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1. Introduction 

 

The porous materials, such as metal foams, have been 

made of two elements; one of which is solid (body) and the 

other element is either liquid or gas. Many researchers are 

interested to use these materials as advanced engineering 

materials (Ashby et al. 2000, Smith et al. 2012, Zhao 2012, 

Dukhan 2013, Betts 2012, Chen et al. 2016) in aerospace, 

civil constructions and automotive industry especially as a 

core of sandwich structures due to their excellent multi 

functionality offered by low specific weight, efficient 

capacity of energy dissipation, reduced thermal and 

electrical conductivity, and enhanced recyclability. 

Sandwich structures have been usually made of three 

major parts: two thin facesheets layers that provide the in-

plane and bending stiffness and a thick core sandwiched 

between facesheets that carries the transverse normal and 

shear loads. For these reasons, employing stiff facesheets 

such as carbon nanotubes (CNT) reinforced composite and 

low specific weight core such as porous materials 

(Mojahedin et al. 2016, Jasion and Magnucki 2013) is 

suggested. Wen (2012) presented an analytical solution for 

the deformation of a thick circular plate saturated by an 

incompressible fluid. Buckling analysis of porous beams 

with varying properties is described by Magnucki and 

Stasiewicz (2004). They used the shear deformation theory 
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to determine the critical buckling load and also showed the 

effect of porosity on the strength and buckling load of the 

beam is investigated. Yahia et al. (2015) developed different 

higher order shear deformation plate theories for wave 

propagation in functionally graded plates. They investigated 

the effects of the volume fraction distributions and porosity 

volume fraction on wave propagation of functionally graded 

plate. Chen et al. (2015) studied the elastic buckling and 

static bending problems of shear deformable FG porous 

beams within the frame of the Timoshenko beam theory and 

considered two different non-uniform porosity distribution 

patterns and four types of boundary conditions. Magnucka-

Blandzi (2009) discussed on dynamic stability of a metal 

foam circular plate with varying properties. The same 

author also obtained the critical buckling load for a 

rectangular plate made of foam with two layers of perfect 

material. 

Experimental and theoretical studies showed that CNTs 

have extraordinary mechanical properties over carbon fibers 

to improve the characteristics (Zhang 2017a, b, Jalaei et al. 

2018). The face sheets can be laminated composites (Ugale 

et al. 2015), functionally graded materials (Zhu et al. 2014,

Belkorissat et al. 2015, Zenkour 2005, Ahouel et al. 2016) 

or polymer matrix with CNTs reinforcements (Sun et 

al. 2005, Jia et al. 2011, Whitney 1972, Lei et al. 2015, 

Ahouel et al. 2016, Zhang et al. 2016a, b, c). Bellifa et al. 

(2017) developed a nonlocal zeroth-order shear deformation 

theory for nonlinear postbuckling of nanobeams. They 

considered the shear deformation effect in the axial 

displacement within the use of shear forces instead of 

rotational displacement like in existing shear deformation 
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theories. 

Mohammadimehr et al.  (2014) performed biaxial 

buckling and bending analysis of smart nanocomposite 

plate reinforced by CNT using the extended mixture rule 

approach. Yin et al. (2010) considered the vibration analysis 

of micro nonclassical Kirchhoff plate based on the modified 

couple stress theory (MCST). They concluded that as the 

thickness to be comparable with the material length scale 

parameter, the MCST natural frequency is dependent on the 

size dependent effect. Karami et al. (2018) presented a 

variational approach for wave dispersion in anisotropic 

doubly-curved nanoshells based on a new nonlocal strain 

gradient higher order shell theory. The study of the doubly-

curved nanoshell as a continuum model, a new size-

dependent higher order shear deformation theory is 

introduced by them. Wang et al. (2011) took into account 

vibration and static analyses of rectangular Kirchhoff plate 

based on the strain gradient theory (SGT). They illustrated 

that the critical buckling load and natural frequency affected 

significantly using the size dependent effect. Wang and 

Shen (2012) presented nonlinear vibration and bending 

analyses of sandwich plates with carbon nanotube 

reinforced composite. They investigated the effects of 

nanotube volume fraction, core-to-face sheet thickness 

ratio, temperature change, foundation stiffness, and in-plane 

boundary conditions on the nonlinear vibration 

characteristics and nonlinear bending behaviors of sandwich 

plates with a functionally graded-carbon nanotube (FG-

CNT) reinforced composite facesheets. 

