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1. Introduction 

 
Functionally graded materials (FGMs) are a novel type 

of composites with either through-the-thickness or through-
the-length variable mechanical properties which have been 
appealing enough in the researchers’ point of view to be 
utilized as the constituent material for structural designs. 
These composites are better candidates for mechanical 
designs in comparison with laminated composites due to 
their improved corrosion resistance, toughness, and thermal 
resistance and also their lower stress concentration 
(Ebrahimi et al. 2018). Thus, many researchers analyzed the 
mechanical behaviors of FG structures. For example, 
Ebrahimi and Rastgoo (2008) surveyed the vibrational 
responses of FG circular plates via the Kirchhoff plate 
theory. Shen (2009) carried out a comparative study 
between the buckling and post-buckling responses of an FG 
plate with smart actuators. In another attempt, a new 
iterative method is introduced to solve the vibration 
problem of axially FG (AFG) beams (Huang and Li 2010). 
Also, Alshorbagy et al. (2011) performed a finite element 
analysis (FEA) on the dynamic behaviors of FG beams 
using polynomial shape functions. Şimşek et al. (2012) 
surveyed the dynamic responses of an AFG beam under a 
moving harmonic loading. Thai and Choi (2012) 
investigated the vibration problem of an FG embedded plate 

                                          

Corresponding author, Ph.D., Professor, 
E-mail: febrahimy@eng.ikiu.ac.ir 

 

 
based on a refined higher-order plate theory. Ebrahimi 
(2013) analyzed the electro-mechanical vibrational 
responses of FG plates. The thermo-mechanical buckling 
characteristics of FG plates are studied by Ghiasian et al. 
(2014). Moreover, both free and forced vibration analyses 
of bi-directionally FG beams are accomplished by Şimşek 
(2015). Ghiasian et al. (2015) probed the nonlinear thermo-
elastic dynamic buckling behaviors of FG beams. 
Jafarinezhad and Eslami (2017) solved the thermo-
mechanical responses of an FG plate subjected to a flexural 
shock. The stress analysis of FG pressure vessels is carried 
out by Gharibi et al. (2017) in the framework of the 
Frobenius series method. Tang and Yang (2018) 
investigated the post-buckling and nonlinear vibration 
problems of FG fluid-conveying pipes. 

Besides, the influence of porosity in materials like 
FGMs is of high importance. To be honest with you, one of 
the weak points of FGMs is their high probability of 
possessing defects and porosity because of their critically 
sensitive fabrication procedure. Henceforward, the porosity 
effects shall be regarded once an FGM is analyzed. 
Originated from this fact, some of the authors preferred to 
account for the destructive effects of porosity in their 
analyses on the mechanical characteristics of FG structures. 
For instance, Wattanasakulpong and Ungbhakorn (2014) 
explored the nonlinear vibrational responses of FG porous 
beams with restrained ends. In a series of researches, the 
buckling analysis of FG plates is performed under various 
loadings while regarding for porosity effects (Jabbari et al. 
2014, Mojahedin et al. 2014, Mojahedin et al. 2016). 
Moreover, bending, buckling and vibration analyses of FG 
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porous beams are fulfilled by Chen and colleagues (Chen et 
al. 2015, 2016a, b). In addition, Rezaei and Saidi (2016) 
used Carrera unified formulation (CUF) to study the 
vibrational behaviors of FG porous plates. Wang and Wu 
(2017) employed a higher-order shell theory to investigate 
the vibrational responses of FG porous shells. In another 
endeavor, Atmane et al. (2017) considered for thickness 
stretching and porosity effects in their vibrational analysis 
on FG beams. Zenkour (2018) utilized a refined quasi-3D 
plate theory for the goal of analyzing the bending responses 
of FG porous single-layered and sandwich plates. Tian et al. 
(2018) and Stelson (2018) presented a review on academic 
fluid power research and the applications of shear 
thickening fluids. Most recently, Gupta and Talha (2018) 
introduced a sigmoid homogenization model on the basis of 
porosity effects to probe both bending and buckling 
behaviors of FG plates. 

