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Abstract.

In this article, the influence of small scale effects on the free vibration response of curved magneto-electro-elastic

functionally graded (MEE-FG) nanobeams has been investigated considering nonlocal elasticity theory. Power-law is used to
judge the through thickness material property distribution of MEE nanobeams. The Euler-Bernoulli beam model has been
adopted and through Hamilton’s principle the Nonlocal governing equations of curved MEE-FG nanobeam are obtained. The
analytical solutions are obtained and validated with the results reported in the literature. Several parametric studies are
performed to assess the influence of nonlocal parameter, magnetic potential, electric voltage, opening angle, material
composition and slenderness ratio on the dynamic behaviour of MEE curved nanobeams. It is believed that the results presented
in this article may serve as benchmark results in accurate analysis and design of smart nanostructures.
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1. Introduction

In recent years, materials with designed mechanical and

magneto-electrical properties have gained extensive
attention. Magneto-electro-elastic  functionally —graded
materials (MEE-FGMs) with continuous change in

composition and properties in desired directions are
employed to enhance the materials performance with
sudden variations in material properties at the interfaces of
multilayered piezoelectric structures (Vinyas and Kattimani
2017a, b, ¢, 20184, b, Vinyas 20193, b, Vinyas et al. 2018,
2019), On the other hand, the feature of continuous changes
in material properties across the thickness coordinate leads
to more complexities in analyzing such MEE-FG structures.

Nanobeams are one of the most important kinds of
nanostructures which can be applied as building blocks for
the fabrication of nanoelectromechanical systems (NEMs),
Therefore, it is crucial to account for small scale effects in
their mechanical analysis. The lack of a scale parameter in
the classical continuum theory makes it impossible to
describe the size effects. Hence, size dependent continuum
theories such as nonlocal elasticity theory of Eringen (1972,
1983) and strain gradient theory (Li et al. 2015) are
developed to consider the small scale effects. Lots of
studies have been performed according to Eringen’s
nonlocal elasticity theory to investigate the size-dependent
response of structural systems (Aydogdu 2009, Thai 2012),
They indicated that nonlocal elastic models can only
provide softening stiffness with increase of nonlocal
parameter. For analysis of FGM nanostructures, nonlocal
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elasticity theory of Eringen is employed in many
investigations. Simsek and Yurtcu (2013) examined
buckling behavior of FG nanobeams based on the nonlocal
Timoshenko beam model. Rahmani and Jandaghian (2015)
performed buckling analysis of FG nanobeams according to
a nonlocal third-order shear deformable beam model. Li et
al. (2016) analysed the free vibration response of FG
Timoshenko beam under the framework of nonlocal strain
gradient theory. Also, Li and Hu (2017) extended the
evaluation to assess the torsional vibration of bi-directional
FG nanotubes based on nonlocal elasticity theory. Semi-
analytical vibration analysis of FG nanobeams is carried out
by Ebrahimi et al. (2015), Thermal effects on vibration
behavior of nonlocal temperature-dependent FGM
nanobeams are investigated by Ebrahimi and Salari (2015a),
Niknam and Aghdam (2015) studied nonlinear vibration
response of nonlocal FG beams resting on elastic
foundation. Ebrahimi and Barati (2017c) proposed a
nonlocal third order beam model for vibration analysis of
FG nanobeams. Also, investigation of buckling and
vibration of smart piezoelectric and piezo-magnetic FG
nanobeams attracted the attention of several researchers.
Hosseini-Hashemi et al. (2014) explored surface effects on
vibrational behavior of FG piezoelectric nanobeams using
nonlocal elasticity. Ebrahimi and Salari (2015b) examined
nonlocal thermo-electrical buckling behavior of FG
piezoelectric nanobeams. Beni (2016) investigated buckling
and vibration analysis of FG piezoelectric nanobeams. Also,
Ebrahimi and Barati (2016) presented vibration analysis of
a nanosize FG beam subjected to a magneto-electro-thermal
loading. They indicated that vibration frequencies of
straight FG nanobeams are affected by the sign and
magnitude of electric voltage. More recently, it is shown
that the nonlocal differential and integral elasticity based
models may be not equivalent to each other (Zhu and Li
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2017a, b), Recently Ebrahimi and his co-workers performed
some researches in the field of dispersion characteristics of
waves propagating through composite nanosize beams and
plates under various thermo-electro-magneto-elastic
loadings via different nonlocal continuum theories
(Ebrahimi et al. 2016a, b, 2018a, Ebrahimi and Dabbagh
2017a, b, c, d, 2018a, b, c, e, f, 2018b, Ebrahimi et al.
2016¢, 2018b).