Many researchers established the effect of size 

dependent on the mechanical properties of structures at 

micro and nano scales. It has been illustrated that classical 

continuum mechanics cannot indicate the size influences at 

micro and nano scale structures. On the way to overcome 

this problem, many nonlocal theories that consider 

additional material constants, such as the nonlocal elasticity 

theory (Mohammadimehr and Rahmati 2013, Bounouara et 

al. 2016, Zemri et al. 2015), the strain gradient theory 

(SGT), modified couple stress theory (MCST) 

(Mohammadimehr et al. 2016a,d, 2017, Ke and Wang 

2013), and modified strain gradient theory (MSGT) (Kong 

et al. 2009, Mohammadimehr et al. 2018a, Zeighampour 

and Beni 2014). Mohammadimehr et al. (2016b) 

investigated MSGT Reddy rectangular plate model for 

biaxial buckling and bending analysis of double-coupled 

piezoelectric polymeric nanocomposite reinforced by FG-

SWCNT. Al-Basyouni et al. (2015) considered size 

dependent bending and vibration analyses of functionally 

graded microbeams based on MCST and neutral surface 

position. 

Some investigations based on different plate theories 

(Mohammadimehr and Shahedi 2017, Zhang et al. 2016c, 

d) have been performed. Bourada et al. (2015) analyzed a 

new simple shear and normal deformations theory for 

functionally graded beams. They showed the effect of the 

inclusion of transverse normal strain on the deflections and 

stresses. Mohammadimehr and Salemi (2014) presented 

SGT for bending and buckling analysis of functionally 

graded (FG) Mindlin nanoplate. Bellifa et al. (2018) 

investigated bending and free vibration analyses of 

functionally graded plates using a simple shear deformation 

theory and the concept of the neutral surface position. 

Ritz method, a proven approximation technique, (Lei et 

al. 2014, 2016a, b, Zhang et al. 2015a, b, c, d) which is a 

generalized Rayleigh method, has been used in 

computational analyses. Zhang and Xiao (2017) considered 

the mechanical behavior of laminated CNT-reinforced 

composite skew plates subjected to a dynamic load that they 

used the element-free IMLS-Ritz method to solve the 

problems. Also, some researchers worked about nano and 

micro composite, elastic foundation and various size 

dependent effects in the literature (Ghorbanpour Arani et al. 

2011a, b, 2012, Mohammadimehr et al. 2010, 2016c, d, 

2017). Vibration analysis of CNT-reinforced thick 

laminated composite plates based on Reddy’s higher-order 

shear deformation theory is presented by Zhang and Selim 

(2017). They incorporated HSDT with one of the element-

free approaches to show the influence of various CNT 

orientation angles, CNT volume fraction, plate aspect ratio 

and the number of plate’s layers on the non- dimensional 

natural frequencies. Mohammadimehr and Mehrabi (2017 

and 2018) presented stability and free vibration analyses of 

double-bonded micro composite sandwich cylindrical shells 

conveying fluid flow. 

In the present work, free vibration analysis of annular 

sandwich plates with carbon nanotubes reinforced 

composite (CNTRC) facesheets and various FG porous 

cores using modified couple stress (MCST) and first order 

shear deformation theories (FSDT) and Ritz method is 

studied. The proposed porous core has been made of open-

cell metal foam which the mechanical property is used to 

derive the relationship between coefficients of porosity and 

mass density. Two non-uniform FG porosity distributions 

and a uniform distribution have been considered in this 

research. The carbon nanotubes reinforced composite 

facesheets are modeled by various carbon nanotubes 

distributions. By using Hamilton’s principle, the governing 

equations of motion are solved by the Ritz method for a 

microcomposite annular sandwich plate. The effects of 

material length scale parameters, boundary conditions, and 

aspect and inner-outer radius ratios on the natural frequency 

have been presented. Moreover, the noteworthy items are 

the consequence of FG porous distributions and pore 

compressibility using porous material as a core and also 

volume fraction of CNT in the EMR method and comparing 

of various CNTs approaches as a reinforcement of facesheet 

on the results. 

