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1. Introduction 

 

Nanotubes have been modeled on carbon nanotubes 

from various materials with a lamellar structure similar to 

that of graphite. For example, nanotubes of MoS2 and WS2 

could be synthesized in 1992 (Tenne et al. 1992, Margulis 

et al. 1993). Boron nitride nanotubes (BNNTs) are one of 

the most promising materials for nanotechnology due to the 

coupling characteristics of electromechanics field. This 

promising material was theoretically predicted in 1994 

(Rubio et al. 1994, Blase et al. 1994) and carried out 

experimentally in 1995 (Chopra et al. 1995). These BNNTs 

have many of the superior CNTs properties, such as 

exceptional elastic properties (Goldberg et al. 2010, Moon 

and Hwang 2004, Pokropivny et al. 2008, Verma et al. 

2007, Li and Chou 2006), high mechanical strength (Jeon 

and Mahan 2009, Ghassemi and Yassar 2010, Suryavanshi 

et al. 2004, Chopra and Zettl 1998), chemical inertness (Zhi 

et al. 2008) and structural stability (Ciofani et al. 2009), 

strong conduction thermal and piezoelectricity (Oh 2010). 

The growing interest that is brought to nanotubes of boron 

nitride is in particular due to the fact that, unlike carbon 

nanotubes, boron nitride nanotubes are large -gap 

semiconductors (of the order of 5.5 to 6 eV). Also, potential 
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applications of BNNTs include various materials 

reinforcements such as polymer, ceramic, and metal based 

composites, and key parts of nanomechanical systems. 

Recently, many researchers have investigated nanotubes 

based on non-local models, which have shown satisfying 

results compared to atomic models. Sudak (2003) studied 

infinitesimal column buckling of carbon nanotubes (CNTs), 

incorporating the van der Waals forces and small scale 

effect, and showed that the critical axial strain decreases 

compared with the results of classical beams. Lu et al. 

(2007) studied the propagation properties of waves and 

vibrations of single or multiple walled CNTs based on a 

non-local beam model. 

Reddy (2007) developed non-local theories of Euler-

Bernoulli, Timoshenko, Reddy and Levinson beams. 

Analytical solutions of bending, vibration and buckling are 

delivered from the non-local effect of bending, load and 

natural frequencies. Murmu and Pradhan (2009) used 

nonlocal elasticity and Timoshenko beam theory to 

investigate the stability response of single-walled carbon 

nanotubes (SWCNTs) embedded in an elastic medium. 

Zidour et al. (2012) carried out the thermal effect on 

vibration of zigzag single walled carbon nanotubes using 

nonlocal Timoshenko beam theory. Tounsi et al. (2013a) 

investigated the small scale effect on critical buckling 

temperature for DWCNTs based on Timoshenko beam 

theory. Adda Bedia et al. (2015) studied the thermal 

buckling characteristics of armchair single-walled carbon 

nanotube (SWCNT) embedded in a one-parameter elastic 
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Abstract.  In this work, the thermal buckling characteristics of zigzag single-walled boron nitride (SWBNNT) embedded in a 

one-parameter elastic medium modeled as Winkler-type foundation are investigated using a nonlocal first-order shear 

deformation theory (NFSDT). This model can take into account the small scale effect as well as the transverse shear deformation 

effects of nanotubes. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. 

Further the effect of nonlocal parameter, Winkler elastic foundation modulus, the ratio of the length to the diameter, the 

transverse shear deformation and rotary inertia on the critical buckling temperature are being investigated and discussed. The 

results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that 

make use of the thermal buckling properties of boron nitride nanotubes. 
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medium are investigated using a new nonlocal first-order 

shear deformation theory (NFSDT). Semmah et al. (2014) 

analyzed the thermal buckling properties of zigzag single-

walled carbon nanotubes using Timoshenko beam theory. 

Semmah et al. (2015) studied the effect of the chirality on 

critical buckling temperature of zigzag single-walled carbon 

nanotubes using higher-order variation of transverse shear 

strain. The particular structure of BNNTs and their 

extraordinary properties motivated some researchers to 

study BNNTs using nonlocal methods. Ghorbanpour Arani 

et al. (2012) used nonlocal piezoelasticity theory to 

investigate nonlinear vibration of embedded SWBNNTs 

with zigzag atomic structure. Hadj Elmerabet et al. (2017) 

estimated the critical buckling temperature of SWBNNTs 

using a new first-order shear deformation beam theory. 