Due to the extensive application of FGM curved beams
in different engineering areas, a deeper understanding of the
mechanical behavior of such beams should be required. In
recent years, curved nanobeams are applied in the nano-
electro-mechanical systems (NEMS) due to possessing
superior features than the straight nanobeams such as
performance in large strokes and bi-stability nature. Such
beams have practical applications in many systems such as
nano-switches, nano-valves and nano-filters. A literature
survey specifies that some research works address the
vibration problem of isotropic curved nanobeams, rings,
and arches. However, relatively few investigations are
performed on vibration of FGM curved nanobeams. Assadi
and Farshi (2011) explored vibration behavior of isotropic
curved nanobeams and rings including surface energies.
Yan and Jiang (2011) determined electromechanical
response of curved piezoelectric nanobeams incorporating
surface effects. Kananipour et al. (2014) applied the
nonlocal elasticity to dynamic analysis of a curved
nanobeam. Setoodeh et al. (2015) investigated thermal
buckling of embedded curved nanotubes based on nonlocal
Euler-Bernoulli  beam model. Tufekci et al. (2016)
presented static Analysis of nonlocal curved nanobeams
with varying curvature and cross-section. Previously
published works on mechanical analysis of nonlocal curved
nanobeams indicate that increasing nonlocal parameter
leads to stiffness softening effect. Therefore, they have not
included any length scale parameter showing stiffness
hardening effect reported in strain gradient theory. The
above literature survey shows that the number of studies
concerning with the behavior of straight FG nanobeams
based on nonlocal elasticity theory is plenty; to the author’s
best knowledge, there are only few papers in the literature
concerning with curved FG nanobeams. Hosseini and
Rahmani (2016) makes the first attempt for free vibration
analysis of deep curved FG nanobeams via a nonlocal
curved beam model under simply-supported boundary
conditions. They reported that vibration behavior of curved
FG nanobeams is significantly affected by the value of
opening angle and nonlocality parameter. So, there is no
reported work relevant to the vibration of curved magneto-
electro-elastic FG nanobeams incorporating nonlocal
effects.

In this work, a size-dependent curved beam model is
developed to take into account the effects of nonlocal
stresses in vibration analysis of curved magneto-electro-
elastic FG nanobeams for the first time. The governing
differential equations are derived based on the principle of
virtual work and Euler-Bernoulli beam theory. Power-law
function is employed to describe the spatially graded
magneto-electro-elastic properties. By extending the radius
of curved nanobeam to infinity, the results of straight

nonlocal FG beams can be rendered. The effects of
magnetic potential, electric voltage, opening angle, nonlocal
parameter, power-law index and slenderness ratio on
vibration frequencies of curved MEE-FG nanobeams are
studied.

2. Theory and formulation

2.1 The nonlocal elasticity model for magneto-
electro-elastic nanobeams

Eringen’s nonlocal theory (Eringen 1972, 1983)
introduces the stress state at a point of body as a function of
strains of all other points. For a nonlocal MEE structural
element, the basic relations with zero body force can be
expressed by

Oij = J-V o (‘ ' — s Z') [Cijklgkl (X’) (1)
— i En (X) = Qi Ha (X') ] AV (X)
D = e|k|8k| (x)
I 2
+ SimEm (X) + dinH, (X’)] dv (x)
B = _[ [q|k|€k| (x)
©))

