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1. Introduction 

 

Smart materials have been used for a variety of smart 

applications and components of adaptive structures. One of 

the most significant forms of smart materials is their 

application, employing fibrous sensors or actuators. The 

intelligence of the fiber shaped memory alloys composites 

will make sense, weight savings, some control over 

directionality in actuation and resulting smart materials 

effects. Nanotechnology aided introduces structures and 

implement with good accuracy at nanoscale. Nanobeams 

are the core structures broadly used in many systems such 

as nano sensors and actuators for sensing and energy 

harvesting applications. According to the great potential of 

nano systems for increasing many applications, their 

mechanical behavior should be verified and well recognized 

before new designs can be proffered. The classical 

mechanic continuum theories assert to predict the response 

of structures up to a minimum size sub which they fail to 

provide accurate predictions. The nonlocal theories add a 

size parameter in the modeling of the continuum. This paper 

is deal with models developed according to the widely used 

nonlocal elasticity theory of Eringen (Eringen 1968, 1976, 

2002, 2006, Eringen and Edelen 1972), Based on nonlocal 

beam theories, Xu (2006) verify the free vibrations of nano-

to-micro scale beams, and the nonlocal effect becomes 

significant, especially for the high-order natural 

frequencies. Reddy (2007, 2010), Reddy and Pang (2008), 

                                          

Corresponding author, Ph.D., Professor, 

E-mail: febrahimy@eng.ikiu.ac.ir 

 

 

and Reddy and El-Borgi (2014) linear and nonlinear 

average rotations to verify vibration characteristics of 

nanobeams. Investigate both surface and nonlocal elasticity, 

Lee and Chang (2010) and Elishakoff and Soret (2013) 

studied the coupled effects of nonlocal and surface effect on 

the vibration of nonlocal nanobeams using Gurtin–Murdoch 

model using EBT. Gheshlaghi and Hasheminejad (2012) 

developed an analytical model for predicting surface effects 

on the vibrations of piezoelectric non-local nanowires based 

on EBT. Presented clear statement for modal shapes and 

natural frequencies of TBT nanobeams into account the 

effects of length, shear deformation, and rotary inertia. 

Murmu and Pradhan (2009) showed the contributions of the 

nonlinearity and nonlocal effects on nonlinear vibration of 

nanobeams. Li et al. (2016) According to the surface 

elasticity theory developed by Gurtin and Murdoch (1975), 

the size-dependency of nanoscale structures due to the 

surface effects have been widely researched by the 

adjustment continuum models from static and dynamic 

properties (Wang and Wang 2011, Ebrahimi and Boreiry 

2015, Ebrahimi et al. 2016a, Hosseini et al. 2016), Lately, a 

number of studies are administered to consolidate the 

surface effects in analysis of piezoelectric nanostructure. 

Yan and Jiang (2011) verified surface effects on vibration 

and of piezoelectric nanobeams with surface effects. Also, 

Yan and Jiang (2012) investigated the influence of surface 

piezoelasticity on the buckling behavior of piezoelectric 

nanofilms subjected to mechanical loadings. Yan and Jiang 

studied the influence of surface effects, including residual 

surface stress, surface elasticity and surface piezoelectricity, 

on the vibrational and buckling behavior of piezoelectric 

nanobeams by using the Euler-Bernoulli beam theory Ke 
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and Wang (2012), A review on the Applications of shear 

thickening fluids has been presented by Stelson (2018) and 

Tian et al. (2018). 

As a deficiency, the nonlocality of stress field is not 

considered in these papers. Recently, modeling of 

nanostructures by using the nonlocal elastic field theory of 

Eringen and Edelen (1972) has received wide importance. 

The prominence of nonlocal theory of elasticity has 

stimulated the researchers to investigate the behavior of the 

nanostructures much accurately Daneshmehr et al. 2015, 

Fernández-Sáez et al. 2016, Li et al. 2016. This theory 

includes a nonlocal stress which introduces a stiffness-

softening influence on the nano-structures (Ebrahimi and 

Barati 2016a, b, Ebrahimi et al. 2016a). 

Studied the electromechanical coupling behavior of a 

piezoelectric nanowire consolidating both surface and 

nonlocal effects. Also, Liu et al. (2013) investigated axial 

wave propagation of piezoelectric nanoplates considering 

surface and nonlocal effects. Liu et al. (2014) studied 

buckling and post-buckling behaviors of piezoelectric 

Timoshenko nanobeams under thermo-electro-mechanical 

loadings. Ke et al. (2015) reported vibration response of a 

nonlocal piezoelectric nanoplate considering various 

boundary conditions. Liu et al. (2015) presented large 

amplitude vibration of nonlocal piezoelectric nanoplates 

under electro-mechanical coupling. Asemi et al. (2015) 

researched the nanoscale mass detection using vibrating 

piezoelectric ultrathin films subjected to thermo-electro-

mechanical loads. Ansari et al. (2016) Presented thermo-

electrical vibrational analysis of post-buckled piezoelectric 

nanosize beams according to the nonlocal elasticity 

theory. Ebrahimi and Barati (2016c, d) investigated 

dynamic behavior of non-homogenous piezoelectric 

nanobeams under magnetic field. Wang et al. (2016a) 