Kumar (2018) investigated the mechanical vibration of 

double-walled carbon nanotubes with inter-tube Van der 

waals forces. Bensaid et al. (2018) employed a nonlocal 

strain gradient theory to study the dynamic response of 

higher order shear-deformable nanobeams resting on elastic 

foundation. Ebrahimi and Mahmoodi (2018) analyzed the 

vibration of carbon nanotubes with multiple cracks in 

thermal environment. Ebrahimi and Haghi (2018) presented 

elastic wave dispersion modelling within rotating 

functionally graded nanobeams in thermal environment. 

Selmi and Bisharat (2018) investigated the Free vibration of 

functionally graded SWNT reinforced aluminum alloy 

beam. Bensattalah et al. (2018) determined critical buckling 

loads of carbon nanotube embedded in Kerr’s medium. 

Hajmohammad et al. (2018) used a layerwise theory for 

buckling analysis of truncated conical shells reinforced by 

CNTs and carbon fibers integrated with piezoelectric layers 

in hygrothermal environment. Karami et al. (2018a) studied 

the thermal buckling of smart porous functionally graded 

nanobeam rested on Kerr foundation. Eltaher et al. (2018) 

proposed a modified porosity model in analysis of 

functionally graded porous nanobeams. Mehar et al. (2018) 

presented a finite-element solution to nonlocal elasticity and 

scale effect on frequency behavior of shear deformable 

nanoplate structure. Faleh et al. (2018) studied vibrations of 

porous functionally graded nanoshells. Bouadi et al. (2018) 

presented a new nonlocal HSDT to study the stability of 

single layer graphene sheet. Zemri et al. (2015) employed 

refined nonlocal shear deformation theory beam theory for 

mechanical response of functionally graded nanoscale 

beam. Yazid et al. (2018) proposed a novel nonlocal refined 

plate theory for stability response of orthotropic single-layer 

graphene sheet resting on elastic medium. Other works on 

nanostructures can be found in literature (Ahouel et al. 

2016, Bounouara et al. 2016, Karami et al. 2017, 2018b, c, 

d, e, 2019, Bellifa et al. 2017a, Khetir et al. 2017, Cherif et 

al. 2018, Bakhadda et al. 2018, Akbaş 2018, Ebrahimi et al. 

2019, Karami and Karami 2019, Ebrahimi and Salari 2018). 

In this work the critical buckling temperature of zigzag 

SWBNNT embedded in elastic medium modeled as 

Winkler-type foundation is estimated using a new first-

order shear deformation beam theory. The influence of the 

scale parameter, the Winkler modulus parameter, and the 

transverse shear deformation of zigzag SWBNNT are taken 

into account. It is hoped that this work will help researchers 

and engineers using BNNTs to strengthen nanocomposite 

materials and polymers. 
 

 

2. Theoretical formulations 
 

2.1 Basic assumptions 
 

The displacement field of the proposed theory is chosen 

based on the following assumptions (Bouremana et al. 

2013): 

The displacements are small in comparison with the 

nanobeam thickness and, therefore, strains involved are 

infinitesimal. 

The transverse displacement w includes two components 

of bending wb, and shear ws. These components are 

functions of coordinate x only (Bouremana et al. 2013, Al-

Basyouni et al. 2015, Bouderba et al. 2016, Bellifa et al. 

2016, Youcef et al. 2018) 
 

)()(),( xwxwzxw sb   (1) 
 

(i) The transverse normal stress σz is negligible in 

comparison with in-plane stresses σx. 

(ii) The displacement u in x-direction given by the 

classical beam theory. 
 

x

w
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


  (2) 

 

2.2 Kinematics 
 

Based on the assumptions made in the preceding 

section, the displacement field can be obtained using Eqs. 