+dimEm (X) + zinHa (X)]dV (X)

where g, ¢, Di, Ei, Bi and H; denote the stress, strain,
electric displacement, electric field components, magnetic
induction and magnetic field components, respectively; Cijq,
€mij Sim Onijp Oij and x; are the elastic, piezoelectric,
dielectric, piezomagnetic, magnetoelectric and magnetic
constants, respectively; a (X" — X|, 7) is the nonlocal kernel
function and |x’ — x| is the Euclidean distance. Finally, the
constitutive relations of a MEE solid can be expressed in an
equivalent differential form as (Ebrahimi and Barati 2016)

— (&0 @)*V?03j = Cija&a —Emij Em — iy Hn 4
D —(& a)ZVZDi = €&k + SimEm + dinHa ®)
—(e0@)°V°Bi = Q& +dimEnm + zinHn (6)

where V2 is the Laplacian operator and e,a is nonlocal
parameter which introduces the small size effect.

2.2 Effective properties of P-FGM curved
nanobeam

Consider a curved FG nanobeam having length L and
thickness h which its coordinates is depicted in Fig. 1. It is
supposed that the material properties of curved MEE-FG
nanobeam vary continuously through the thickness by a
power law function. So, the material properties of nonlocal
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Fig. 1 Geometry and coordinates of curved FG nanobeam

MEE-FG beam P(z) such as elastic, piezomagnetic and
magnetoelectric constants can be represented by (Ebrahimi
and Barati 2017)

P(z)=(P, -P, )(iij +P, 7)

Here p is the power-law exponent which governs the
graduation of material properties across the thickness. P,
and P, denote the material property at top and bottom side,
respectively. The top and bottom surfaces of curved FG
nanobeam are supposed to be fully BaTiO; and fully
CoFe,Q,4, respectively and their properties are listed in
Table 1.

2.3 Kinematic relations

Based on curved Euler-Bernoulli beam model, the
radial displacement w, and tangential displacement u, can
be written as

ow(o, t))

z
ug(e,r,t)=(l+ﬁ)( t)+ R( (8)

w, (6, r,t) =—-w(6,t) 9)

where u and w denote displacement components of the mid-
surface in tangential and radial directions, respectively.
Satisfying Maxwell’s equation in the quasi-static
approximation gives the electric and magnetic field
distributions across the thickness as follows (Ebrahimi and
Barati 2016)

d(X,z,t) =—cos (§z)¢(x,t)+%v (10)

Y(x,2z,1) =—cos(§z)y(x,t)+2—th (11)

where £ = 7 / h. Also, V and Q are the external electric
voltage and magnetic field intensity; ¢ and y are the spatial
function of the electric and magnetic potential, respectively.

Table 1 Magneto-electro -elastic coefficients of material

properties
Properties BaTiO; CoFe,0,
cu (GPa) 166 286
es: (Cm?) -4.4 0
ga1 (N/Am) 0 580.3
Sy1 (10°C?m2NY) 11.2 0.08
S33 12.6 0.093
xu (10°Ns*C?/2) 5 -590
X33 10 157
dy =ds 0 0
p (kgm™) 5800 5300
The nonzero normal strain is
e=¢"+2k°,
&’ =l(—w+a—u), k‘):i2 @+i\2’ (12)
R o0 R® 060 06

where ¢° and k° denote the extensional and bending strains
respectively.

According to the defined magneto-electric potential in
Egs. (10) and (11), the non-zero components of electric and
magnetic fields (Ey, E,, Hy, H,) can be obtained as

E,=-®, =cos({z) —— of

ROO’
(13)
E, =0, =—sin(c)p-2"
H,=-Y _cos(fz)
649
20 (14)

Hz :_Y,z :_§Sin (52)}/_T

To derive the governing equation, Hamilton’s principle
is introduced as follows

[[s@1s -11 +11,,)dt=0 (15)