investigated vibration response of piezoelectric circular 

nanoplates considering surface and nonlocal effects. A 

sandwich-plate model is developed for the vibration of 

piezoelectric nanofilms based on the Kirchhoff’s 

assumption and the theory of the surface effect at the 

nanoscale. Viscoelastic vibration analysis of a sandwich 

nanoplate including a viscoelastic nanocore and two 

viscoelastic piezoelectric face sheets was investigated by 

Arefi and Zenkour (2016), Jamalpoor et al. (2016) studies 

free vibration and biaxial buckling of double-magneto-

electro-elastic nanoplate-systems (DMEENPS) subjected to 

initial external electric and magnetic potentials, using 

nonlocal plate theory. It is supposed that the two nanoplates 

are bonded with each other using a visco-Pasternak 

medium, and are also limited to the external elastic 

substrate. However, the flexoelectric effect on the vibration 

responses of piezoelectric sandwich nanobeams with 

different boundary conditions has not been reported thus 

far. Therefore, the objective of the present work is to 

investigate the influence of the flexoelectricity on the 

vibrating of piezoelectric nanobeams with different 

boundary conditions by using an EBT beam model. 

To the best of our knowledge, the vibration analyses of 

sandwich nanobeam considering elastic foundations with 

flexoelectric actuators have not received enough attentions 

so far. Motivated by these considerations, the aim of present 

work is to investigate vibrations of sandwich beam 

considering smart materials, surface effects, and elastic 

foundations. The purpose of this work is assessing vibration 

analysis of nano-structure multilayered nano beam using 

nonlocal elasticity theory. The study presented here aims to 

obtain the exact solutions for vibration of flexoelectric 

sandwich nanobeams employing the theory of nonlocal 

elasticity in detail. This paper deals with vibration behavior 

of flexoelectric sandwich nanobeams supported by Winkler-

Pasternak elastic foundation. The governing equations are 

derived by energy method and boundary condition solved 

by Galerkin-based solution. we develops a nonlocal 

flexoelectric sandwich nanobeam including surface effect 

for vibration analysis of piezoelectric nanobeams supported 

by Winkler elastic constant and Pasternak elastic constant. 

Results show that natural frequencies of a sandwich 

nanobeam increase by increasing the Winkler elastic and 

Pasternak elastic constants while. 
 

 

2. Material of piezoelectric nanobeams 
 

In present work Assume a sandwich nanobeam made of 

PZT-5H piezoelectric material with a rectangular cross 

section, as shown in Fig. 1. A piezoelectric simply support 

nanobeam with L, b and t denoting its length, width and 

thickness. 

 

2.1 Nonlocal elasticity theory for the piezoelectric 
materials with flexoelectric effect 

 

Based on the nonlocal elasticity model (Eringen and 

Edelen 1972) which contains broad range interplays 

between points in a continuum solid, the stress state at a 

point inside a body is introduced as a function of the strains 

of all neighbor points. The influence of flexoelectricity due 

to the elastic polarization Pi induced by strain gradient, and 

the elastic stress created by electric field gradient, can be 

expressed by 
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where ζij, εij, Ek denote the stress, strain and electric field 

components, respectively; Cijkl, ekij and kik are elastic, 

piezoelectric and dielectric constant, respectively. Also, χij 

is the relative dielectric susceptibility and fijkl is the 

flexoelectric coefficient. Also, e0a is nonlocal parameter 

which is introduced to describe the size-dependency of 

nanostructures. The effect of flexoelectricity is involved 

using the following expression of the electric enthalpy 

energy density was As follows 
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Finally, the constitutive relations incorporating nonlocal 

and flexoelectricity effects can be expressed by 
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in which ηijl denotes the moment stress tensor due to the 

converse flexoelectric effect, Di is the electric displacement 

vector and Qij denotes the electric quadruple density due to 

flexoelectricity, respectively. The size-dependent pheno-

mena in piezoelectric nanostructures due to flexoelectricity 

involved in Eq. (3) is reported in analysis of nanowires, 

nanobeams and nanoplates. Taking into account the surface 

effects, i.e., the residual surface stress, the surface elasticity, 

and the surface piezoelectricity, the surface internal energy 

density Us can be defined by the surface strain and the 

surface polarization as 
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in which Γαβ denotes the surface residual stress tensor, 𝑎𝛾𝜅
𝑠  

and 𝑐𝛼𝛽𝛾𝜅
𝑠  denote the surface permittivity and surface 

elastic constants. Also, 𝑒𝜅𝛼𝛽
𝑠  and 𝐸𝜅

𝑠  are the surface 

piezoelectric tensor and surface electric field. Finally, the 

nonlocal surface constitutive relations can be written as 
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Table 1 Flexoelectric properties of PZT-5H sandwich 

nanobeam 

Properties PZT-5H 

c11 (Gpa)
 

102 

c12 31 

c66 35.5 

e31 (C/m2) 17.05 

k33 (C/(Vm)) 1.76×10-8 

f31 (V) 10-7 

𝑐11
𝑠  (N/m) 102 

𝑐12
𝑠

 
3.3 

𝑐66
𝑠

 
2.13 

𝑒31
𝑠

 (C/m)
 

-3.8×10-8 
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where 𝜍𝛼𝛽
𝑠  and 𝐷𝛾

𝑠  are the surface Cauchy stress and 

surface electric displacement. 