(1)-(2) as 

x

w
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The strains associated with the displacements in Eq. (3) 

are 
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2.3 Constitutive relations 
 

Response of materials at the nanoscale is different from 

those of their bulk counterparts. Nonlocal elasticity is first 

considered by Eringen (1983). He assumed that the stress at 

a reference point is a functional of the strain field at every 

point of the continuum. Eringen (1983) proposed a 

differential form of the nonlocal constitutive relation as 

(Belkorissat et al. 2015, Larbi Chaht et al. 2015, Bouafia et 

al. 2017, Besseghier et al. 2017, Mouffoki et al. 2017, 

Mokhtar et al. 2018, Kadari et al. 2018) 
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where σx, τxz, E and G are the axial stress, the shear stress,  

the elastic modulus and shear modulus of the nanobeam, 

respectively; e0a is the nonlocal parameter, e0 is a constant 

appropriate to each material and a is an internal 

characteristic length. So far, there is no rigorous study made 

on estimating the value of the nonlocal parameter. It is 

suggested that the value of nonlocal parameter can be 

determined by conducting a comparison of dispersion 

curves from the nonlocal continuum mechanics and 

molecular dynamics simulation (Arash and Ansari 2010, 

Wang 2005, Wang and Wang 2007). 

 

2.4 Equations of motion 
 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as (Ahmed 2014, Belabed et al. 2014, Attia 

et al. 2015, Yahia et al. 2015, Mahi et al. 2015, Bourada et 

al. 2015, Boukhari et al. 2016, Bennoun et al. 2016, Houari 

et al. 2016, Hachemi et al. 2017, Zidi et al. 2017, Zine et al. 

2018, Fourn et al. 2018, Kaci et al. 2018, Bourada et al. 

2019, Tlidji et al. 2019, Khiloun et al. 2019) 
 

  0

0


T

dtKVU  (6) 

 

where δU is the virtual variation of the strain energy; δV is 

the virtual variation of the potential energy; and δK is the 

virtual variation of the kinetic energy. The variation of the 

strain energy of the beam can be stated as 
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where Mb and Q are the stress resultants defined as 
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The variation of the potential energy by the applied 

loads can be written as 
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where q and N0 are the transverse and axial loads, 

respectively. 

Substituting the expressions for δU and δV from Eqs. 

(8), (9) and (10) into Eq. (7) and integrating by parts, and 

collecting the coefficients of δwb, and δws, the following 

equations of motion of the proposed beam theory are 

obtained 
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when the shear deformation effect is neglected (ws = 0), the 

equilibrium equations in Eq. (11) recover those derived 

from the Euler-Bernoulli beam theory. 

By substituting Eq. (6) into Eq. (11) and the subsequent 

results into Eq. (9), the stress resultants are obtained as 
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where 
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By substituting Eq. (11) into Eq. (12), the nonlocal 

equations of motion can be expressed in terms of 

displacements (wb, ws) as 
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The equations of motion of local beam theory can be 

obtained from Eq. (14) by setting the scale parameter e0a 

equal to zero. 

 

 

3. Analytical solution of simply supported 
nanobeam 
 

In this study, analytical solutions are given for the 

hinged boundary condition case, the solution of these eqs 

for a simply supported borone nitride nanotube can be 

expressed as follows 

 

LxMMww sbsb ,0at              0   (14) 

 

The following displacement field satisfies boundary 

conditions and governing equations. 
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where Wbn, and Wsn are arbitrary parameters to be 

determined, ω is the eigenfrequency associated with m the 
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igenmode, and α = mπ/L. 

Substituting the expansions of wb and ws from Eqs. (16) 

into Eq. (14), the closed-form solutions can be obtained 

from the following equations 
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where 
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3.1 Buckling 
 

The buckling load is obtained from Eq. (15). 
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On the basis of the theory of thermal elasticity 

mechanics, the axial force N0 can be written as 
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where β is the coefficient of thermal expansion in the 

direction of x-axis, and v is Poisson’s ratio, respectively. T 

presents the change in temperature. 

Then, the critical temperature with the nonlocal 

continuum theory can be derived as 
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the non-dimensional critical temperature can be expressed 

as the following form 
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For the sake of simplicity the following dimensionless 

variable is introduced for Winkler foundation parameter 
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L
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4. Validity and applicability of continuum beam 
model for CNTs 
 

Applicability of continuum beam theory for carbon 

nanotubes (CNTs) is discussed by several authors (Wang 

and Hu 2005, Harik 2001, 2002). The ranges of 

applicability for the continuum beam theory in the 

mechanics of CNTs and nanorods were reported by Wang 

and Hu (2005) and Harik (2001, 2002). 

Recently, Tounsi et al. (2013b) and Adda Bedia et al. 