Here IIs, Tk and IIy are strain energy, Kinetic energy
and external forces work, respectively. The strain energy
can be written as

ol = L Uij55ij dv :L (040 €49 — D,0F,

(16)
-D,0E, -B,0H,-B,6H,)dV
Inserting Eq. (14) into Eq. (11) gives
STI, =j:(N(5gU)+ M (5k°)) Rd6-
17)

+ ,[Oa J‘j:/zz [_%cos(ﬂz) 5(%)



148 Farzad Ebrahimi, Mohammad Reza Barati and Vinyas Mahesh

+D ﬂsm(ﬂz)5¢—cos(ﬂz)5(a€j
+B,gsin(fz) 5 y]Rdzd @

(7

in which N, Mrespectively denote the axial force and
bending moment. The available stress resultants in Eq. (18)
are defined by

N =.[A0XX dA, M :jAaXXz dA (18)

The variation of kinetic energy is written as

oIl J' I, (USU +WOW) + 1(2u5u+u85—w+§u—)
00 00 (19)
(u5u+u—a§ + ou a—w oW oow Rdé
00 00 00 06
where (lg, 13, 1) are the mass moment of inertias, defined as
follows

(I 11, 1,) = p(2)L,2,2°) dA (20)

Thus, the variation works done by external loads can be
written as
E M
STI, :J-OL(N +N") ow oow

o RAO 1)

where NE and N™ are applied electric and magnetic loads
which is defined as

£ h/2 2V

N _—j_meﬂsz (22)
Mo (M2 20

N ——Lmqslez (23)

The nonlocal constitutive relations (8) and (9) may be
rewritten for a curved Magneto-electro-elastic Euler-
Bernoulli nanobeam as

620'
O —H RZBHZ =Cp&p — €y E, — 0Oy H (24)
o°D,
D, —u R2002 =s,E,+d;;H, (25)
0°D,
D, —u R200° = €384 +SiE, +dgH, (26)
62
B, - R 892 =d,E, + x,H, 27)
82
B, - R 8(92 = Oy gy + d53E, + 135H, (28)

where x4 = ea’. The following governing equations are
obtained by inserting Egs. (17)-(21) in Eq. (15) when the
coefficients of du, sw and J¢ are equal to zero

LN Y AL S AL Y
o0 R 86 20’ R 00
10°M  (NE+NY) o'w
R 06 R 00
oW A 0
W Ui
=—-RI,W+ 1, —+ -—
0 66 R (502 69)
Ihlz[ s( jdz -0 Gy

Iht:/z( 0s (/”Z)*f+ﬂS'n(ﬂZ)B )dz=0 (32)

Under the following boundary conditions

N+%=O oo u=0 at =0 and O=a (33)
ﬂ+Ilu'+|—2(u‘+@)=0 or w=0
R OX (34)
at =0 and O=«
M :O or @:0
00 (35)
at =0 and f=«
D,cos(Bz)dA=0 or ¢=0
[,Dscos(2) )
at =0 and HO=a
B,cos(fz)dA=0 or y=0
IA ¢ B (37)

at =0 and O=«

By integrating Egs. (24)-(28) over the area of

nanobeam’s cross-section, the following relations for the
nonlocal FG beam can be obtained

Ail (_ 7U) Bll (5U o'w

00 6492) (38)

—H R2662 -

+A361¢+A3n17_N5_N:A

B11 . ou, D, du dw

= o (W ) >t 2)

R aa R2 00 00 (39)
+E5p+ELy—M7—M)Y

J.h/z D _iasz Fﬁ%

-2 ¢ R? 992 R 00

I:11 67/
R 06

}cos((fz)dz =+ (40)
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hi2 u 0°D, .
.[hlz{Dz "R oF }cfsm(afz)dz

(41)
A ou, Ej ou ow, .
=3 (w+— Fip—F.
R ( 69) R? 69 6492) 2P~ Fy
h/2 a o°B Fl ¢ X[
B, — cos(&z)dz =+ -2 u
J—w{ * R? 067 } (c2) R o0 R ae
h/2 ya 6
jh/Z{BZ % 5d }cfsm((fz)dz
) (43)
Al ou Eg‘i ou  o'w m m
=3 (Cwt— Flg—X
R ( 69) 849 66’2) 2 Y
The cross-sectional rigidities are defined as follows
h/2 2
(AuBu D) =] cu(2)(Lz,2°)dz (44)