 

 

2. Porosity distributions 
 

Consider a micro annular sandwich plate with an outer 

radius Rb and inner radius Ra, and its r ‒ θ polar coordinate 

system that is shown in Fig. 1. The total plate thickness is ht 

= hc + 2hf, where hc denotes the core thickness and hf is the 

thickness of facesheets that are assumed to be perfectly 

bonded to the core material. The internal pores Mojahedin 

et al.  (2016) in the core are uniform or non-uniform FG 

porosity distributions as also shown in Fig. 1. Young 

modulus E(z), shear modulus G(z), and mass density ρ(z) 
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are described in Eq. (1) for different kinds of distribution. 

As it is observed in Fig. 1 that porosity distribution A is 

asymmetrical with continuous depression of material 

properties along thickness direction while porosity 

distribution B is symmetrical about r-axis with elastic 

moduli and mass density decreasing from top and bottom 

surfaces to the mid-plane. The porosity distribution C is 

uniform and without changing of depression in material 

properties along the  thickness direction. The various 

porosity distributions are defined as follows (Mojahedin et 

al.  2016, Chen et al. 2016). 
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where E1, G1 and ρ1 are the corresponding maximum values 

of Young's modulus, shear modulus, and mass density for 

non-uniform porosity distributions, respectively. The 

material properties of the core are constant along the plate 

thickness for uniform porosity distribution and the 

coefficient ς is the equivalent mass of sandwich porous 

plates. e0 and em are the coefficient of porosity and mass 

density, respectively, that can be defined as follows (Chen 

et al. 2016) 
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where E2, G2 and ρ2 are the corresponding minimum values 

of Young’s modulus, shear modulus, and mass density for 

non-uniform porosity distributions, respectively. The typical 

mechanical property of the open-cell metal foam and the 

relationship between e0 and em are defined as follows (Chen 

v 2016) 
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Fig. 1 A schematic diagram of the annular microcomposite sandwich plate with SWCNT reinforced composite 

facesheets and functionally graded porous cores. 
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3. Various CNT distributions in the facesheets 
using different approaches 
 

An annular sandwich plate is composed of three layers 

as shown in Fig. 1. It is assumed that the matrix is 

considered as an isotropic material and the CNT reinforced 

layers as top and bottom facesheets are made of various 

SWCNT models such as Eshelby-Mori-Tanaka (E-M-T), 

extended mixture rule (EMR), and Halpin-Tsai (H-T) in the 

thickness direction as follows: 

 

3.1 The extended mixture rule approach 
 

The effective material properties of the CNT reinforced 

matrix in extended mixture rule (EMR) approach are 

determined by the following equations (Mohammadimehr et 

al.  2018a) 
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where ηi (i = 1, 2, 3) denotes force transformation between 

SWCNTs and polymeric matrix and E11, E22 and G12 are 

Young’s moduli and the shear modulus of the CNT, and 

VCNT and Vm are the volume fraction of the CNT and the 

matrix, respectively. 

 

3.2 Eshelby-Mori-Tanaka approach 
 

The other approach for estimation of material properties 

of the CNT fiber is Eshelby-Mori-Tanaka (E-M-T) 

approach that fiber is uniformly distributed in the isotropic 

matrix. The stiffness coefficients are written as follows 

(Ghorbanpour Arani et al.  2016) 
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where vm is the Poisson’s ratio of the matrix and kf, nf, mf 

and pf are the Hill’s elastic moduli for CNTs. 

3.3 Halpin-Tsai approach 
 

Material properties of the circular sandwich facesheets 

in Halpin-Tsai (H-T) are defined as follows 
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where Vf, Vm, Ef, and Em are fiber and matrix volume 

fraction and moduli, respectively and the transverse 

modulus can be written as follows (Halpin and Kardos 

1976) 
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where τ = 2 is considered for the best state and η1 is shown 

as the following form 

 

1

1f

m

f

m

E

E

E

E











 

(8) 

 

The shear modulus, η2 and τ = 1 for the best state are 

defined as follows 
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where Gf and Gm are fiber and matrix moduli, respectively. 