(2015) presented numerical results for critical buckling 

strains obtained from the continuum mechanics theory 

(using the nonlocal Timoshenko bean theory (NTBT) and 

new nonlocal first-order shear deformation theory 

(NFSDT), respectively)which are compared with those 

obtained from MD simulations, and the Sanders shell theory 

(SST) (Silvestre et al. 2011). It can be seen that both the 

present nonlocal first-order shear deformation theory and 

the conventional nonlocal Timoshenko model give identical 

results. Since the MD simulations referenced herein 

consider the CNTs with fixed ends, also the NFSDT and 

NTBT are développed with fully clamped boundary 

conditions. In addition, CNT (5, 5) is studied with a 

diameter d = 6.71Å  and CNT (7, 7) with a diameter d = 

9.40Å , for different lengths. Both nanotubes are modeled 

using a thickness t = 0.66Å, Young’s modulus E = 5.5 TPa, 

and Poisson’s ratio ν = 0.19 (Yakobson et al. 1996). The 

lengths of CNTs used in the following table are extracted 

from the work done by Silvestre et al. (2011). The results 

from MD simulations, the present NFSDT, NTBT and SST 

are compared in Table 1. It is seen that the critical buckling 

strains are in good agreement when compared to the results 

obtained from MD simulations as well as Sanders shell 

theory (SST). Based on the MD simulation results, the 

value of nonlocal constant is determined for CNTs based on 

an averaging process. The best match between MD 

simulations and nonlocal formulations is achieved for a 

nonlocal constant value of e0a = 0.54 nm for CNT (5, 5) and 

e0a = 1.05 nm for CNT (7, 7) with good accuracy (the error 

is less than 10%). 

 

 

5. Numerical results and discussion 
 

In this section, numerical computations for the thermal 

buckling characteristics of embedded zigzag SWBNNTs are 

carried out. The dimensions and characteristics employed in 

numerical results for the SWBNNTs with zigzag structure 

are considered as follows (GhorbanpourArani et al. 

2012, Hadj Elmerabet et al. 2017): the wall thickness h = 

0.075 mm, mean radius r = 0.313 nm, Poisson’s ratio v = 

0.34, elastic modulus E = 1.8 TPa, and the values of thermal 

expansion is αx = 1.2×10-6. To show the influences of the 

transverse shear deformation, the critical buckling 

temperature of the zigzag SWBNNT by the present 

nonlocal theory NFSDT to the nonlocal Euler-Bernoulli 

beam model with different values of the Length to diameter 

ratios (L/d) is presented in Fig. 1. The mode number (m) 

and the nolocal parameter (e0a) nm are considered. 
 

 

Table 1 Comparison between critical buckling strains of 

CNT (5, 5) and CNT (7, 7) obtained from MD 

simulations, Sanders shell theory (SST), nonlocal 

Timoshenko theory (NTBT) and the present new 

nonlocal first shear deformation theory (NNFSDT) 

L (Å ) d (Å ) MD SST NTBT NFSDT 

16.09 6.71 0.08146 0.08729 0.08216 0.08216 

21.04 6.71 0.07528 0.08288 0.07460 0.07460 

28.46 6.71 0.06992 0.07858 0.06302 0.06302 

28.29 9.40 0.06514 0.06582 0.06542 0.06542 

40.59 9.40 0.04991 0.05885 0.05763 0.05763 

52.88 9.40 0.04710 0.05600 0.04962 0.04962 
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buckling temperature and the Length to diameter ratio 
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From Fig. 1, it can be observed that for different mode 

numbers, all of the ratios are smaller than 1.0. It means that 

because of the effects of the transverse shear deformation, 

the critical buckling temperature of the nonlocal NFSDT is 

lower than that of the nonlocal Euler-Bernoulli beam 

model. This phenomenon is more obvious for higher mode 

numbers and smaller slenderness ratios. It means that the 

effects of the transverse shear deformation should be 

considered and the nonlocal NFSDT is more accurate for 

short boron nitride nanotube. 

Fig. 2 shows the variation of the critical buckling 

temperature of zigzag SWBNNT with aspect ratios L/d for 

various Winkler modulus parameters. Four different values 

of Winkler modulus parameter are considered for the study, 

viz. Kf = 0, 10, 30 and 50. In this present computation, a 

constant value of nonlocal parameter (e0a = 0.6 nm) and the 

mode number (m = 1) are used for the proposed model. 