(M Bl =] e, (gsin) 2gsin(c)jdz  (45)

(ALER =" 4, {&sin(E2) 2&sin€2)jdz  (46)
(Re Rl =" {s,cos(62) s fsin(En))dz (47)
(Fr R =" {dacosi(éa). d, Esin'(Ea))oe (48)

(X0 X3 =" {008 (62) r Esin (D)2 (49)

And

20
NE=—["e, 2V g7, N = "0, (0)

X -/ h —hr2 Bt h
h/2 h/2 20
= J. e, zdz MM =— JCoE zdz  (51)

The governing equations of a curved MEE-FG

nanobeam can be obtained inserting Egs. (38)-(43),
respectively, into Egs. (29)-(32) as
A w2, By n o oy
R 00 06 R2 00> 06°
D, ,0°u o'w op EZ 0 dy EJ o
P2 e L B T
R* "00 6 60 R 00 00 R 06 (52)
| au
—RIu-1 2u+— ——Zu —+ +RI,
1 )= ( ) =G 057 "
U o*w 82 83
L(2—+ +—2
{25 603) R 067 93)
A, ou, By ou aw ou
2 (—w+— —+2— 53
s ( )+ ( 2o 93) (83)

Dy ou  o'w, Ej 0%

R® '06° aa“)_ R og7 T /Y
m 2
—ia—Z+&mly—Rlo\N+lla—u
R 00 00 (53)
2 (W a—”) (N—)a2 A R, A
R 692 00> R? Y7
ou azw 6u) (N )a“
100 R 06? 06"
Fio'¢ Iiazhﬁé(—wﬂ)
R 06> R 06* % 00 (54)
E§lau 6W) RFZg—RFy =0
20 007 ® %
F1r1n8¢ X11 62 +&m(_w+aiu)
R 00> R 06° % 00 (55)
SEL QUL O ey RXT Z0
R ‘00 06 33 1) =

3. Solution procedure

In this section, analytical solution has been employed to
solve the nonlocal governing equations of curved MEE-FG
nanobeam with simply-simply supported boundary edges.
To satisfy the boundary conditions, the following solution
for displacement variables is employed

u(o.t) = Zu Cos[ ™ (56)
W(o,t) = ilw Sin[%” ale™ (57)
¢(0,t)=§®n8in[n ale (58)
7(@.1) = ZY Sm[—a]e"”" (59)

n=1

in which (U,, W,, ®, Y,) are the unknown Fourier
coefficients. Inserting Egs. (56) and (59) into Egs. (52) to
(55) respectively, leads to

2 Un
{[K]+[M]e }{W}zo (60)

where [K] and [M] are the stiffness and mass matrixes for
FG nanobeam, respectively.

2 2
kn:—i L2 —282“ 7 o +D—131 7 o
’ R & R o R*\ @
k. —_Pufnz Y Bufnz
2 RL6 R\ 6

By nfraf_Du
2 6 R3
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parameters (L/h = 50)

I a=7al3,p=0 a=nl4,p=05 a=nl2,p=1 a=2xl3,p=5
Hossein_i and Present Hosseinj and Present Hosseir!i and Present Hosseir!i and Present
Rahmani 2016 Rahmani 2016 Rahmani 2016 Rahmani 2016

0 8.31770 8.32132 7.30721 7.31014 4.72079 4.72275 2.63872 2.64019

1 7.93532 7.93877 6.97129 6.97408 4.50376 4.50563 2.51741 2.51881

2 7.60125 7.60455 6.67780 6.68048 4.31416 4.31595 241143 241277

3 7.30611 7.30928 6.41852 6.42108 4.14665 4.14837 2.3178 2.31909

2 4
kzz__ﬂn_Zan(naJ _Dlsl(nﬂaj
R R lo R\ @
NE+NM nr Vo(nr Y
e ()
R RZ\ 6 0
. Ei(nz Y
k2,3:_A31_F\::1(9 jl
Koo _E[nﬂ ]
2,4 1 R 6
2