 

2.2 Theoretical formulation 
 

Here, the classical beam theory is employed for 

modeling of a piezoelectric sandwich nanobeam with 

surface, nonlocal and flexoelectric effects. The displace-

ment field at any point of the nanobeam can be written as 
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u z u
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(6a) 

 

3( , , )u x y z w  (6b) 

 

where u is displacement of the mid-surface and w is the 

bending displacement. Based on the Euler–Bernoulli beam 

theory, can be defined as 

 

Fig. 1 Geometry and coordinates of flexoelectric sandwich nanobeam 
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Through extended Hamilton’s principle, the governing 

equations can be derived as follows 
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where ΠS and ΠW are strain energy and external forces 

work, respectively and ΠK is kinetic energy. The strain 

energy can be written as 
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in which the variables introduced in arriving at the last 

expression are defined as follows 
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The work done by applied forces can be written in the 

form 
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where N0 is axial load and kw, kp are elastic foundation 

parameters. The first variational of the virtual kinetic energy 

of present beam model can be written in the form as 
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in which the mass inertias are defined as 
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The following equations are obtained by inserting Eqs. 

(10a), (10b) and (12a), (12b), (13a), (13b) in Eq. (8) when 

the coefficients of δu, δw are equal to zero 
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Where Nxx is the critical load of buckling. 
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For a piezoelectric sandwich nanobeam with the 

flexoelectric effect, the nonlocal constitutive relations for 

the bulk may be written as 
 

2
2 2 31

0 11 31 2
( )

2
xx xx xx

f
e a c e

z z

 
  

 
    

   

(19a) 

 

2 2 31
0( )

2
xxz xxz

f
e a

z


 


   

  

(19b) 
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2 2 31
0 31 33( )

2
z z xx xxz

f
D e a D e k

z


 


    

  
(19c) 

 

2 2 31
0( )

2
zz zz xx

f
Q e a Q    

 

(19d) 

 

where θ is the electrostatic potential and 𝐸𝑧 = −
𝜕𝜑

𝜕𝑧
. Also, 

the nonlocal constitutive relations for the surface layer can 

be expressed by 

 

2 2 0

0 11 31( )s s s s

xx xx xx xxe a c e
z


   


    

  
(20) 

 

Under the open circuit condition, the electric 

displacement on the surface is zero. Therefore, one can 

obtain the electric field an electric field gradient as 

 
2

31 31 31

2

33 33 33

( ) ( )( )z

e e fu w
E z

k x k k x

 
   

 
 

(21) 

 

Finally, the electric field gradient can be written as 

 
2

31
, 2

33

z z

e w
E

k x





 

(22) 

 

Using Eqs. (20) and (21) the nonlocal constitutive 

relations for the bulk and surface can be expressed by the 

following for 

 

𝜍𝑥𝑥1 −  𝑒0𝑎 ∇
2𝜍𝑥𝑥1 =  𝑐11 +

𝑒31
2

𝑘33
 
𝜕𝑢

𝜕𝑥
 

− 𝑐11 +
𝑒31

2

𝑘33
 𝑧

𝜕𝑤2

𝜕𝑥2
− (

𝑒31𝑓31

2𝑘33
)
𝜕2𝑤

𝜕𝑥2
 

(23) 

 

𝜍𝑥𝑥2 −  𝑒0𝑎 ∇
2𝜍𝑥𝑥2 =  𝑐11 +

𝑒31
2

𝑘33
 
𝜕𝑢

𝜕𝑥
 

− 𝑐11 +
𝑒31

2

𝑘33
 𝑧

𝜕𝑤2

𝜕𝑥2
− (

𝑒31𝑓31

2𝑘33
)
𝜕2𝑤

𝜕𝑥2
 

(24) 

 

𝜏𝑥𝑥𝑧 1 −  𝑒0𝑎 ∇
2𝜏𝑥𝑥𝑧 1 

=  
𝑒31 𝑓31

2𝑘33
 
𝜕𝑢

𝜕𝑥
−  

𝑒31 𝑓31

2𝑘33
 𝑧

𝜕2𝑤

𝜕𝑥2
−

𝑓31

2𝑘33

𝜕2𝑤

𝜕𝑥2
 

(25) 

 

𝜏𝑥𝑥𝑧 2 −  𝑒0𝑎 ∇
2𝜏𝑥𝑥𝑧 2 

=  
𝑒31 𝑓31

2𝑘33
 
𝜕𝑢

𝜕𝑥
−  

𝑒31 𝑓31

2𝑘33
 𝑧

𝜕2𝑤

𝜕𝑥2
−

𝑓31

2𝑘33

𝜕2𝑤

𝜕𝑥2
 

(26) 

 