From the figure, it is seen that as the aspect ratios (L/d) 

increase, the critical buckling temperature increases until 

taken as a constant value for higher values of L/d. Thus, for 

a slender SWBNNT, the effect of shear deformation is less 

compared to short SWBNNT.The influences of both the 

mode number (m) and the Winkler modulus parameter Kf, 
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Fig. 3 Relation between the nondimensional critical 

buckling temperature and the mode number with 

different values of the Winkler foundation 

parameters 𝐾𝑓
    

 

 

 

on the non-dimensional critical buckling temperature are 

shown in Fig. 3. 

The nonlocal parameter is = 0,8 nm. From Fig. 3, it is 

apparent that when the mode number is less than 3, the 

effect of the elastic medium is obvious. This influence 

becomes insignificant when the mode number is larger than 

3. Moreover, the non-dimensional critical buckling 

temperatures for all of four values of the Winkler modulus 

parameter are elevated with the mode number increasing. 

This implies that the elastic medium has significant 

influence on the non-dimensional critical buckling 

temperature for lower mode numbers, and should be 

considered in the case where NNBTs are used as 

reinforcement for polymers or in similar applications. The 

relation between the nondimensional critical buckling 

temperature and the axial mode number as well as the 

nonlocal parameter is illustrated in Fig. 4. 

The most notable feature is that the effect of the 

nonlocal parameter (e0a) on the critical buckling 

temperature is relatively weak for small mode numbers. 

However, the difference becomes obvious with the mode 

number increasing. 
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buckling temperature and the mode number with 
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Fig. 6 Relation between the nondimensional critical 

buckling temperature and the scale coefficient  
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Fig. 5 indicates the effect of the small scale on the 

critical buckling temperature of zigzag SWBNNT for 

various Winkler modulus parameters. As the nonlocal 

parameter (e0a) increases, the critical buckling temperature 

decreases. Thus, it can be concluded that the classical 

elastic (i.e., the local) model, which does not consider the 

small-scale effects, will give a higher approximation for the 

critical buckling temperature. But the nonlocal continuum 

theory will present an accurate and reliable result. In 

addition, an interesting feature that can be deduced is that as 

the Winkler foundation parameter increases, the value of 

critical buckling temperature decreases irrespective of the 

nonlocal parameter. To show the influences of both aspect 

ratio and de nonlocal parameter, the critical buckling 

temperature of the zigzag SWBNNT is presented in Fig. 6. 

It can be observed that the effect of aspect ratio 

increases the critical buckling temperature unlike that of the 

nonlocal parameter which decreases the critical buckling 

temperature. 

 

 

6. Conclusions 
 

In this paper, the thermal buckling characteristics of 

zigzag SWBNNTs, which are embedded in elastic medium, 

are predicted using a new nonlocal first-order shear 

deformation theory. The mathematical formulations include 

the nonlocal parameter effect, the temperature change. The 

effects of the scale coefficient, the ratio of the length to the 

diameter, the transverse shear deformation and the stiffness 

of the surrounding elastic medium of the thermal buckling 

properties are investigated. This work is expected to be 

useful in the design of the next generation of nanodevices 

that make use of the thermal buckling characteristics of 

SWBNNTs. An improvement of the present formulation 

will be considered in the future work to consider the shear 

deformation effect without using the shear correction 

factors (Bouderba et al. 2013, Tounsi et al. 2013b, Bousahla 

et al. 2014, 2016, Meziane et al. 2014, Hebali et al. 2014, 

Zidi et al. 2014, Hamidi et al. 2015, Beldjelili et al. 2016, 

Draiche et al. 2016, Abdelaziz et al. 2017, El-Haina et al. 

2017, Fahsi et al. 2017, Chikh et al. 2017, Sekkal et al. 

2017a, b, Menasria et al. 2017, Klouche et al. 2017, 

Benahmed et al. 2017, Benadouda et al. 2017, Bellifa et al. 

2017b, Mehar and Panda 2018, 2019, Abualnour et al. 

2018, Katariya et al. 2018, Mouli et al. 2018, Attia et al. 

2018, Benchohra et al. 2018, Younsi et al. 2018, Belabed et 

al. 2018, Katariya and Panda 2018, 2019, Bourada et al. 

2018, Bouhadra et al. 2018, Patle et al. 2018, Dash et al. 

2018, Kar et al. 2019, Zaoui et al. 2019, Meksi et al. 2019). 
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