The volumes fractions are related by VCNT + Vm = 1. The 

facesheets are supposed to be reinforced with CNTs and the 

volume fraction VCNT for the top facesheet can be defined 

as  (Mohammadimehr et al.  2018a) 
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and for the bottom facesheet as follows 
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where wCNT is the mass fraction of the nanotubes. ρCNT and 

ρm are the mass densities of carbon nanotube and the matrix, 

respectively. 
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4. The theoretical formulation of a circular 
sandwich plate 
 
According to the first order shear deformation theory 

(FSDT), the displacement fields for the micro composite 

sandwich plate is used as follows 

 

       

       

   

0

0

0

, , z, t , , t , , t

, , z, t , , t , , t

, , z, t , , t

o o

o o

o

u r u r f z r

v r v r f z r

w r w r

   

   

 

 

 



 (14) 

 

where 𝑢0
𝑜  and 𝑣0

𝑜  denote in-plane displacements on mid-

plane in r and z directions, respectively and 𝑤0
𝑜  is the 

transverse displacement of the plate. αo and βo are the 

rotation of the middle surface about r and θ at z = 0 and f(z) 

= z. 

Strain–displacement relations according to first order 

shear deformation theory (FSDT) can be expressed as 

follows 
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(15) 

 

Using Hook’s law, the constitutive equations for the 

microcomposite annular sandwich plate can be stated as 

follows 
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where 𝑄𝑖𝑗
𝑜 , 𝜎𝑖𝑗

𝑜  and 𝜀𝑖𝑗
𝑜  are the stiffness coefficient matrix, 

stress and strain components, respectively. Upper index, o(t, 

c, b) denotes the layers of microcomposite sandwich (top, 

core, bottom) and 𝑄𝑖𝑗
𝑜  is defined as follows 
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where ks is shear correction factor. The strain energy Π for a 

circular annular sandwich plate can be written as follows 
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where Tb, Tc, Tt, Ub, Uc, Ut and V are kinetic and strain 

energies of the bottom, core and top layer in an annular 

sandwich plate, and external work, respectively. The kinetic 

energy of the sandwich plate can be expressed as follows 
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where upper index (⊔) indicates ∂/∂t. The strain energy 

based on MCST can be written as follows 
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where 𝜒𝑖𝑗
𝑂  is symmetric rotation gradient tensor of annular 

sandwich plate. 

In this article, the value  of material length scale 

parameter (l) is approximately assumed to be equal to 15 

μm. 

Substituting Eqs. (14) into Eqs. (21) yields the equations 

for symmetric rotation gradient tensor as follows 
 

     

 
 

 

20

0

2

2 22 2

0

2 2 2 2

1
, 0, , ,

2 2 2 2 2

1
,

4 4

oo o
o o o o

rr zz r

o o
o o o o

z rz

f z f z f zw

z r z r r z r

f z f zv
f z

z r r z

 



  
   


   

     
       

       

   
         

 

     

 
 

 

20

0

2

2 22 2

0

2 2 2 2

1
, 0, , ,

2 2 2 2 2

1
,

4 4

oo o
o o o o

rr zz r

o o
o o o o

z rz

f z f z f zw

z r z r r z r

f z f zv
f z

z r r z

 



  
   


   

     
       

       

   
         

 

     

 
 

 

20

0

2

2 22 2

0

2 2 2 2

1
, 0, , ,

2 2 2 2 2

1
,

4 4

oo o
o o o o

rr zz r

o o
o o o o

z rz

f z f z f zw

z r z r r z r

f z f zv
f z

z r r z

 



  
   


   

     
       

       

   
           

(22) 

 

 

5. Ritz method 
 

The following equations can be considered for the 

displacement fields of the microcomposite sandwich plate 

according to Ritz solution 
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The amplitude of displacements can be expressed as 

(Zhou et al.  2003) 
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Table 1 Trial functions for different boundary conditions 

(Zhou et al. 2003) 

Boundary 

conditions 
F1 (R) F2 (R) F3 (R) F4 (R) F5 (R) F6 (R) 