On the other hand, it seems to be an admitted claim that 
engineering designs are moving fast and faster towards 
nanotechnology. This issue can be well perceived once 
comparing the increasing number of articles in the field on 
nanoscience and nanotechnology with the number of 
published articles dealing with conventional fields of 
interest. Therefore, it is significant to reach as more as 
possible knowledge about the nanosize elements because of 
their growing applications in various nano-electro-
mechanical-systems (NEMSs). However, this purpose 
cannot be achieved by employing the classical continuum 
mechanics theories. At least, a rough modification is 
required to transform such theories to those which can be 
applied to investigate the mechanical behaviors of continua 
in nanoscale. Due to this obligation, Eringen (1972) 
presented the theory of nonlocal elasticity which denotes 
that stress state in any point of continua shall be considered 
as a multi-variable function of strains of all other adjacent 
points as well as the strain of the point itself. Up to now, 
several researchers used Eringen’s theory to probe the nano-
mechanical behaviors of nanostructures. For example, 
buckling analysis of embedded single-layered graphene 
sheets is carried out by Pradhan and Murmu (2010). Ansari 
et al. (2011) probed the vibration problem of a multi-
layered nanoplate via nonlocal elasticity. Mahmoud et al. 
(2012) could analyze the vibration problem of a nanobeam 
based on the nonlocal theory. Also, Eltaher et al. (2013) 
could perform an FEA on the vibrational properties of 
nanobeams via nonlocal elasticity. The combined influences 
of moisture and temperature are included in a bending 
analysis performed by Alzahrani et al. (2013) on 
nanoplates. Furthermore, thermal vibration analysis of a 
single-walled carbon nanotube (SWCNT) is performed by 
Ebrahimi and Salari (2015b). Zenkour (2016) explored the 
transient dynamic characteristics of graphene sheets via 
nonlocal elasticity. The wave propagation analysis of a 
smart viscoelastic nanoplate is accomplished by 
Ghorbanpour Arani et al. (2017) on the basis of the 
nonlocal theory of Eringen. Ebrahimi and Karimiasl (2018) 
developed nonlocal piezoelectricity for buckling analysis of 
a flexoelectric nanobeam. Farajpour et al. (2018) performed 
a general mechanical analysis on the smart magneto-
electro-elastic (MEE) nanofilms. One can gain more 

information about the size-dependent theories studying 
complementary references (Ebrahimi and Dabbagh 2018a, 
b, Hosseini et al. 2018). 

Furthermore, in recent years, lots of researches can be 
found dealing with the static and dynamic characteristics of 
FG nano-structures. For example, Eltaher et al. (2012) 
could investigate the vibrational responses of FG 
nanobeams. Later, Natarajan et al. (2012) studied the scale-
dependent vibrational behaviors of FG nanosize plates. 
Rahmani and Pedram (2014) presented a nonlocal first-
order shear deformable beam hypothesis for vibration 
analysis of FG nanobeams. In addition, the nonlinear 
vibrational responses of FG nanobeams are solved by 
Nazemnezhad and Hosseini-Hashemi (2014). Ebrahimi and 
Salari (2015a) studied thermo-mechanical vibration and 
buckling behaviors of FG nanobeams based on the 
Timoshenko beam theory. Ebrahimi and Barati (2016) 
investigated the hygro-thermo-magnetically affected 
stability responses of FG nanobeams. Nejad et al. (2016) 
presented a nonlocal Euler-Bernoulli beam model for 
vibration analysis of bi-directionally graded nanobeams. 
Ebrahimi and his co-workers analyzed the wave 
propagation problem of smart FG nano-beams and –plates 
(Ebrahimi et al. 2016a, b). Also, Ebrahimi et al. (2017a) 
probed the wave dispersion characteristics of rotating FG 
nanobeams. Lately, Srividhya et al. (2018) surveyed 
nonlinear deflection responses of FG nanoplates via FE 
method (FEM). 