𝜍𝑥𝑥1
𝑠 −  𝑒0𝑎 ∇

2𝜍𝑥𝑥1
𝑠  

= 𝜍𝑥𝑥
0 −  𝑐11

𝑠 +
𝑒31𝑒31

𝑠

𝑘33
 
𝜕𝑢

𝜕𝑥
 

− 𝑐11
𝑠 +

𝑒31𝑒31
𝑠

𝑘33
 𝑧

𝜕2𝑤

𝜕𝑥2
−  

𝑒31𝑓31

𝑠

𝑘33

𝜕2𝑤

𝜕𝑥2
  

(27) 

 

𝜍𝑥𝑥2
𝑠 −  𝑒0𝑎 ∇

2𝜍𝑥𝑥2
𝑠  

= 𝜍𝑥𝑥
0 −  𝑐11

𝑠 +
𝑒31𝑒31

𝑠

𝑘33
 
𝜕𝑢

𝜕𝑥
 

− 𝑐11
𝑠 +

𝑒31𝑒31
𝑠

𝑘33
 𝑧

𝜕2𝑤

𝜕𝑥2
− (

𝑒31𝑓31

𝑠

𝑘33

𝜕2𝑤

𝜕𝑥2
 

(28) 

 

Therefore, by integrating Eqs. (23)-(28) over the beam’s 

cross-section area, the force and moment stress resultants 

can be rewritten in the following form 

 

𝑁𝑋𝑋1 −  𝑒0𝑎 
2∇2𝑁𝑋𝑋1 = 𝐴11

𝜕𝑢

𝜕𝑥
− 𝐵11

𝜕2𝑦

𝜕𝑥2
 (29) 

 

𝑁𝑋𝑋2 −  𝑒0𝑎 
2∇2𝑁𝑋𝑋2 = 𝐴22

𝜕𝑢

𝜕𝑥
− 𝐵22

𝜕2𝑦

𝜕𝑥2
 (30) 

 

𝑀𝑋𝑋1 −  𝑒0𝑎 
2∇2𝑀𝑋𝑋1 = −𝐶11

𝜕2𝑦

𝜕𝑥2
 (31) 

 

𝑃𝑋𝑋𝑍1 −  𝑒0 
2∇2 𝑝𝑥𝑥𝑧 1 = 𝐵22

𝜕𝑢

𝜕𝑥
− 𝐷11

𝜕2𝑤

𝜕𝑥2
 (32) 

 

𝑃𝑋𝑋𝑍2 −  𝑒0 
2∇2 𝑝𝑥𝑥𝑧 2 = 𝐵22

𝜕𝑢

𝜕𝑥
− 𝐷11

𝜕2𝑤

𝜕𝑥2
 (33) 

 

and the cross sectional rigidities are defined as 

 

𝐴11 =  𝑐11 +
𝑒31

2

𝑘33
 
𝑏ℎ

2
, 𝐵11=  

𝑒31𝑓31

2𝑘33
 
𝑏ℎ

2
 (34) 

 

𝑐11 =  𝑐11 +
𝑒31

2

𝑘33
 
𝑏ℎ

24
, 𝐷11=  

𝑓31
2

2𝑘33
 
𝑏ℎ

2
 (35) 

 

𝐴22 =  𝑐11 +
𝑒31

2

𝑘33
 
𝑏ℎ

2
,  𝐵22 =  

𝑒31𝑓31

2𝑘33
 
𝑏ℎ

2
 (36) 

 

𝑐22 =  𝑐11 +
𝑒31

2

𝑘33
 
𝑏ℎ

24
, 𝐷22 =  

𝑓31
2

2𝑘33
 
𝑏ℎ

2
 (37) 

 

And the force and moment stress resultants due to 

surface piezoelectricity may be expressed as 

 

2

0

2
2

11 11 2
( )s s s s

xx xx

u w
N N Aa

x
e B

x

 
   

   

(38) 

 

2

0

2
2

11 11 2
( )s s s s

xx xx

u w
M M Fa

x
e C

x

 
   

   
(39) 

 

In which 

 

𝐴11
𝑆 =  𝐶11

𝑆 +
𝑒31𝑒31

𝑠

𝑘33
 ℎ, 

𝐵11
𝑆 =  𝐶11

𝑆 +
𝑒31𝑒31

𝑠

𝑘33
 
𝑏ℎ2

4
+

𝑓31𝑒31
𝑠

𝑘33
ℎ 

(40) 
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𝐹11
𝑠 =  𝐶11

𝑆 +
𝑒31𝑒31

𝑠

𝑘33
 
𝑏ℎ2

4
, 

𝐶11
𝑆 =  𝐶11

𝑆 +
𝑒31𝑒31

𝑠

𝑘33
 
ℎ3

12
+

𝑓31𝑒31
𝑠

𝑘33

𝑏ℎ2

4
 

(41) 

 

𝐴22
𝑆 =  𝐶11

𝑆 +
𝑒31𝑒31

𝑠

𝑘33
 ℎ, 

𝐵22
𝑆 =  𝐶11

𝑆 +
𝑒31𝑒31

𝑠

𝑘33
 
𝑏ℎ2

4
+

𝑓31𝑒31
𝑠

𝑘33
ℎ 

(42) 

 

