018, Bouhadra et
al. 2018, Bourada et al. 2018, Boukhlif et al. 2019, Khiloun
et al. 2019, Bourada et al. 2019, Zaoui et al. 2019).

In addition, structural complements such as plates,
beams and membranes in micro or nano-length size are
often  employed as elements in  micro/nano
electromechanical ~ systems  (MEMS/NEMS).  Thus
understanding the mechanics and physics characteristics of
nanostructures is necessary for its practical uses. In past
decades, the dynamic of FGMs has been employed
extensively. Malekzadeh and Heydarpour (2012) studied the
dynamic behavior of rotating FG cylindrical shells under
thermal environment by using the first-order shear
deformation theory (FSDT) of shells. Ungbhakorn and
wattanasakulpong (2013) examined the thermo-elastic
dynamic response of FG plates carrying distributed patch
mass based on HSDT. Kumar and Lal (2013) examined the
first three natural frequencies of the free axisymmetric
vibration of the 2D FG annular plates resting on Winkler
foundation by employing differential quadrature technique
and Chabyshev collocation method. Based on the 3D theory
of elasticity and considering that the mechanical
characteristics of the materials changed continuously in the
direction of thickness, the 3D free and forced vibration
investigation of FG circular plate with various boundary
conditions was established by Nie and Zhong (2007). 3D
elasticity theory was utilized, and novel sets of admissible
functions for the kinematics were developed to improve the
effectiveness of the Ritz technique in modeling the behavior

of the cracked plates. Matsunaga (2008) analyzed the
buckling stresses and the natural frequencies of FG plates
by considering the influences of transverse shear and
normal deformations. Ke et al. (2013) proposed a non-
conventional micro-plate model for the axisymmetric
nonlinear dynamic analysis of annular FG micro-plates by
using the modified couple stress theory, FSDT and von-
Karman geometric nonlinearity theory. Ke et al. (2012) also
investigated the bending, stability and dynamic of annular
FG micro-plates based on the modified couple stress theory
and FSDT. Asghari and Taati (2013) employed a size-
dependent approach for mechanical investigations of FG
micro-plates based on the modified theory of couple stress.
Kocaturk and Akbas (2012) examined the thermal influence
on post-buckling response of FGM beams based on
Timoshenko beam theory and by employing finite element
formulation. The vibration characteristics of beam with
power law properties graduation in the transversal or the
axial directions was reported by Alshorbagy et al. (2011).
Recently, Eltaher et al. (2012, 2013a) used a finite element
approach for dynamic investigation of FG nanoscale beams
based on nonlocal Euler-Bernoulli beam theory. They also
discussed the size-dependent bending-buckling response of
FG nanobeams by using the nonlocal continuum theory
(Eltaher et al. 2013b). Dynamic behavior of simply
supported Timoshenko FG nanoscale beams were studied
by Rahmani and Pedram (2014). Zemri et al. (2015)
investigated the mechanical response of FG nanoscale beam
using a refined nonlocal shear deformation theory beam
theory. Belkorissat et al. (2015) examined the dynamic
properties of FG nano-plate using a new nonlocal refined
four variable theory. Ahouel et al. (2016) studied the size-
dependent mechanical behavior of FG trigonometric shear
deformable nanobeams including neutral surface position
concept. Bounouara et al. (2016) presented a nonlocal
zeroth-order shear deformation theory for free vibration of
FG nanoscale plates resting on elastic foundation. Khetir et
al. (2017) developed a novel nonlocal trigonometric shear
deformation theory for thermal buckling analysis of
embedded nanosize FG plates. Bouafia et al. (2017)
proposed a nonlocal quasi-3D theory for bending and free
flexural vibration behaviors of FG nanobeams. Besseghier
et al. (2017) analyzed the dynamic response of embedded
nanosize FG plates using a new nonlocal trigonometric
shear deformation theory. Mouffoki et al. (2017) examined
the dynamic response of nonlocal advanced nanobeams in
hygro-thermal environment using a new two-unknown
trigonometric shear deformation beam theory. Karami et al.
(2019c) investigated the wave propagation of FG
anisotropic nanoplates resting on Winkler-Pasternak
foundation. Recently, several authors proposed advanced
plate/beam theories to study the mechanical behavior of
nano- or macro-structures (Belabed et al. 2014, Hamidi et
al. 2015, Kar and Panda 2016a, b, Bousahla et al. 2014,
Beldjelili et al. 2016, Sahoo et al. 2016, Draiche et al. 2016,
Bouazza et al. 2016, Mehar and Panda 2016, Becheri et al.
2016, Katariya et al. 20173, b, c, El-Haina et al. 2017, Fahsi
et al. 2017, Mehar et al. 2017, Ebrahimi et al. 2017, Chikh
et al. 2017, Sahoo et al. 2017, Abdelaziz et al. 2017, Singh
and Panda 2017, Hirwani et al. 2017, Katariya and Panda
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2018, Ellali et al. 2018, Mehar et al. 2018a, b, Katariya et
al. 2018a, b, Kaci et al. 2018, Attia et al. 2018, Dash et al.
2018, Belabed et al. 2018, Katariya and Panda 2019,
Katariya et al. 2019).