R\@

m 2
_Xu ””a) ~RX[
R L@

m 2
Ky = _Fll(nﬂaj -RFyg,

k4,4
m,=+(Rl,+1 +|—2)a)2(1+ﬁ L2 2)
11 0 1 R RZ 9
2
| u(nr nz
m1'2:+(|1 +R2ja)2(1+l:\)2(9aj )[96{}
2
nx
m,,=+Rl,0* 1+ 2 o
o= R0 @ 2 M )
, M (nx ‘(nr Y
+=20 I+ | —a|)| —a
R R\ @ 0
m2‘3=m1,3=m3,2=m3,1=m3,3=m3,4=m4‘3=m4,4=0

Also, for nontrivial solution of Eq. (49), the determinant
[[K] + [M]ew? should be zero to obtain natural frequencies.

4. Numerical results and discussions

In this section, we examine vibrational behavior of a
nonlocal curved MEE-FG nanobeam subjected to the
magneto-electrical field. The length of curved nanobeam is
L = 10 nm. For the validation purpose, the frequency results
of present paper are validated with those of curved FG
nanobeams presented by Hosseini and Rahmani (2016)
using nonlocal elasticity theory of Eringen. They used the

material properties as: E,, = 70 GPa, p,, = 2702 kgm™ for
metallic phase and E; = 427 GPa, p. = 3960 kgm™ for
ceramic phase. Table 2 presents the comparison results for a
curved FG nanobeam with S-S boundary conditions and
various nonlocal parameters and a good agreement is
observed. So, the present paper can accurately predict
mechanical behavior of curved FG nanobeams. Calculations
are performed adopting the non-dimensional form of natural
frequencies

® = oL’ (61)

u
cyl

Figs. 2 and 3 show the variation of dimensionless
frequency of curved MEE-FG nanobeam respectively
versus applied voltage (V) and magnetic potential (Q) for
various values of opening angle (a = #/4, =/3, #/2, 27/3) at 4
=1 nm? p=1and L/h = 20. It is observable that increasing
applied voltage leads to smaller dimensionless frequencies.

But, magnetic field has an opposite effect on vibration
frequencies. So, increasing magnetic potential leads to
enlargement of dimensionless frequency for every value of
opening angle. Also, as the value of opening angle
increases, the magnitude of dimensionless frequency
reduces. So, curvature of MEE-FG nanobeams plays a major

10 —e— o=n1/4
—e— o=n/3
—&— o=71/2
8 —&— g=271/3

Dimensionless frequency
(=2}

5 4 <8 & <4 @

1 2 3 4 5
Electric voltage (V)

Fig. 2 Variation of dimensionless frequency of curved
MEE-FG nanobeam versus electric voltage for
various values of opening angle (4 =1 nm? p=1,
L/h =20)
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——o=n/4
—e— o=71/3

—&— o=7/2
—&— ¢=27/3

P S S S S T S S S T S S S TR ST SR S S |

-0.05 -0.03 -0.01 0.01 0.03 0.05

Magnetic potential (Q2)

Fig. 3 Variation of dimensionless frequency of curved

Dimensionless frequency

Dimensionless frequency

MEE-FG nanobeam versus magnetic potential for
various values of opening angle (u = 1 nm? p =1,
L/h=20,V=0)

10 r —— V=3
a=mul4 —&—raa
H —&— V=0
4 - V-5
—¥— V=+5
8
7
6
5 -
4 1 1 1 1 1 1 1 1 L ]
0 1 2 3 4 3 @ 7 8 9 10
Gradient index (p)
8 —— V=75
T —o—V=-2.5
0 —&— V=0
7 r —&— V=25
—¥—V=+5

3 AU ST S IS S S 0 T I T A B A A A A

0 1 2 3 4 5 6 7 8§ 9 10
Gradient index (p)