𝐹22
𝑠 =  𝐶11

𝑆 +
𝑒31𝑒31

𝑠

𝑘33
 
𝑏ℎ2

4
, 

𝐶22
𝑆 =  𝐶11

𝑆 +
𝑒31𝑒31

𝑠

𝑘33
 
ℎ3

12
+

𝑓31𝑒31
𝑠

𝑘33

𝑏ℎ2

4
 

(43) 

 

The nonlocal governing equations of a piezoelectric 

sandwich nanobeam with surface and flexoelectric effects 

in terms of the displacement can be derived by substituting 

Eqs. (34)-(37), into Eqs. (14), (15) as follows 
 

 𝐴11 + 𝐴11
𝑆  

𝜕2𝑢

𝜕𝑥2
−  𝐵11 + 𝐵11

𝑆  
𝜕3𝑤

𝜕𝑥3
= 0 (44) 

 

 𝐴22 + 𝐴22
𝑆  

𝜕2𝑢

𝜕𝑥2
−  𝐵22 + 𝐵22

𝑆  
𝜕3𝑤

𝜕𝑥3
= 0 (45) 

 

(𝐵11 + 𝐹11
𝑆 )

𝜕3𝑢

𝜕𝑥3
−  𝐶11 + 𝐶11

𝑆 + 𝐷11 
𝜕4𝑊

𝜕𝑥4

+ 2𝑏𝜍0(
𝜕2𝑤

𝜕𝑥2
)

−  𝑒0𝑎 
22𝑏𝜍0  

𝜕2

𝜕𝑥2
  

𝜕2𝑤

𝜕𝑥2
  

−𝑏𝑁0  
𝜕2𝑤

𝜕𝑥2
 +  𝑒0 

2𝑏𝑁0  
𝜕2

𝜕𝑥
  

𝜕2𝑤

𝜕𝑥2
 − 𝑏𝑘𝑤

+ (𝑒0𝑎)2𝑏𝑘𝑤  
𝜕2𝑤

𝜕𝑥2
 + 𝑘𝑝  

𝜕2𝑤

𝜕𝑥2
  

−(𝑒0𝑎)2𝑏𝑘𝑝  
𝜕2

𝜕𝑥2
  

𝜕2𝑤

𝜕𝑥2
 = 0 

(46) 

 

(𝐵22 + 𝐹22
𝑆 )

𝜕3𝑢

𝜕𝑥3
−  𝐶22 + 𝐶22

𝑆 + 𝐷22 
𝜕4𝑊

𝜕𝑥4
 

+2𝑏𝜍0(
𝜕2𝑤

𝜕𝑥2
) −  𝑒0𝑎 

22𝑏𝜍0  
𝜕2

𝜕𝑥2
  

𝜕2𝑤

𝜕𝑥2
  

−𝑏𝑁0  
𝜕2𝑤

𝜕𝑥2
 +  𝑒0 

2𝑏𝑁0  
𝜕2

𝜕𝑥
  

𝜕2𝑤

𝜕𝑥2
 − 𝑏𝑘𝑤  

+(𝑒0𝑎)2𝑏𝑘𝑤  
𝜕2𝑤

𝜕𝑥2
 + 𝑘𝑝  

𝜕2𝑤

𝜕𝑥2
  

−(𝑒0𝑎)2𝑏𝑘𝑝  
𝜕2

𝜕𝑥2
  

𝜕2𝑤

𝜕𝑥2
 = 0 

(47) 

 

2.3 Solution procedure 
 

Here, an analytical solution of the governing equations 

for vibration of a flexoelectric nanobeam having simply-

supported (S) and clamped (C) boundary conditions is 

presented which they are given as: 
 

 Simply-supported (S): 
 

𝑤 = 𝑁𝑥𝑥 = 𝑀𝑥𝑥 = 0          𝑥 = 0, 𝐿 (48) 
 

 Clamped (C): 
 

𝑢 = 𝑤 = 0          𝑥 = 0, 𝐿 (49) 
 

To satisfy above-mentioned boundary conditions, the 

displacement quantities are presented in the following form 
 

1

( )
ni tm

m

n

X x
u U e

x












 

(50) 

 

1

( ) ni t

m m

m

w W X x e







 

(51) 

 

where (Um, Wm) are the unknown coefficients. Inserting 

Eqs. (50)-(51) into Eqs. (44)-(47) respectively, leads to 

 

{ 

𝑘1,1 𝑘1,2 𝑘1,3

𝑘2,1 𝑘2,2 𝑘2,3

𝑘3,1 𝑘3,2 𝑘3,3

 − 𝜛2
𝑛  

𝑚1,1 𝑚1,2 𝑚1,3

𝑚2,1 𝑚2,2 𝑚2,3

𝑚3,1 𝑚3,2 𝑚3,3

 } = 0 (52) 

 