In the current work, the dynamic of FG nanoscale plates
is studied based on the cubic quasi 3D high shear
deformation theory in the conjunction with the nonlocal
elasticity model. By considering the integral term in the
kinematic led to a reduction in the number of variables and
equations of motion. The Navier solution is employed to
investigate the dynamic behavior of the FG nanoplates. It is
considered that the material characteristics are varying
within the thickness according to the power law variation.
Numerical results are provided to be utilized as benchmarks
for the application and the design of nanoelectronic and
nano-drive devices, nano-oscillators, and nanosensors, in
which nanoplates act as basic elements. They can also be
useful as valuable sources for validating other approximate
methods and formulations.

2. Theory and formulation
2.1 Nonlocal power-law FG nanoplate equations

Consider a rectangular nanoscale plate of length a,
width b, and total thickness h and composed of FGMs
within the thickness as demonstrated in Fig. 1.

E(2)=(E. —Eq)Vi (D) +Ep 1)

P(2) =(pe = Pn Vs (@) + o )

where the subscripts ¢ and m denote the ceramic and
metallic constituents, respectively, and V: is the volume
fraction that is given by the following expression

Vi~ 2+3) ®

where n is the gradient index and takes only positive values.
Poisson’s ratio v is the same for all the ceramic/ metal
materials that are employed here, so it is considered to be
constant and is assumed to be equal to 0.3 throughout the
investigation (Reddy 2011). The typical values for metals

Material 1

' b
Fig. 1 The geometry of a FGM plate

Table 1 The material properties of the employed FG plate

. Properties
Material
E (GPa) v p (kg/m3)

Aluminum (Al) 70 0.3 2702
Alumina (Al203) 380 0.3 3800
Zirconia (ZrO2) 200 0.3 5700
SizNa 348.43 0.3 2370
SUS304 201.04 0.3 8166

and employed in the FG nanoscale plate are reported in
Table 1.

2.2 The nonlocal elasticity theory

In nonlocal theory, the field of stress at each point body
is a function of the field of strain. So stress plays a
considerable role in the model which is presented by the
following expression (Khorshidi et al. 2015)

ty = ar(|X = X])oy (X")av @)

where X is a point on the body that the tensor of stress on its
efficacy, X’ can be any point else in the body, V is the
volume of a region of the body that integral is considered
on it, gy is the tensor of classical stress, a(|X' — X|) is the
nonlocal kernel function related to the internal characteristic
length. With respect to characteristics of nonlocal kernel
function a(JX' — X|) that are presented by Eringen (1983),
taking in a Greens function of a linear differential operator,
3, can be defined as following

Sa(|X=X[)=da(]x - X|) (5)

Substituting Eq. (5) into Eq. (4), the primary expression
(1) form of the following differential equation is determined
as

~

St =0y (6)

For the nonlocal linear elastic solids, the equations of
motion have the following form (Narendar 2011)

tj,j + fi = p(2)0; (7

where p is the mass density, fi body loads and u; is the
vector of displacement. Substituting Eq. (7) into Eq. (6)
yields to the following relation

Oij +S(fi —P(Z)Ui)zo (®)

The nonlocal theory with the linear differential operator
for the 3D case is presented by the following expression
(Sakhaee-Pour et al. 2008a)

I =1-p?v? Q)
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where V2 is the Laplace operator, which in Cartesian
coordinates is defined by V2 =82/ x>+ &2/ y>+ &%/ 22 and u
= eoa, a is the internal property length and ey is the material
constant which is predicted by the experiment. The value of
the nonlocal parameter is related to the boundary condition,
the chirality, the mode shapes, the number of walls, and the
nature of motions (Hosseini-Hashemi et al. 2013a). There is
no accurate way to compute this parameter, but it is
considered that the factor be obtained by conducting a
comparison of dispersion curves from nonlocal elasticity
and lattice dynamics of nano-material crystal structure
(Hosseini-Hashemi et al. 2013a).

2.3 The assumptions made in the present theory

(1) The components of displacement u and v are the
axial displacements of the middle plane in x and y
directions respectively, and w is the vertical
displacement of the middle plane in z direction.
The magnitude of the vertical displacement w is not
of the same order as the thickness h of the plate and
is small with respect to the plate thickness.

(2) The axial displacements, u and v incorporate three
parts:

e A displacement part equivalent to the displacement
used in the classical plate theory (CPT).

e A displacement component owing to the shear
deformation which is included via undetermined
integral.

e The shear strains in z direction are zero in the bottom
and top faces of the plates.

(1) The vertical displacement w in z direction is
considered to be a function of y and x coordinates.
(2) The nanoplate is subjected to the vertical load only.