Up to now, several analyses have been carried out by the 
authors for the goal of investigating the static and dynamic 
behaviors of FG nano-structures. However, the influences 
of porosity on the mechanical responses of FG nanosize 
beams and plates are studied in just a couple of articles. In 
the only available work on the FG nanobeams, Ebrahimi 
and Dabbagh (2017) probed the wave propagation 
behaviors of a porous nanostructure. Also, the nonlinear 
wave propagation analysis of FG porous nanobeams is 
fulfilled by Barati (2017). Herein, a modified saturated 
porosity based two-step model is introduced which is made 
from a power-law model incorporated with a saturated 
porosity based model. The beam is modeled as a Euler 
beam and on the basis of the infinitesimal strains inside a 
beam, the Navier equations are achieved. Size-dependency 
is prescribed according to nonlocal elasticity and the 
governing equations are solved via an analytical method to 
reach the frequency and velocity of propagated waves. 

 
 

2. Theory and formulation 
 
2.1 Two-step homogenization method for porous 

FGMs 
 
Based on the power-law method for FGMs, the effective 

Young’s moduli and mass density of FGMs can be 
formulated in the following form 
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where c and m subscripts denote ceramic and metal phases, 
respectively. In addition, p stands for the gradient index 
which is proposed to control the volume of constituent 
materials through the thickness direction. Afterward, 
porosity influences should be employed. Herein, both 
uniform and graded porosity distributions are implemented. 
Therefore, the effective material properties can be modified 
as follows 
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where Eq. (3) is implemented for symmetric porosity 
distribution and Eq. (4) is employed once the uniform 
distribution of porosity is regarded. In the above equations, 
e0 and em are porosity and mass density coefficients, 
respectively. The term e0 is defined as 1 ‒ E2/E1 where E2 
and E1 correspond with minimum and maximum amounts 
of Young’s moduli in the continua. Herein, the maximum 
and minimum values are related to ceramic and metal, 
respectively. Also, the relation between e0 and em can be 
considered as (Chen et al. 2016a) 
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Moreover, the coefficient λ in Eq. (4) can be calculated 

as 
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The effect of implementation of the discussed porosity-

based homogenization method on the stiffness behaviors of 
the FGM across the thickness direction is depicted in the 
framework of Fig. 1. It can be seen that the stiffness of the 
FGM can be decreased dramatically while the porosity 
coefficient is considered to be a nonzero value. So, it will 
be natural to see a reduction in the mechanical responses of 
the nanobeam while a porous material is selected instead of 
a non-porous one. It must be noticed that among two 
undertaken models, the modulus of the symmetrically 
distributed porous FGMs experiences a more remarkable 
decrease in the bigger dimensionless thicknesses in 
comparison with the uniformly distributed porous ones. 

 
2.2 Euler-Bernoulli beam theory 
 
The equations of motion for the FG beam are modeled 

in the present research according to the classical beam 
theory. The displacement field of this theory can be written 
as 
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in which, u and w correspond with the axial displacement 
and bending deflection of the beam. Therefore, the nonzero 
strains of the beam can be defined as 
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2.3 Hamilton’s principle 
 
Now, Hamilton’s principle is applied to obtain the 

Navier equations of FG beam as follows 
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where U and T account for strain energy and kinetic energy, 
respectively. Now, the variation of strain energy can be 
formulated as 
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in above equation, the axial force (N) and bending moment 
(M) can be defined as 
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Fig. 1 Effect of various types of porous and non-
porous FGMs on the elasticity modulus of the 
composites (p = 2) 
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Also, the variation of kinetic energy can be expressed as 
follows 
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in which, the mass moments of inertia are defined as 
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Herein, once Eqs. (12) and (14) are substituted in Eq. 