𝐾1,1 =  𝐴11 + 𝐴11
𝑆  𝐾12 , 

𝐾1,2 =  𝐵11 + 𝐹11
𝑆  𝐾13 , 

𝑘1,3 = 0 

𝐾2,1 = − 𝐵11 + 𝐵11
𝑆  𝐾12 , 

𝐾2,2 = − 𝐶11 + 𝐶11
𝑆 + 𝐷11 𝐾13 − 𝑏 𝑁0 − 2𝜍0  𝐾11  

+(𝑒0𝑎)2𝑏 𝑁0 − 2𝜍0  𝐾13 − 𝑏𝑘𝑤𝑘1 

+(𝑒0𝑎)2𝑏𝑘𝑤 𝑘11 + 𝑏𝑘𝑝 𝑘11  

− 𝑒0𝑎 
2𝑏𝑘𝑝 𝑘13 −  𝐶22 + 𝐶22

𝑆 + 𝐷22 𝐾31 

−𝑏 𝑁0  − 2𝜍0  𝐾22  

+(𝑒0𝑎)2𝑏 𝑁0 − 2𝜍0  𝐾31  

−𝑏𝑘𝑤𝑘2 + (𝑒0𝑎)2𝑏𝑘𝑤 𝑘22 + 𝑏𝑘𝑝 𝑘22  

− 𝑒0𝑎 
2𝑏𝑘𝑝 𝑘31 = 0 

𝐾2,3 =  𝐵22 + 𝐹22
𝑆  𝐾31 , 

𝑘3,1 = 0 

𝐾3,2 = − 𝐵22 + 𝐵22
𝑆  𝐾21 , 

𝐾3,3 = (𝐴11 + 𝐴11
𝑆 )𝐾21 

𝑚1,1 = +𝐼0𝑎𝑘6 −  𝑒0𝑎 
2𝐼0𝑎𝐾12 , 

𝑚1,2 = 0, 

𝑚1,3 = 0, 

𝑚2,1 = 0, 

𝑚2,2 = 𝐼0𝑎𝑘1+𝐼0𝑏𝑘2 − 𝐼2𝑎𝑘11 − 𝐼2𝑏𝑘22 

− 𝑒0𝑎 
2𝐼0𝑎𝑘11 −  𝑒0𝑎 

2𝐼0𝑏𝑘22 

+(𝑒0𝑎)2𝐼2𝑎𝑘13+ (𝑒0𝑎)2𝐼2𝑏(𝑘13) = 0 

𝑚2,3 = 0, 𝑚3,1 = 0, 𝑚3,2 = 0 

𝑚3,3 = 𝐼0𝑏𝑘6 −  𝑒0𝑎 
2𝐼0𝑏𝐾12 

(53) 
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𝑘1 =   𝑋𝑚𝑋𝑚 
𝑙

0

𝑑𝑥 

𝑘2 =  (𝑋𝑚𝑋𝑚)
𝑙

0

𝑑𝑥 

𝑘6 =  (𝑋𝑚
′ 𝑋𝑚

′ )
𝑙

0

𝑑𝑥 

𝑘11 =  (𝑋𝑚
′′ 𝑋𝑚)

𝑙

0

𝑑𝑥 

𝑘22 =  (𝑋𝑚
′′ 𝑋𝑚)

𝑙

0

𝑑𝑥 

𝑘12 =  (𝑋𝑚
′′′ 𝑋𝑚)

𝑙

0

𝑑𝑥 

𝑘21 =  (𝑋𝑚
′′′ 𝑋𝑚)

𝑙

0

𝑑𝑥 

𝑘13 =  (𝑋𝑚
′′′′ 𝑋𝑚)

𝑙

0

𝑑𝑥 

𝑘31 =  (𝑋𝑚
′′′′ 𝑋𝑚)

𝑙

0

𝑑𝑥 

(54) 

 

By finding determinant of the coefficients of above 

matrix and setting it to zero, we can find natural 

frequencies. The function  𝑋𝑚  for different boundary 

conditions is defined by 
 

S-S: 

𝑋𝑚 𝑥 = sin(𝜆𝑚𝑥) 

𝜆𝑚 =
𝑚𝜋

𝐿
 

(55) 

 

C-C: 

𝑋𝑚 𝑥 = sin 𝜆𝑚𝑥 − sinh 𝜆𝑚𝑥  

−𝜉𝑚(cos 𝜆𝑚𝑥 − cosh 𝜆𝑚𝑥 ) 

𝜉𝑚 =
sin 𝜆𝑚𝑥 − sinh 𝜆𝑚𝑥 

cos 𝜆𝑚𝑥 − cosh 𝜆𝑚𝑥 
 

𝜆1 = 3.961,          𝜆2 = 6.867, 

𝜆3 = 9.991,          𝜆4 = 14.118, 

𝜆𝑚≥5 =
 𝑚 + 0.5 𝜋

𝐿
 

(56) 

 

 

3. Numerical results and discussions 
 

Comparison is performed with those of a piezoelectric 

nanobeam presented by Yan and Jiang (2011) In Fig. 2. The 

frequency ratio (ω/ω0) is presented as a function of 

sandwich nanobeam thickness. Also, ω0 is the natural 

frequency of piezoelectric sandwich nanobeam without 

surface effect. The results are in an excellent agreement 

with those of Yan and Jiang (2011) for a simply-supported 

nanobeam. Also, for better presentation of the results the 

following dimensionless quantity is adopted 
 

2 4 2
3 0

11

11

( )1
, , , , ,

12
w w p p

e aL L L
K k K k D c h

h c D D L


      