Clamped 1+R 1-R 1+R 1-R 1+R 1-R 

Simply supported 1 1 1+R 1-R 1+R 1-R 

Free 1 1 1 1 1 1 
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ai, bi, ci, di, ei are unknown Ritz coefficients and 𝑈 𝑜 𝑅 , 
𝐴 𝑜 𝑅 , 𝑉 𝑜 𝑅 , B 0 𝑅  and 𝑊 0 𝑅  are the corresponding 

Ritz trial functions. For the axisymmetric circular annular 

the sandwich nanocomposite plate n is equal to zero. I is the 

truncation orders of the Chebyshev polynomial series. Fi(R) 

is the function that leads to satisfying boundary conditions. 

For simplicity of mathematical formulation, following 

dimensionless relations are considered as follows 
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where, 𝑟 =  𝑟𝑜 − 𝑟𝑖  and δ = (ro + ri)/(ro ‒ ri). 

Trial functions for different boundary conditions are 

shown in Table 1. (Zhou et al.  2003). The abbreviations of 

C, S, and F denote clamped, simply supported, and free 

boundary conditions, respectively. Using Eqs. (21), (22) and 

(25), the strain energy can be written as follows 
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Strain and symmetric rotation gradient tensor in Ritz 

form can be defined as follows 
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Also, the following relations for strain and kinetic 

energies can be defined as follows 
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Substituting of Eqs. (23), (24) and (27) into Eqs. (28) 

and (29) yields the following equations 
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where 
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The following equation can be used to obtain the motion 

equation of the microcomposite sandwich annular plate 
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(33) 

 

Using Eqs. (18) and (33) and separating variables, the 

motion equations can be obtained for each Ritz constant 
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The matrix form of the motion equations can be 

expressed as follows 
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The stiffness and mass coefficients can be derived as the 

following form 
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6. Results and discussions 
 

Free vibration analysis of the microcomposite annular 

sandwich plate with carbon nanotube reinforced composite 

(CNTRC) facesheets and FG porous core is  presented. 

Firstly, the used materials properties in this article are 

defined for three layers of the sandwich plate. Then, using 

the present method, the accuracy and efficiency of the 

approach is studied by several examples. Lastly, the effects 

of porosity distribution, geometrical parameters, various 

boundary conditions and volume fraction of carbon 

nanotubes on the first mode shape of free vibration 

characteristics of the microcomposite annular sandwich 

plate are also reported. 

Polymethyl methacrylate (PMMA) is assumed as the 

matrix of facesheets  that the material properties are set as 

follows 
 

ρ = 1150(Kg/m3),  σ = 0.34,  E = 2.1(Gpa),  ks = 1. 
 

In addition, the SWCNTs are used as reinforcement of 

facesheets that the materials properties are set as follows 
 

𝐸11
𝐶𝑁𝑇 = 5.6466 (𝑇𝑃𝑎),  𝐸22

𝐶𝑁𝑇 = 7.08 (𝑇𝑃𝑎) 
 

𝐺12
𝐶𝑁𝑇 = 1.9445  𝑇𝑃𝑎 ,  𝜌 = 1400 𝐾𝑔/𝑚3 

 

and  𝑣12 = 0.175. 
 

Efficiency parameters for various volume fractions in 

mixture rule approach are tabulated in Table 2 that is used 

for validation and some reports (Mohammadimehr et al.  

2018b, Shi et al.  2004) For other cases E-M-T approached 

is selected with following efficiency kr = 30e9, lr = 10e9, mr 

= le9, nr = 450e9, pr = le9 (Shi et al.  2004). 

 

6.1 Formulation validation 
 

As no published results for the microcomposite  annular 

sandwich plate with carbon naotube reinforced composite 

facesheets and functionally graded (FG) porous core in the 

open literature. In Table 3, the present results are compared 

with the obtained results by (Zhong et al. 2018) for 

vibration analysis ( (Ω = (𝑟𝑏
2𝜔/ℎ) 𝜌𝑚/𝐸𝑚) ) of CNTs 

reinforced composite annular plate. In terms of geometrical 

parameters, CNTs reinforced composite annular plate with 

two  CC and SS boundary conditions have been compared in 

classical theory. Moreover, natural frequency  for CNTs 

reinforced composite annular plates with (Rb/Ra = 2, h/Rb = 

0.1) are obtained by using an approach of mixtures rule. 