(11) and the coefficients of δu and δw are set to zero, the 
Navier equations of FG beam can be written as follows 
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2.3 Nonlocal elasticity theory 
 
Based upon the nonlocal constitutive equations, the 

stress state of a point inside a nano-structure is a function of 
strain of all adjacent points in addition to that point’s strain. 
So, the stress-strain relationship can be described in the 
following form 
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where σ, ε and C are stress, strain and elasticity tensors, 
respectively. Once extending Eq. (18) and integrating from 
it over the beam’s cross-section, the following relations can 
be achieved for axial force and bending moment 
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2.3 Governing equations 
 
Now, the final governing equations of FG porous 

nanobeams can be achieved by substituting Eqs. (19) and 
(20) in Eqs. (16) and (17) 
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3. Solution procedure 
 
Here, an analytical solution method is applied to solve 

the governing equations. The displacement field’s 
components are supposed to be 
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where, U and W are wave amplitudes, β is wave number 
and ω is the circular frequency of dispersed waves. 
Substituting for u and w from Eq. (24) in the Eqs. (22) and 
(23), the following equation is obtained 
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Once the above eigenvalue equation is solved for ω, the 

wave frequency of propagated waves can be reached. 
Moreover, the phase velocity can be computed by dividing 
wave frequency to wave number as 
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Table 1 Comparison of the natural frequencies of FG nanobeams 

 p = 0.1 p = 0.5 p = 1 

µ Eltaher et al. (2012) Present Eltaher et al. (2012) Present Eltaher et al. (2012) Present 

0 9.2129 9.1887 7.8061 7.7377 7.0904 6.9885 

1 8.7889 8.7663 7.4458 7.3820 6.7631 6.6672 

2 8.4166 8.3972 7.1312 7.0712 6.4774 6.3865 

3 8.0887 8.0712 6.8533 6.7966 6.2251 6.1386 
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4. Numerical results 
 
Present part is devoted to study the influences of various 

parameters on wave propagation behaviors of FG 
nanobeams. In this study, the material properties of ceramic 
are Ec = 390 GPa, ρc = 3960 kg/m3; also, the metal’s 
mechanical properties are Em = 210 GPa, ρm = 7800 kg/m3. 
The thickness of the studied nanobeam is 0.1 nm and the 
length to thickness ratio is assumed to be 100. Also, the 
nanobeam’s width is as same as its thickness. It is worth 
mentioning that the results of the present research are 
obtained free from consideration of the shear deformation 
effects. Indeed, the length to thickness ratio of the 

 
 

 
 

nanobeam is selected to be big enough so that the error 
generated from employment of the Euler-Bernoulli theory is 
negligible. However, once a nanobeam with slenderness 
ratio smaller than 10 or 15 is employed, the researchers 
must employ higher order beam models to consider for the 
deflection produced from the shear strain. The presented 
formulation is validated by comparing the natural frequency 
responses of ours with those of Eltaher et al. (2012). The 
results of this verification are presented in Table 1. 

Fig. 2 shows the variation of wave frequency versus 
wave number for different porosity distributions for the goal 
of showing the effect of porosity on the mechanical 
response of FG nanobeams. It is clear that porous  

(a) Symmetric porosity distribution (b) Uniform porosity distribution 

Fig. 2 Variation of wave frequency versus wave number for both perfect and porous materials by considering the 
influence of different porosity distributions (µ = 0.5 nm, p = 2) 

(a) Symmetric porosity distribution (b) Uniform porosity distribution 

Fig. 3 Variation of phase velocity versus wave number for both perfect and porous materials by considering the 
influence of different porosity distributions (µ = 0.5 nm, p = 2) 
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(a) Symmetric porosity distribution 
 

(b) Uniform porosity distribution 

Fig. 4 Variation of phase velocity versus wave number with 
respect to both classical and nonlocal continuum 
theories and porosity effects (p = 2) 

 
 

nanobeams are a little weaker than perfect ones in enduring 
wave frequencies in a similar desirable wave number. This 
trend can be well justified once pointing to the fact that 
porous materials have lower rigidities once compared with 
perfect ones. However, this phenomenon can be better 
perceived in high values of wave number. Also, it is shown 
that porous beams with uniformly distributed porosities 
support lower frequencies in comparison with those with 
symmetric porosity distribution. 