The displacement field of the cubic shear deformation
model is expressed as below (Abualnour et al. 2018)

U(x, ¥, 2) = Ug (X, y) - z% tky f (z)j@(x, y)dx  (10a)

V(X,Y,2) =Vo(X,y) -2 % +k, f (z)'[e (x,y)dy  (10b)

W(X, Y, 2) =Wy (X, ¥) +3(2)e, (X, Y) (10c)

The coefficients ki and k, depends on the geometry. In
this work, the shape function is considered based on the
cubic function given by

5( 478
f(z):z(z—s?] (11)

and uo (X, Y), Vo (X, ¥), Wo (X, ¥), € (X, y) and ¢, (x, y) are the
five variables displacement functions of middle surface of
the plate.

With the linear supposition of von-Karman strain, the
displacement strain field will be as what follows

&y &y Ky K3
gy = 83 +z kg + (@) ky
0
vy ] (kY Ky (12)
0
{7 ﬂ} = g(z){7 {;}, £,=0'(2) &l
Vxz Vxz
g O,
g2 oX kb ox
g)(() _ N k>k() 0wy
y (— P ! y (=)~ 2 !
OX oy
0 b
oA | ) sy
oy X “Txdy | (13a)
ks k.0
)S/ = kze y

ks, klgj.edx+k2§jedy

. &=0, (13b)

op
k, | 0dy+—%
{7,32} _ 2_[ y Y
0
Vel K j o dx+ 222
OX
The integrals presented in the above equations shall be

resolved by a Navier type solution and can be expressed as
follows

2 2
ijng:A-ﬁ, ijgdyzs'ﬁ'
oy Oxoy OX Oxoy
00 00 (14)
Ide=A'—, jedy=B'—
OX oy

where the coefficients A’ and B’ are expressed according to
the type of solution employed, in this case by using Navier.
Therefore, A’ and B’are written as follows

. 1 , 1
AZ—?' B:_F, k=a®, ky=p° (15)
where o and £ are defined in expression (29).

The Hamilton’s principle is utilized to determine the
equation of motion. The Hamilton’s principle in case of
local form is obtained as what follows (Al-Basyouni et al.
2015, Bourada et al. 2015, Attia et al. 2015, Yahia et al.
2015, Bellifa et al. 2016, Benadouda et al. 2017, Zidi et al.
2017, Klouche et al. 2017, Hachemi et al. 2017, Fourn et al.
2018)

t
0=[s(U-K)dt (16)
0
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where ¢ is the variation operator, U is the strain energy, and
K is the kinetic energy.
The variation of strain energy of the plate is given by

o0&, +0,0&,+0,0¢&
_J‘ X X y y z z dAdz
+Txy57xy +Ty257/yz +Tx257xz
[N NS0+ NG NS 1S gy
A
+MRS kY +MPS kS + MR SkE +MESks

FMESKS + M TKS,+ 55,8 75, + 555 7%, |dA
where A is the top surface and the stress resultants N, M,
and S are expressed by

h/2
(Ni'Mib, Mis): I(l,Z, f)oydz
hy2

(i=xy.xy)

b2 (18a)

= J‘ g (Z)O-zdz
-h/2
and
h/2

XZ ! J‘ g z-XZ !
“h/2

(18b)

The variation of kinetic energy is expressed as
K =_|'[u SU+VSEV+WSEW] p(z)dV
\Y
- J' {1 [toBtig +VodVe + Vipd Vi
A
. A8V, OV
— Il uo -
OX oX

N 056 80
+Jl{(klA)(uo P +&5u0]

+(k2 B)( %+%6 JJ
(19)

(2 28, iy 23 i
ox ox oy oy
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where dot-superscript convention indicates the differentia-
tion with respect to the time variable t; p (z) is the mass

density; and (lo, Jo, I1, l2, J1, J2, K2, K3) are mass inertias
expressed as

h/2

(19,30, 11,1,)= I(l,g(z),z,zz)p(z)dz

—h/2

(20a)

h/2

(32 KaKs)= [(1(22 1) 122.9%() pl2)diz (20b)

-h/2

Substituting the expressions for U and 6K from Egs
(18) and (19) into Eqg. (20) and integrating by parts and
collecting the coefficients of duo, dvo, oWo, 66, and dg; , the
following equations of motion of the plate are obtained as

N B ey
X oy oX X
oN,, oN
SVy: GXV+EV:IOVO—I18W +k, B lee
X y
2Mb 9PM2 9PMD
5w0:a'v2|x+2 2+ —F
OX oxoy oy
= Iyl + |1[%+%]— 1,V 2,
ox oy
0% 0%
+J,| kA —+k,B’ +J
2[ 1A PYe ] 09,
0*M
. S S ' [ Xy
56: —klMX—kzMy—(k1A+sz)W 1)

a5 asy
+k A2 4k, B —2
164 oy

- —Jl{k1 5;(0 +k, B %]
-Kz(m s —< of 2]

D2V, . 04,
kl k2 20
o oy
S

5o, :@j}syz
ox oy

_Nz :‘]OWO +K3¢z

2.4 The nonlocal elasticity model for FG nano-plate

The constitutive relations of nonlocal theory for a FG
nano-plate using Eq. (6) can be written as