Dimensionless frequency

Nonlocal parameter (i)

Fig. 4 Variation of dimensionless frequency of curved

—
o

)

Dimensionless frequency
|

Dimensionless frequency

MEE-FG nanobeam versus nonlocal parameter for
various values of opening angle (p =1, L/h =20, V
=Q= 0)

—— V=35
—— V=235
—A— V=0
—m— V=125
—¥— V=135

a=n/3

G, 5. . 5 N i I i )

Gradient index (p)

r —— V=5
—o— V=25
=)
a=2m/3 V=0

L —|— V=425
[ —%— V=+5

I N i I I P 16 o ] I A P - G i 1 1 Lo o K P O i S o T T I i I 5 1 Pt L I I W

0 1 2 3 4 5 6 7 8 9 10
Gradient index (p)

Fig. 5 Variation of dimensionless frequency of curved MEE-FG nanobeam versus gradient index for various values of

opening angle and electric voltage (1 = 1 nm?, L/h = 20)
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10
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—&— Q=+0.025
—¥— Q=+0.05
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o
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(o]

0 1 2 3 4 5 6 7 8 9 10
Gradient index (p)

—— Q=-0.05
—e— Q=-0.025
7 —h— Q=0
—&— Q=10.025
—¥— Q=10.05

a=m/2

Dimensionless frequency
N

Gradient index (p)
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L ——0=-0.05
—e— 0=-0.025
& 9 —+— 00
) —8— 0=+0.025
& —¥— Q=+0.05
151
& 8
wm
177}
2
87
Z
g
..Q‘: % *
5 1 1 1 1 1 Il 1 1 1 ]
0 1 2 3 4 5 6 % 8 9 10
Gradient index (p)
7
a=2xn/3 s

—e— 0Q=-0.025
6 —a— Q=0

—&— Q=+0.025
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Dimensionless frequency

o
—
[39]
W
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Gradient index (p)

Fig. 6 Variation of dimensionless frequency of curved MEE-FG nanobeam versus gradient index for various values of
opening angle and magnetic potential(u = 1 nm?, L/h = 20)

role in their vibration behavior. In fact, the difference in
frequency results is more significant according to higher
opening angles at a fixed electric voltage and magnetic
potential. For example, the difference in natural frequency
between o = z/4 and #/3 is less than those observed between
a = n/2 and 2x/3. Generally, effect of opening angle on
vibration behavior becomes more significant as its value
increase.

Fig. 4 depicts the variation of dimensionless frequency
of S-S curved MEE-FG nanobeam versus nonlocal
parameter (u) for different values of opening angle () at
gradient index p = 1 and slenderness ratio L/h = 20. As
previously specified, for all values of nonlocality
parameters, increasing opening angle (¢) leads to lower
dimensionless frequencies. A rise in nonlocal parameter
leads to smaller values of dimensionless frequency. The
reason is lower stiffness of curved nanobeam when it
becomes smaller. This phenomenon shows that the curved
MEE-FG nanobeam exerts a stiffness-softening effect when
nonlocal parameter increases. Effect of material gradient
index (p) on dimensionless frequency of curved MEE-FG
nanobeam for various values of electric voltage and opening
angle (o = #/4, /3, #/2, 2z/3) at L/h = 20 and p = 1 nm? is

plotted in Fig. 5. It is observable that for all values of
electric voltage the frequency degrades with the gradient
index enlargement, significantly for smaller gradient
indices. The reason is higher portion of CoFe,O4 phase as
the value of gradient index increases. Also, it is clear that
effect of material composition index (p) on vibration
frequencies depends on the sign and value of electric
voltage. Reduction in dimensionless frequency with respect
to gradient index (p) is more significant according to
positive voltages which shows the notability of the sign of
external electric voltage.