Another comparison results of dimensionless natural 

frequency (Ω) with CS boundary conditions are tabulated in 

Table 4 that the material properties on the bottom and top 

facesheets are assumed as ceramic and metal, respectively. 

The material constants are: ρm = 2707  kg/m3, Em = 70 

Gpam vm = 0.3 and ρc = 700 kg/m3, Ec = 168 Gpa, vc = 0.3. 

The results show the third mode sequence number of the 

annular plate and some value of aspect ratios and inner-to-

outer radius ratio. 

 

 

 

Table 2 The CNTs efficiency parameters for various 

volume fractions in the mixture rule approach 

(Mohammadimehr et al. 2018b, Shi et al. 2004) 

𝑉𝐶𝑁𝑇
∗  η1 η2 η3 

0.11 0.149 0.934 0.934 

0.12 0.137 1.022 0.715 

0.14 0.150 0.941 0.941 

0.17 0.149 1.381 1.381 

0.28 0.141 1.585 1.109 
 

 

 

Table 3 Comparison of natural frequency parameters (Ω) 

for CNTs reinforced composite annular plates with 

two types of boundary conditions 

(Ra/Rb = 2, h/Rb = 0.1) 

Vcnt 

CC SS 

Present 

work 

Zhong et al. 

2018 
Present 

Zhong et al. 

2018 

0.11 34.5374 34.5169 13.608 13.7706 

0.14 35.491 35.2669 13.983 14.0151 

0.17 42.9253 43.1567 16.912 17.2297 
 

 

 

Table 4 Comparison of the frequency parameters (Ω) for 

CNTs reinforced composite annular plates with CS 

boundary conditions (Ra/Rb = 2, h/Rb = 0.1) 

h/Rb Ra/Rb Present 
Wang et al. 

2016 

Guo et al. 

2018 

Zhong et al. 

2018 

0.1 
0.5 195.056 194.990 194.990 194.981 

0.7 477.039 476.676 476.681 476.667 

0.2 
0.5 163.855 163.592 163.620 163.594 

0.7 402.652 402.009 402.073 402.011 
 

 

 

 

6.2 Discussion and results 
 

Fig. 2 depicts the dimensionless free vibration of 

microcomposite annular sandwich plate versus aspect ratios 

of Ra/Rb. Various distributions of CNT for facesheets and 

the uniform porous core of the sandwich plate are assumed. 

The obtained result shows that E-M-T and EMR with (VCNT 

= 0.17, η1 = 0.142, η2 = 1.138, η3 = 1.138) approached are 

quite close together instead of the H-T approach. H-T 

approach is quite useful in  determining the properties of 

composites that contain discontinuous fibers oriented in the 

loading  direction (Abdel Ghafaar 2006). Hence, E-M-T and 

EMR approached are chosen for the present investigation. 

Fig. 3 demonstrates the effects of thickness-to-outer 

radius ratio changes on the dimensionless free  vibration of 

the microcomposite annular  sandwich plate for five types 

of  boundary conditions. Uniform porous core with e0 = 0.5 

and E-M-T approached as a reinforcement of facesheets is 

considered. Dimensionless natural frequency parameter 

Ω = 𝑟𝑏𝜔 𝜌ℎ/𝐷 (where D is the flexural stiffness) is used 
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for all the following results. Dimensionless natural 

frequencies lead to a smaller value by rising of  thickness to 

outer radius ratios. 

The effects of various porosity distributions such as (a) 

uniform porosity distribution; (b) non-uniform asymmetrical 

porosity distribution (FG-A); (c) non-uniform symmetrical 

porosity distribution (FG-B) on the natural frequency of the 

microcomposite  sandwich plate with different porosity 

distributions in the porous core is  illustrated in Figs.  4(a), 

(b) and (c), respectively . The result for these figures based 

on MCST and E-M-T approached in facesheet are obtained 

with assuming of C-C boundary conditions. It is found that 

increasing value of aspect ratios (l/h) (the ratio of material 

 

 

 

 

length scale parameter to thickness) enhances the natural 

frequency and for higher l/h, the variation rate of natural 

frequency leads to approximately constant which is a 

typical hardening behavior due to increasing of size 

dependent effect. Also, by increasing porosity coefficient or 

increasing size of the internal pores, a dimensionless free 

vibration decreases and the plate stiffness will be reduced. 