_Cll C12 C13 0

GX GX 0 0 gX
Oy Oyl [CaCpCyu 0 0 0]¢
;fz v fz _ Ci3 CpaCyy 0 0 0 g, 22)
X w| [0 0 0Ci 0 0|7y
Ty Twl {0 0 0 0Cy 0|7y
T Pa) |0 0 0 0 0 Gyl
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where
E(2)(1-
C11=C20 = Co3 = (1—(2)v()(1+v 3) ’
E(z
C12 = C13 = C23 = %' (23)

Elz
C44=055:C66=%’

Integrating Eq. (20) over the plate’s cross-section area
yields the force-strain and the moment-strain of the
nonlocal refined FG nano-plates as follows

Ny Ny
Ny Ny
N W N W
My My
b b
M y VZ M y
b (TH b (=
Myy My ou,
YH YH x
M M: Ny
M;, Ms, ; & N
- 1 24a
A A, O By By O By B, 0 Xy 2w, ( )
A, A, 0 B, Bp 0 B) By 0 Xy ox?
0 0 Ag O 0 Bs 0O 0 By O _Pw
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Bll BlZ 0 D11 D12 0 Hll H12 0 Y13 k29
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Where the cross-sectional rigidities are defined as
follows

(Aij'Aﬁ’Bij’DiijﬁvDﬁvHﬁ)

- J-zcij (1, 0%(2), 2,22, f(z),z T (2), fz(z))jz (253)
(xij!Yij’Yijs!Zij): I(l,z, f(z)!gl(z))gl(z)cijdz (25b)

The nonlocal equations of motion of FG nano-plates in
terms of the displacement can be obtained by substituting
Egs. (24a) and (24b), into Eq. (21) as follows

Agp d3pVg + Agg di1Vg +(A12 + Aee) doUg + X056,

—Byy dypWo —(Bya +2Bgg) dy 1 Wg

+ (B8 (A +ky B') dya o+ (BSoky + Bk, ) dp0
=(1— 192) (14 — 15 dyVip +J; B'ky dp6),

(26a)

Agy d3pVg + Agg d11Vg +(A12 + Aes) doUg + X 30,6,

— B daooWg —(512 +2Bgg) d1 W

+ (B8 (kA +ky B')) dyy o+ (BSoky + BEK, ) dy00
~(1- 172) (199 — 1 Vi + 3, Bk, d, )

(26b)
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where di, dij and dijm are the following differential
operators
& o
dj = 5 , djj=———
XiOX; OX;0X 0%,
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Giim = Sk axx
iOXOX| OXpy

(27)

G-\ Gjlm=12
'8xi' @, j,I,m=12).

3. Solution procedures

Here, based on the Navier type procedure, an analytical
solution of the governing equations for dynamic of a simply
supported FG nanoplate is presented. The displacement
functions are written as product of undetermined
coefficients and known trigonometric functions to respect
the governing equations and the conditions at x =0, a and y
=0, b. The following displacement fields are assumed to be
of the form



Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT 197

§ U, e cos(a X)sin(A y)

| . |V €®tsinga x)cos(8 y)

Wo f= DD W, e tsina x)sin(4 y) (28)
g mel nel X, € sin(a x)sin(8 y)

o, v glot sin(a x)sin(8y)

where (Umn, Vinn, Wimn, Xmn, Ymn) are the unknown Fourier
coefficients.
with

a=mzla and B=nxl/b (29)

Inserting Eg. (28) into Egs. (26), leads to

My 0 Mgz My, 0
0 My Maz My, 0
/M1 Mgz M3z My Mgg
Mig Myy Mgy My, 0
0 0 Mg

Sy = —(Aa® + Agef7),
Sy, =—af (A + Aee)
S13=a(Bja® +B;, 8% + 2Bg 57,
811 =~(Ae’ + Ass %),
S14 = (kB + kB, — (K A +kj B)BgsS?),
S5 = X33 Sy =—~(A@® + AgeS%),
Spo = ~(Assa® + A 5%),
Sy3 = B(Byy 5% + Bypar? +2Bgear?),
Sy4 = B kB3, +kiBY, — (A +k,B)Bgsa’)
S5 = X23f 3
Sga=—(Dyya* +2(Dy, +2Dgg)” 52 + Dy 5),
Ss, = —k (D§% + DS, %)
+2(k A +k,B") D 52
—ky(D3,8% + Da?)
S35 = —(Y13)a2 _(st)ﬂz
S4q = —Ki(Hiky + HK,) = (K A +k,B)? Hgar? 52
—ky (Hoky + H35kp) — (K A)? Adsar®
~(k,B)? A, 57
S4s = ~(KiA) AGsa® — (ko B ) ALy S% kYo +K,Y 55

Sg5 = —(A5§5)0!2 —(Als) ,32 —Zg3

My, =—lo, Mz =aly, My =-k A 2,

M5 =0, Moy =—lg,  My=p1;

Moy =—k,B B, M35 =0

Mag =—lo —1,(a” + B%), (3D
M3y =, (AG® +KB %), My =—J,

My, =—-K, ((klAl)zaz +(ky B')Zﬂz)v
Mgs =Kz, A =1+ u(a®+ %))

Mys =0

4. Numerical results and discussions

In this work, two separate parts are considered; in the
first part, have been examined and validated isotropic
rectangular nano-plate, and in the second part, it does for
FG one.