Fig. 6 illustrates the variation of dimensionless
frequency of curved MEE-FG nanobeam versus gradient
index (p) for various values of opening angle and magnetic
potential at u = 1 nm?and L/h = 20. It is observable that for
every value of magnetic potential, dimensionless frequency
degrades vigorously for smaller gradient indices and then
reduces monotonically for larger gradient indices. Also, it is
found that the reduction in natural frequency is more
announced according to the negative magnetic potentials for
every value of opening angle. So, the vibration frequencies
become closer together at larger gradient indices.

Another investigation concerning with the effect of material
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composition and magneto-electrical field on vibration
frequencies of curved MEE-FG nanobeam is presented in
Figs. 7 and 8 when = 1 nm?, a = z/4 and L/h = 20. When p
= 0, applied voltage has no influence on vibration
frequencies due to the reason that piezoelectric coefficient
(esy) of CoFe,O, is equal to zero. Also, as the value of
gradient index rises, the reduction in natural frequency with
respect to electric voltage becomes more significant. But,
enlargement of natural frequency versus magnetic potential
becomes less sensible as the gradient index increases.
Therefore, properly selection of material graduation is a key
issue in the successful design of MEE-FG structures.
Influence of slenderness ratio (L/h) on non-dimensional
frequency of curved MEE-FG nanobeams with simply-
supported edges for different values of electric voltage and
magnetic potential is respectively depicted in Figs. 9 and 10
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Fig. 7 Variation of dimensionless frequency of curved
MEE-FG nanobeam versus electric voltage for

various values of gradient index (i = 1 nm?, a = /4,
L/h =20)
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Fig. 8 Variation of dimensionless frequency of curved
MEE-FG nanobeam versus magnetic potential for
various values of gradient index (1 = 1 nm?, a = /4,
L/h = 20)

atp =1nm? p=1and a = /4, z/3. It is evident that effect
of electric and magnetic fields become significant at larger
values of slenderness ratio. In fact, thicker MEE-FG
nanobeams are less influenced by the magneto-electrical
field compared to thinner MEE-FG nanobeams. It is found
that negative/positive electric voltages increase /decrease
the vibration frequencies of curved MEE-FG nanobeam.
This is due to the compressive and tensile forces produced
in the MEE-FG nanobeams via the applied positive and
negative voltages, respectively. So, zero external electric
voltage V = 0 makes no compressive or tensile force and
will not affect the dimensionless frequency with changing
of slenderness ratio. Moreover, negative/positive magnetic
potentials reduce /increase the vibration frequencies of
curved MEE-FG nanobeam with the changing of
slenderness ratio. All these behaviors for curved MEE-FG
nanobeams are dependent on the value of opening angle.
So, a rise in opening angle leads to reduction in natural
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Fig. 9 Variation of dimensionless frequency of curved
MEE-FG nanobeam versus slenderness ratio for
various values of electric voltage (u = 1 nm?, p = 1)
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frequencies for every value of electric voltage, magnetic
potential and slenderness ratio.

5. Conclusions

This work makes the first attempt to present a nonlocal
magneto-electro-elastic curved beam model to study natural
frequencies of curved MEE-FG nanobeams. The material
properties of curved MEE-FG nanobeam are graded in
radial direction according to the power-law model. Navier
solution is applied to solve the governing equations derived
from Hamilton’s principle. It is found that magnetic
potential, electric voltage, opening angle, nonlocal
parameter, gradient index and slenderness ratio dramatically
vary the natural frequencies of curved MEE-FG nanobeam.
It is clear that when the radius of curved FG nanobeam
extends to infinity the natural frequencies approaches to
those of straight nanobeam. Also, increasing opening angle
leads to lower dimensionless frequencies. The inclusion of
the nonlocal parameter decreases the vibration frequency of
curved MEE-FG nanobeam. Also, effect of magneto-
electric field becomes significant at larger values of
slenderness ratio. Negative/positive electric voltages
increase/decrease the vibration frequencies of curved MEE-
FG nanobeam by increasing slenderness ratio. But,
negative/positive electric voltages reduce /increase the
vibration frequencies with changing of slenderness ratio.
Also, effect of gradient index on vibration frequencies
depends on the sign and value of electric voltage and
magnetic potential.
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