Annular sandwich plates with non- uniform porosity 

distribution including symmetric and asymmetric  and

uniform porosity distribution have the same behavior but in 

different ranges. 

The effects of pore compressibility with uniform and 

non-uniform symmetric distribution on dimensionless 

 

Fig. 2 Dimensionless free vibration of microcomposite annular sandwich plate versus aspect ratios of Ra/Rb for three 

types of CNT reinforced approached of facesheets and uniform porous core (e0 = 0.5, hc = 0.8h, h = 0.2Rb) 

 

Fig. 3 The effects of boundary conditions on the dimensionless free vibration of the microcomposite annular sandwich 

plate vs. thickness to outer radius ratios (e0 = 0.5, hc = 0.8h, Ra = 0.5Rb) 
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natural frequencies are shown in Figs. 5(a) and (b). This 

graph is predicted by C-C boundary conditions, E-M-T 

approached and MCST. These figures show that by 

increasing the pore compressibility and thickness to outer 

 

 

 

 

radius ratios, the frequency of the sandwich plate decreases. 

Fig. 6 presents the dimensionless natural frequency of 

microcomposite annular sandwich plate for a variation 

range of facesheet-total thickness ratios and different pore 

  

(a) Uniform porosity distribution (b) Non-uniform asymmetrical porosity distribution (FG-A) 
 

 

)c) Non-uniform symmetrical porosity distribution (FG-B) 

Fig   4 The effects of various porosity distributions on dimensionless natural frequency versus aspect ratios of for C-C.

microcomposite annular sandwich plate (h = 0.1Rb, hc = 0.8h, Ra = 0.5Rb) 

  

(a) Uniform porosity distribution (b) Non-uniform asymmetrical porosity distribution (FG-B) 

Fig   5 Effect of various porosity distributions on the dimensionless natural frequency of the microcomposite annular.

sandwich plate vs. thickness to outer radius ratios predicted by MCST (l = 15 μm, hc = 0.8h, Ra = 0.5Rb) 
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Table 5 The dimensionless natural frequency of annular 

sandwich plates for different boundary conditions 

and various radius ratios (hc/h = 0.8) 

BC e0 

h/Rb 

Ra/Rb = 0.3 Ra/Rb = 0.5 

0.1 0.2 0.3 0.1 0.2 0.3 

S-S 

0.4 7.2009 5.2770 4.4087 7.8125 5.7232 4.7798 

0.6 6.4265 4.5978 3.7559 6.9485 4.9699 4.0587 

0.8 5.4779 3.8640 3.1288 5.9005 4.1613 3.3689 

C-S 

0.4 9.8084 6.9316 5.8573 9.9329 7.1956 6.0286 

0.6 9.5513 6.8408 5.6289 9.8985 7.1430 5.8633 

0.8 9.3751 6.6289 5.4041 9.5617 6.7537 5.5002 

C-F 

0.4 8.1955 5.8405 4.7823 8.7054 6.2028 5.0780 

0.6 7.3206 5.1553 4.1837 7.7637 5.4667 4.4358 

0.8 6.2754 4.4046 3.5688 6.6436 4.6626 3.7775 

S-F 

0.4 6.8977 4.8896 3.9901 7.4835 5.3029 4.3258 

0.6 6.2224 4.3754 3.5479 6.7278 4.7294 3.8385 

0.8 5.3830 3.7785 3.0627 5.7983 4.0692 3.2977 
 

 

 

compressibility of the uniform porous core of the sandwich 

plate. This figure is also predicted by the C-C boundary 

condition and E-M-T approached based on MCST. The 

thickness ranges of sandwich structures facesheets are 

limited as 0.1 ≤ ht/h ≤ 0.3. Moreover, by increasing the 

facesheet-to-total thickness ratios, the strength of the 

structures leads to higher values. 