4.1 Isotropic rectangular nano-plate

Only homogeneous plate (n = 0) is employed in this part
for the verification.

Tables 2-4 provide the first three non-dimensional
frequency and Frequency Ratios (FR) for simply supported
boundary condition with different values of aspect ratio (y =
b/a), specified values of non-dimensional scale parameter (
= ul/a) and the thickness to length ratio h/a = 0.1 on
rectangular nano-plates. The natural frequency parameters
written in non-dimensional form g = wa?,/ph/D, D =
Eh3® / 12(1 — v?) are the flexural rigidity. The nano-plate is
made of the following material properties: E = 210 GPa, v =
0.3 and p = 7800 (kg/m?). The computed frequencies based
on the proposed nonlocal cubic shear deformation theory
are compared with those given by Hosseini-Hashemi et al.
(2013b) based on Mindlin Plate Theory (MPT) and those
reported by Khorshidi et al. (2015) based on exponential
shear deformation theory. Also, the Frequency Ratio (FR)
expression between the nonlocal and local non-dimensional
frequencies is given as what follows

NL
FR=Z_

C (32)

where AVt is the non-dimensional nonlocal frequency
parameter, and - is the non-dimensional local frequency
parameter.

It can be seen from Tables 2-4, that the obtained values
for non-dimensional nonlocal frequency parameter N are
in good agreement with those provided by Khorshidi et al.
(2015) and Hosseini-Hashemi et al. (2013b). The
introduction of stretching thickness effect makes the
nanoplate more stiffness.

4.2 FGM plate

Table 5 presents a comparison of the frequency
parameters § = why/p./E, for AL/AL,O3 square
moderately thick plates with those provided by Hosseini-
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Table 2 The variations of the non-dimensional frequency ( 8 = wa?,/ph/D) and the frequency ratio (FR) for the nonlocal
plate (m=1,n=1)

Method =0 {=0.2 =04 (=06 (=08

SN FR FR FR FR FR
Present (¢; # 0) 35.0858 1.0000 0.6335 0.3789 0.2633 0.2005
Present (¢, = 0) 35.0045 1.0000 0.6335 0.3789 0.2633 0.2005
n=06 Khorshidi et al. (2015) 35.015 1.0000 0.6335 0.3789 0.2633 0.2005
Hosseini-Hashemi et al. (2013b) 35.0643 1.0000 0.6335 0.3789 0.2633 0.2005
Present (¢; # 0) 24.2431 1.0000 0.7051 0.4451 0.3146 0.2412
Present (¢, = 0) 24.2034 1.0000 0.7051 0.4451 0.3146 0.2412
n=08 Khorshidi et al. (2015) 24.2084 1.0000 0.7051 0.4451 0.3146 0.2412
Hosseini-Hashemi et al. (2013b) 24.2330 1.0000 0.7050 0.4451 0.3146 0.2412
Present (ez # 0) 19.0902 1.0000 0.7475 0.4904 0.3512 0.2708
=1 Present (&; = 0) 19.0653 1.0000 0.7475 0.4904 0.3512 0.2708
Khorshidi et al. (2015) 19.0684 1.0000 0.7475 0.4904 0.3512 0.2708
Hosseini-Hashemi et al. (2013b) 19.0840 1.0000 0.7475 0.4904 0.3512 0.2708

Table 3 The variations of the non-dimensional frequency ( 8 = wa?,/ph/D) and the frequency ratio (FR) for the nonlocal
plate (m=2,n=1)

(=0 (=02 (=04 (=06 (=08
Method

s FR FR FR FR FR
Present (ez # 0) 60.3530 1.0000 0.5216 0.2923 0.1997 0.1511
4=06 Present (&; = 0) 60.1243 1.0000 0.5216 0.2923 0.1997 0.1511
Khorshidi et al. (2015) 60.1556 1.0000 0.5216 0.2923 0.1997 0.1511
Hosseini-Hashemi et al. (2013b) 60.2869 1.0000 0.5216 0.2923 0.1997 0.1511
Present (¢z # 0) 50.3554 1.0000 0.5594 0.3197 0.2194 0.1663
Present (s = 0) 50.1930 1.0000 0.5594 0.3197 0.2194 0.1663
n=08 Khorshidi et al. (2015) 50.2147 1.0000 0.5594 0.3197 0.2194 0.1663
Hosseini-Hashemi et al. (2013b) 50.3100 1.0000 0.5594 0.3197 0.2194 0.1664
Present (¢z # 0) 45.6216 1.0000 0.5799 0.3353 0.2308 0.1752
_ Present (e = 0) 45.4869 1.0000 0.5799 0.3353 0.2308 0.1752
= Khorshidi et al. (2015) 45.5048 1.0000 0.5799 0.3353 0.2308 0.1752
Hosseini-Hashemi et al. (2013b) 45.5845 1.0000 0.5799 0.3353 0.2308 0.1752