 
2 4 2

3 0
11

11

( )1
, , , , ,

12
w w p p

e aL L L
K k K k D c h

h c D D L


      

 

(57) 

which is expressed for three cases of deflection such as 
 

𝐾𝑤 = 𝐾𝑤

𝐿2

𝐷
, 𝐾𝑃 = 𝐾𝑃

𝐿2

𝐷
, 

𝐷 =
1

12
𝐶11  ℎ3, 𝜇 =

𝑒0𝑎 

𝐿
 

(58) 

 

Fig. 3 determines the surface and flexoelectric effects on 

the variation of natural frequencies of piezoelectric 

sandwich nanobeams with respect to thickness for S-S 

boundary conditions at µ = 0.1. In this figure, NL refers to 

nonlocal piezoelectric sandwich nanobeam without surface 

and flexoelectric effects. NL-Flexoelectric refers to a 

nonlocal flexoelectric nanobeam without surface effect. 

Also, NL-SE denotes a nonlocal piezoelectric sandwich 

nanobeam without flexoelectric effect. It is observable from 

this figure that neglecting the surface effect leads to lower 

natural frequencies. In fact, inclusion of surface effect 

enhances the stiffness of flexoelectric nanobeams and 

natural frequencies increase. It is found that flexoelectricity 

effect leads to higher natural frequencies, especially at 

smaller values of nanobeam thickness. Therefore, the 

maximum natural frequencies are observed for NL-SE-

Flexoelectric nanobeam, while nonlocal (NL) piezoelectric 

nanobeam has the minimum buckling load. For the nonlocal 

(NL) piezoelectric nanobeams, natural frequencies are not 

dependent on the value of nanobeam thickness. But, when 

the flexoelectric effect is involved, natural frequencies 

reduce as the value of thickness rises. So, flexoelectricity 

has an important size effect on vibration behavior of 

piezoelectric nanobeams. It can be concluded that surface 

and flexoelectric effects are important at lower thicknesses. 

In other words, effects surface elasticity and flexoelectricity 

are negligible at large thicknesses. 

Examination of flexoelectric and nonlocal effects on 

vibration behavior of flexoelectric sandwich nanobeams 

under S-S boundary condition when L/h = 10 is presented in 

Fig. 4. It is observable from this figure that neglecting the 

flexoelectric effect leads to lower natural frequencies at a 

fixed nonlocal parameter. It is also found that the nonlocal 

flexoelectric nanobeam has lower natural frequencies 

compared with local flexoelectric sandwich nanobeam (µ = 

0 nm2), regardless of the type of boundary conditions. So, 
 

 

 

Fig. 2 Comparison of frequency ratio of S-S piezoelectric 

nanobeams (L/h = 20) 
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Table 2 Surface and flexoelectricity effects on vibration 

frequency of nonlocal S-S piezoelectric sandwich 

nanobeams with respect to h/l 

(µ  = 0.1, Kw = Kp = 0) 

 
NL without 

flexoelectricity 

NL-SE without 

flexoelectricity 

NL-SE with 

flexoelectricity 

h/L Dimensionless frequency 

0.05 3.312 6.778 7.304 

0.1 3.312 4.215 4.463 

0.15 3.312 3.283 3.481 

0.2 3.312 3.156 3.218 

0.25 3.312 3.132 3.156 
 

 

 

inclusion of nonlocal stress field parameter reduces the 

natural frequencies of a flexoelectric sandwich nanobeam. 

Such observation is neglected in all previous analyzes on 

flexoelectric sandwich nanobeams. So, by ignoring the 

effect of nonlocality in analysis of flexoelectric nanobeams, 

the obtained results are overestimated. Hence, it can be 

concluded that the vibration behavior of flexoelectric 

sandwich nanobeams is sensitive to the nonlocal parameter. 

The maximum and minimum natural frequencies of 

flexoelectric nanobeam are obtained for S-S boundary 

condition. In fact, stronger supports at ends make the 

flexoelectric nanobeam stiffer and natural frequencies rise. 

Influences of Winkler (Kw) and Pasternak (Kp) 

foundation parameters on natural frequencies of 

flexoelectric nanobeam with surface effect for different 

nonlocal parameters at L/h = 10 is presented in Figs. 5 and 

6, respectively. It is found that presence of elastic medium 

has a significant effect on the vibration behavior 

flexoelectric nanobeams. In fact, elastic medium makes the 

flexoelectric nanobeam more rigid and natural frequencies 

increase at a constant nonlocal parameter. Moreover, the 

frequency results of embedded flexoelectric nanobeam 

depend on the value of nonlocal parameter. It is observed 

that increasing the value of nonlocal parameter leads to 

reduction in dimensionless natural frequencies of 

flexoelectric nanobeam at every magnitude of Winkler and 

 

 

 

Fig. 4 Nonlocal and flexoelectricity effects on vibration 

frequency of nonlocal piezoelectric sandwich 

nanobeams for S-S and C-C boundary conditions 

(L/h = 10, Kw = Kp = 0) 

 

 

Table 3 Nonlocal and flexoelectricity effects on vibration 

frequency of nonlocal piezoelectric sandwich 

nanobeams for various boundary conditions 

(L/h = 10, Kw = Kp = 0) 

µ 
S-S with flexoelectricity S-S without flexoelectricity 

Dimensionless frequency 

0.2 6.123 5.787 

0.4 5.913 5.589 

0.6 5.033 4.604 

0.8 4.283 3.795 

1 3.642 3.147 
 

 

 

Pasternak foundation parameters. This is due to stiffness 

reduction of flexoelectric sandwich nanobeam by 

considering the nonlocal stress field parameter. 