A same illustration is presented in Fig. 3 plotting the 
variation of phase velocity of both perfect and imperfect FG 
nanobeams against wave number for different types of 
porosity distribution. Similarly, it can be found that perfect 
materials are better relative candidates to be employed as a 
constituent material due to their greater capacity of passing 

waves with higher speeds while compared with porous 
materials. In addition, it can be well observed that 
symmetric porosity distribution is better than uniform 
distribution because it does not affect the rigidity in the 
inner regions inside the beam, whereas, uniform distribution 
affects all of the beam in a same manner. 

Furthermore, in Fig. 4, the influence of using classical 
or nonlocal continuum mechanics are covered as well as 
porosity effects while investigating the variation of phase 
velocity against wave number. On the basis of this diagram, 
utilization of nonlocal continuum mechanics corresponds 
with a decrease in the value of wave speed which is exactly 
the stiffness-softening influence of nonlocal parameter. 
Also, it can be seen that differences between porous and 
perfect materials can be better observed once uniform 

 
 

(a) β = 5 (1/nm) 
 

(b) β = 10 (1/nm) 

Fig. 5 Variation of phase velocity versus nonlocal parameter 
for various gradient indices for uniformly porous FG 
nanobeams with respect to the influence of wave 
number (µ = 0.5 nm) 
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(c) β = 20 (1/nm) 

Fig. 5 Continued 
 
 

distribution is selected. Indeed, the bending rigidity’s 
decrease in uniform distribution of porosities is greater than 
its decrease in the case of choosing symmetric distribution 
of porosities. 

Fig. 5 is presented to put emphasize on the importance 
of wave number and gradient index while drawing the 
variation of phase velocity versus nonlocal parameter for 
porous FG nanobeams. According to the figure, it can be 
understood that the higher is the chosen nonlocal parameter, 
the lower is the corresponding phase velocity. On the other 
hand, it is observed that in a desired amount of nonlocal 
parameter phase velocity of porous FG nanobeam can be 
diminished selecting a higher gradient index. Besides, the 
effect of wave number can be seen. Indeed, the decreasing 

 
 

influence of nonlocal coefficient can be sensed more in high 
wave numbers. In other words, by changing the nonlocal 
parameter from zero to 0.5 nm, the percentage of changes of 
phase velocity for β = 20 (1/nm) is more than β = 10 (1/nm) 
followed by β = 5 (1/nm). 

Finally, Fig. 6 is drawn to illustrate the variation of the 
wave dispersion responses of both porous and non-porous 
FG nanobeams against the gradient index. It can be seen 
that the escape frequency decreases continuously as the 
gradient index grows for both symmetric and uniform types 
of porosity distribution. The reason of the appeared 
decrease is that the elastic characteristics of the nanobeam 
will be lessened as the gradient index becomes greater. 
Hence, it is clear to observe a stiffness decrease which leads 
to seeing lower escape frequencies. 

 
 

5. Conclusions 
 
Herein, a two-step porosity based homogenization 

technique is presented and its application is shown in the 
wave propagation problem of a FG nanobeam. 
Incorporating Hamilton’s variational principle, nonlocal 
elasticity and Euler-Bernoulli beam theory, the governing 
equations are achieved. Now, the most important results are 
reviewed: 

 
 Wave dispersion responses of FG nanobeams 

decrease as gradient index increased. 
 Porous materials cannot endure as enormous 

frequencies as perfect ones tolerate. 
 The wave propagation responses become smaller in 

nonzero amounts of nonlocal coefficient. 
 The mechanical responses of porous FG nanobeams 

can be more affected by porosities in uniform 
distribution. 

 
 

(a) Symmetric porosity distribution (b) Uniform porosity distribution 

Fig. 6 Variation of escape frequency versus gradient index for both perfect and porous materials with respect to the 
influence of porosity distribution (µ = 0.5 nm) 
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