Table 4 The variations of the non-dimensional frequency ( 8 = wa?,/ph/D) and the frequency ratio (FR) for the nonlocal
plate (m=2,n=2)

Method ¢=0 =02 =04 =06 =08
BN FR FR FR FR FR
Present (¢ # 0) 122.0595 1.0000 0.3789 0.2005 0.1352 0.1018
Present (e = 0) 121.2246 1.0000 0.3789 0.2005 0.1352 0.1018
n=08 Khorshidi et al. (2015) 121.356 1.0000 0.3789 0.2005 0.1352 0.1018
Hosseini-Hashemi et al. (2013b) 121.7770 1.0000 0.3789 0.2006 0.1352 0.1018
Present (ez # 0) 87.3788 1.0000 0.4451 0.2412 0.1635 0.1233
Present (e; = 0) 86.9235 1.0000 0.4451 0.2412 0.1635 0.1233
n=08 Khorshidi et al. (2015) 86.9898 1.0000 0.4451 0.2412 0.1635 0.1233

Hosseini-Hashemi et al. (2013b) 87.2357 1.0000 0.4451 0.2412 0.1635 0.1233
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Table 4 Continued

(=0 (=02 (=04 (=06 (=08
Method
N FR FR FR FR FR
Present (2 # 0) 70.1122 1.0000 0.4904 0.2708 0.1843 0.1393
1 Present (s = 0) 69.8093 1.0000 0.4904 0.2708 0.1843 0.1393
" Khorshidi et al. (2015) 69.8517 1.0000 0.4904 0.2708 0.1843 0.1393
Hosseini-Hashemi et al. (2013b) 70.0219 1.0000 0.4904 0.2708 0.1844 0.1393

Table 5 The comparison of the natural frequency parameter (8 = wh./p.h/E.) for AL/IAL,Os square plates (5 = 1)

n

h/a (m,n) Method
0 0.5 1 4 10
Present (e; # 0) 0.0148 0.0126 0.0115 0.0100 0.0095
Present (e; = 0) 0.0148 0.0125 0.0113 0.0098 0.0094
0.05 1,1 Khorshidi et al. (2015) 0.0148 0.0125 0.0113 0.0098 0.0094
Hosseini-Hashemi et al. (2010) 0.0148 0.0128 0.0115 0.0101 0.0096
Zhao et al. (2009) 0.0146 0.0124 0.0112 0.0097 0.0093
Present (e; # 0) 0.0578 0.0494 0.0449 0.0389 0.0368
Present (e = 0) 0.0577 0.0490 0.0442 0.0381 0.0364
1) Khorshidi et al. (2015) 0.0577 0.0490 0.0442 0.0381 0.0364
Matsunaga (2008) 0.0577 0.0492 0.0443 0.0381 0.0364
Hosseini-Hashemi et al. (2010) 0.0577 0.0492 0.0445 0.0383 0.0363
Zhao et al. (2009) 0.0568 0.0482 0.0435 0.0376 0.3592
Present (e: # 0) 0.1381 0.1184 0.1077 0.0923 0.0868
o4 Present (¢, = 0) 0.1376 0.1174 0.1059 0.0903 0.0856
1,2 Khorshidi et al. (2015) 0.1377 0.1174 0.1059 0.0902 0.0856
Matsunaga (2008) 0.1381 0.1180 0.1063 0.0904 0.0859
Zhao et al. (2009) 0.1354 0.1154 0.1042 - 0.085
Present (¢; # 0) 0.2122 0.1825 0.1660 0.1409 0.1318
Present (¢, = 0) 0.2113 0.1807 0.1631 0.1378 0.1301
(2,2) Khorshidi et al. (2015) 0.2114 0.1808 0.1632 0.1377 0.1300
Matsunaga (2008) 0.2121 0.1819 0.1640 0.1383 0.1306
Zhao et al. (2009) 0.2063 0.1764 0.1594 - 0.1289
Present (e; # 0) 0.2122 0.1825 0.1660 0.1409 0.1318
Present (e; = 0) 0.2113 0.1807 0.1631 0.1378 0.1301
1) Khorshidi et al. (2015) 0.2114 0.1808 0.1632 0.1377 0.1300
Matsunaga (2008) 0.2121 0.1819 0.1640 0.1383 0.1306
Hosseini-Hashemi et al. (2010) 0.2112 0.1806 0.1650 0.1371 0.1304
Zhao et al. (2009) 0.2055 0.1757 0.1587 0.1356 0.1284
0.2 Present (e; # 0) 0.4660 0.4042 0.3677 0.3047 0.2812
1.2) Present (e; = 0) 0.4623 0.3987 0.3607 0.2980 0.2771
Khorshidi et al. (2015) 0.4629 0.3993 0.3611 0.2976 0.2772
Matsunaga (2008) 0.4658 0.4040 0.3644 0.3000 0.2790
Present (¢; # 0) 0.6760 0.5893 0.5365 0.4381 0.4009
2.2) Present (¢; = 0) 0.6691 0.5807 0.5254 0.4284 0.3948
Khorshidi et al. (2015) 0.6691 0.5807 0.5254 0.4280 0.3947