Since all the graphs are drawn to C-C boundary 

conditions, Table 5 shows the dimensionless natural 

frequencies for various different boundary conditions such 

as (S-F, C-F, S-S, C-S), these results are demonstrated for 

uniform porosity distribution (e0 = 0.5) and EMT approach 

based on MCST. The shear correction factor is defined as: 

 

 

ks = π2/12. It is shown that, dimensionless natural frequency 

increases with an increase of radius ratio and decreases with 

increasing of porosity constant and thickness to outer radius 

ratios. 

Fig. 7 depicts the effect of h/Rb on dimensionless natural 

frequency of the microcomposite annular sandwich plate 

predicted by MCST. Carbon nanotubes reinforced 

composite facesheets with EMR approached (VCNT = 0.17) 

and uniform porous core (e0 = 0.5) are selected. Variation 

range of free vibration for lower ratios of h/Rb are much 

more than larger ratios and when these changes lead to 

higher values, even by changing of Ra/Rb ratios, these 

variations are almost constant. 

The dimensionless natural frequency Ω of micro-

composite annular sandwich plate with uniform porous core 

based on MCST and various volume fractions of CNTs with 

EMR approached by the material parameters that are listed 

in Table 2 is illustrated in Fig. 8. According to C-C 

boundary conditions and based on MCST, by increasing of 

inner to outer radius ratios and decreasing of volume 

fraction percentage, the dimensionless natural frequency 

leads to lower values. 
 

 

7. Conclusions 
 

In this research, a dimensionless natural frequency of 

microcomposite annular sandwich plate was developed 

using modified couple stress (MCST) and first order shear 

deformation theories (FSDT). Various porosity distributions 

such as (A) asymmetric, (B) symmetric, and (C) uniform 

are considered as the core of sandwich structures. The 

mechanical properties of carbon nanotubes reinforced 

composite facesheets are predicted by different approaches 

such as extended mixture rule (EMR), Eshelby-Mori-

Tanaka (E-M-T), and Halpin-Tsai (H-T) and governing 

equations were derived by using Hamilton’s principle. To 

 

Fig. 6 The effects of boundary conditions on the dimensionless free vibration of the microcomposite annular sandwich 

plate vs. thickness to outer radius ratios (h = 0.1Rb, l = 15 μm, Ra = 0.5Rb) 
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obtain the natural frequencies of the microcomposite 

annular sandwich plate, the governing equations along with 

different boundary conditions are solved by the Ritz method 

and predicted results are validated by comparing studies for 

CNTs reinforced annular plates with clamped and simply 

supported boundary conditions. Hence, the effects of 

material length scale parameters, various boundary 

conditions, aspect and inner-outer radius ratios, FG porous 

distributions, pore compressibility, and volume fraction of 

CNTs in the EMR approached on the dimensionless natural 

frequencies are considered. 

It is observed that the effect of the pore compressibility 

 

 

 

 

 

in all kind of FG porous distributions in the core of 

sandwich structures leads to lower natural frequencies 

values but the behavior of them are not the same exactly 

and Ω has different range values vibration. Also increasing 

the value of inner-to-outer radius ratios and thickness to 

radius ratios leads to the lower value of dimensionless free 

frequencies. Furthermore, dimensionless free frequency 

increases by increasing of facesheet-to-total thickness ratios 

of the sandwich plate by considering of constant value for 

total thickness. Moreover, dimensionless free frequency 

increases by the increase of l/h ratio lead to constant free 

frequency values. 
 

 

Fig. 7 Effect of  on dimensionless natural frequency of microcomposite annular sandwich plate with CNTs reinforced 

facesheets (EMR approached) and uniform porous core predicted by MCST (e0 = 0.5, hc = 0.8h, VCNT = 0.17) 

 

Fig. 8 Dimensionless natural frequency (Ω) of microcomposite annular sandwich plate versus inner to outer radius ratios 

based on MCST for various Volume Fraction of CNTs with EMR approached (e0 = 0.5, hc = 0.8h, h = 0.2Rb) 
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