Matsunaga (2008) 0.6753 0.5891 0.5444 0.4362 0.3981
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Table 6 The comparison of the fundamental frequency parameter (8 = wh./p.h/E.) for AL/ZrO, square plates (7 = 1)

n=0 n=1 6=0.2

Method s=—Y  5-01 62005 &6-=01 =02 n=2  n=3 n=5
V10

Present e % 0 05424 00672 00160 00624 02300 02285 02290 02295
Present & = 0 05380 00671 00158 00619  0.2277 02257 02263 02272
Khorshidi et al. (2015) 04629 00577 00158 00619 02278 02288 02301 02327
Matsunaga (2008) 04658 00577 00158 00619 02285 02264 02270 02281
Vel and Batra (2004) 04658 00577 00153 00596 02192 02197 02211 02225
HSDT® 04658 00578 00157 00613 02257 02237 02243 02253
FSDT® 04619 00577 00162 00633 02333 02325 02334 02334
Hosseini-Hashemi et al. (2010) 04618 00576 00158 00611 02270  0.2249 02254  0.2265

(a) Pradyumna and Bandyopadhyay (2008)

Table 7 The frequency parameter (8 = wa?./p.h/E,) for
AL/ZrO; plates (6=0.2,n=1)

a
— 2 15 1 2/3 0.5
b
Presente; #0  3.2091 3.6702 4.9411 7.5878 10.9096
Presente;=0  3.1796 3.6354 4.8909 7.5005 10.7682
Khorshidi
et al. (2015) 3.1198 3.3720 4.9325 6.9551 9.9853

Hashemi et al. (2010), Zhao et al. (2009), Khorshidi et al.
(2015) and Matsunaga (2008) when n =0, 0.5, 1, 4 and 10.
In addition, the corresponding mode shapes m and n,
representing the number of half-waves in the x and y
directions, respectively, are given for any of the frequency
parameters f3.

In Table 6, a comparison of the results (8 = wh
v Pm/En) for AL/ZrO, square plates with those of 2D
HSDT (Matsunaga 2008), 3D theory by using the power
series procedure (el and Batra 2004), finite element HSDT
method (Pradyumna and Bandyopadhyay 2008), finite
element FSDT method (Hosseini-Hashemi et al. 2008), an
analytical FSDT solution (Hosseini-Hashemi et al. 2010)
and HSDT solution Khorshidi et al. (2015) is demonstrated.
From Tables 5 and 6, it can be confirmed that there is a very
good agreement among the results confirming the high
accuracy of the proposed analytical formulation. The effect
of the geometric ratio = b/a on the frequency parameters
B = wa?\/p.h/E, of arectangular Al/ZrO; plate (5 = h/a =
0.2, n = 1) is shown in Table 7.

From Table 7, it can be deduced that with a reduction in
the aspect ratio, the frequency parameter increases due to
the increase of the stiffness of the plate. It can be also
observed that the stretching effect increases the frequency
parameter.

In Table 8, the influences of different parameters on the
non-dimensional frequencies of the rectangular FG
nanoplate are presented. From these results, it is found that
by increasing the scale parameter, the rate of variation of
non-dimensional frequencies diminishes, because by
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Fig. 2 The influences of the aspect ratio and the scale
parameter on the non-dimensional frequency

increasing the scale parameter, the strain energy diminishes,
and it causes a reduction of the rigidity of the plates.

In Fig. 2, the influences of the aspect ratio and the scale
parameter on the non-dimensional frequency of the
rectangular nanoscale plates are illustrated. It is
demonstrated that with an increase in the ratio b/a, the non-
dimensional frequency increases. It is observed that for the
lower ratios of b/a, the effect of the scale parameters
diminishes.

In Fig. 3, the influences of the scale parameter on the
frequency ratio of the nano-plates are demonstrated for
different modes of vibration. From these results, it seems
that the frequency ratios for the lower modes are more than
those for the higher modes.

Fig. 4 demonstrates the influence of the gradient index
on the dimensionless two first frequencies of FG nano-plate
(SUS304/ Si3sN,) with a/h = 10 for different values of the
small scale parameter. It can be observed that the
dimensionless frequency diminishes as the gradient index
increases. This is due to the fact that an increase in the



Table 8 The effect of the non-dimensional nonlocal parameter {and the gradient index n on the non
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dimensional frequencies 8 = wh./p.h/E.of the rectangular FG nanoplate (AL/AL,Os)

a h Gradient index

’ m 3 Method 0 5 10
Present &, # 0 0.1381 0.0909 0.0868
0.2 Present ;=0 0.1376 0.0891 0.0856
05 Khorshidi et al. (2015) 0.2114 0.1357 0.0856
Present ez # 0 0.0365 0.0244 0.0234
0.1 Present &, =0 0.0365 0.0239 0.0231
0.0 Khorshidi et al. (2015) 0.0365 0.0239 0.0231
Present &, # 0 0.2122 0.1386 0.1318
0.2 Present &; = 0 0.2113 0.1358 0.1301
10 Khorshidi et al. (2015) 0.2310 0.1356 0.1300
Present &; # 0 0.0578 0.0384 0.0368
0.1 Present &; = 0 0.0577 0.0377 0.0364
Khorshidi et al. (2015) 0.0577 0.0377 0.0364
Present &; # 0 0.1306 0.0858 0.0819
0.2 Present &z=0 0.1299 0.0841 0.0808
0.5 Khorshidi et al. (2015) 0.1299 0.1239 0.0808
Present &z # 0 0.0345 0.0230 0.0221
0.1 Present &z=0 0.0345 0.0226 0.0218
01 Khorshidi et al. (2015) 0.0345 0.0226 0.0218
Present e;# 0 0.1939 0.1266 0.1205
0.2 Present &z =0 0.1931 0.1241 0.1189
10 Khorshidi et al. (2015) 0.1932 0.1239 0.1188
Present &2 # 0 0.0528 0.0351 0.0337
0.1 Present &z =0 0.0527 0.0344 0.0332
Khorshidi et al. (2015) 0.0527 0.0344 0.0332
Present &, # 0 0.1130 0.0744 0.0710
0.2 Presente; =0 0.1126 0.0730 0.0701
05 Khorshidi et al. (2015) 0.1127 0.0728 0.0700
Present ez # 0 0.0299 0.0199 0.0191
0.1 Present &, = 0 0.0299 0.0196 0.0189
0.2 Khorshidi et al. (2015) 0.0299 0.0196 0.0189
Present &; # 0 0.1586 0.1036 0.0985
0.2 Present &, = 0 0.1579 0.1015 0.0972
10 Khorshidi et al. (2015) 0.1580 0.1014 0.0972
Present &; # 0 0.0432 0.0287 0.0275
0.1 Present &, = 0 0.0431 0.0282 0.0272
Khorshidi et al. (2015) 0.0431 0.0282 0.0272
Present &; # 0 0.0950 0.0626 0.0597
0.2 Present ;=0 0.0948 0.0613 0.0589
0.3 0.5 Khorshidi et al. (2015) 0.0948 0.0613 0.0589
Present &, # 0 0.0252 0.0168 0.0161
0.1 Present ;=0 0.0251 0.0165 0.0159
Khorshidi et al. (2015) 0.0251 0.0165 0.0159
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Table 8 Continued
c a h Method Gradient index
b a 0 5 10
Present &z # 0 0.1273 0.0831 0.0791
0.2 Present ;=0 0.1268 0.0815 0.0781
0.3 10 Khorshidi et al. (2015) 0.1269 0.0814 0.0780
Present &z # 0 0.0347 0.0231 0.0221
0.1 Present &z=0 0.0346 0.0226 0.0218
Khorshidi et al. (2015) 0.0346 0.0226 0.0218
Present &2 # 0 0.0801 0.0527 0.0503
0.2 Present &z =0 0.0798 0.0517 0.0497
0.5 Khorshidi et al. (2015) 0.0798 0.0516 0.0496
Present &2 # 0 0.0212 0.0142 0.0136
0.1 Present &z =0 0.0212 0.0139 0.0134
0.4 Khorshidi et al. (2015) 0.0212 0.0139 0.0134
Present &, # 0 0.1040 0.0679 0.0646
0.2 Present ;=0 0.1036 0.0666 0.0638
10 Khorshidi et al. (2015) 0.1037 0.0665 0.0638
Present ez # 0 0.0283 0.0189 0.0181
0.1 Present &z =0 0.0283 0.0185 0.0178
Khorshidi et al. (2015) 0.0283 0.0185 0.0178

gradient index leads to a decrease in the stiffness of the FG
nano-plate.

5. Conclusions

The size-dependent dynamic properties of FG nano-
plate are analytically studied by using a simple cubic refined
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Fig. 3 The effects of the aspect ratio and the nonlocal
parameter on the non-dimensional frequency

plate model based on the nonlocal differential constitutive
relations of Eringen. The kinematic of the present theory is
modified by considering undetermined integral terms in in-
plane displacements which results in a reduced number of
variables compared with other HSDT of the same order.
Comparing the obtained results with those found in the
literature for FG nano-plates demonstrates a high stability
and accuracy of the present solution. What presented herein
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Fig. 4 Influence of the gradient index (n) and the scale
parameter (z) on dimensionless frequency for a
simply supported square FG plate with a/ h = 10:
(a) first frequency; (b) second frequency
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Fig. 4 Continued

demonstrates the influences of the variations of the scale
parameter, the ratio of the thickness to the length, the
gradient indexes and the aspect ratio on the frequency
values of a FG nano-plate. It is demonstrated that the
frequency ratio diminishes with increasing the mode
number and the value of the scale parameter, and also
increasing the gradient index causes the non-dimensional
frequencies to decrease.
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