Another investigation on the effect of elastic medium, 

surface elasticity and flexoelectricity on natural frequencies 

of flexoelectric sandwich nanobeams is presented in Figs. 7 

and 8 at L/h = 10, µ = 0.1. It is found that existence of 

elastic medium leads to larger natural frequencies. In fact, 

natural frequencies of piezoelectric sandwich nanobeam 

 

Fig. 3 Surface and flexoelectricity effects on vibration frequency of nonlocal S-S piezoelectric sandwich 

nanobeams with respect to h/l (µ = 0.1, Kw = Kp = 0) 
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Table 4 Nonlocal and Winkler foundation effects on 

vibration frequency of piezoelectric nanobeams 

(L/h = 10, Kp = 0) 

 
Kw = 25 Kw = 50 Kw = 25 Kw = 50 

S-S S-S C-C C-C 

µ Dimensionless frequency 

0.2 6.72 7.34 12.67 12.83 

0.4 5.72 6.65 11.53 11.72 

0.6 5.17 5.67 9.32 9.12 

0.8 5.01 5.38 9.15 8.24 

1 4.78 5.01 8.78 7.95 
 

 

 

increase linearly with the rise of Winkler or Pasternak 

parameters. Also, it is found that Pasternak layer has more 

significant impact on natural frequencies of flexoelectric 

sandwich nanobeam than Winkler layer. In fact, Pasternak 

layer has a continuous interaction with the flexoelectric 

sandwich nanobeams. However, Winkler layer is modeled 

via infinite parallel springs and has a discontinuous 

 

 

 

 

Table 5 Nonlocal and Pasternak foundation effects on 

vibration frequency of piezoelectric nanobeams 

(L/h = 10, Kp = 0) 

 
Kw = 25 Kw = 50 Kw = 25 Kw = 50 

S-S S-S C-C C-C 

µ Dimensionless frequency 

0.2 9.763 12.135 12.67 12.83 

0.4 8.083 9.631 11.53 11.72 

0.6 6.562 8.934 9.32 9.12 

0.8 5.539 6.505 9.15 8.24 

1 4.268 4.09 8.78 7.95 
 

 

 

interaction with the flexoelectric sandwich nanobeam. But, 

these observations are dependent on the surface and 

flexoelectric effects. Considering both surface and 

flexoelectric effects leads the largest natural frequencies at a 

constant elastic foundation parameters. Neglecting 

flexoelectric or surface effects leads to lower natural 

frequencies at fixed elastic foundation parameters. 

  

(a) S-S (b) C-C 

Fig. 5 Nonlocal and Winkler foundation effects on vibration frequency of piezoelectric nanobeams (L/h = 10, Kp = 0) 

  

(a) S-S (b) C-C 

Fig. 6 Nonlocal and Pasternak foundation effects on vibration frequency of piezoelectric nanobeams (L/h = 10, Kw = 0) 
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Table 6 Surface and flexoelectric effects on vibration 

frequency of piezoelectric nanobeams with respect 

to Pasternak parameter (L/h = 10, µ = 0.1) 

 

S-S without 

flexo- 

electricity 

S-S with 

flexoelectricity, 

surface 

C-C without 

flexo- 

electricity 

C-C with 

flexoelectricity, 

surface 

Kw Dimensionless frequency (HZ) 

0 3.385 6.017 8.879 9.659 

50 3.839 6.385 9.368 10.397 

100 4.279 6.693 9.839 10.968 

150 4.901 6.937 10.375 11.739 

200 5.238 7.179 11.493 12.321 
 

 

 

 

Fig. 7 Surface and flexoelectric effects on vibration 

frequency of piezoelectric nanobeams with respect 

to Winkler parameter (L/h = 10, µ = 0.1) 

 

 

4. Conclusions 
 

This paper develops vibration characteristics of 

flexoelectric nanobeams are investigated based on nonlocal 

elasticity theory considering surface effects. Nonlocal 

flexoelectric sandwich nanobeam incorporating surface 

effect for vibration analysis of piezoelectric sandwich 

nanobeams supported by Winkler-Pasternak foundation. 

The model includes a nonlocal stress field parameter and a 

flexoelectric coefficient to capture the size effect. The 

governing differential equations and natural boundary edges 

were derived by exploiting the use of the Hamilton’s 

principle. The solution of these equations is provided 

employing a Galerkin-based approach which has the 

potential to capture various boundary conditions. The 

evaluation of influences of nonlocality, flexoelectricity, 

surface, elastic foundation, boundary conditions and plate 

thickness is conducted for vibration behavior of 

flexoelectric nanobeams. Numerical results show that: 

 

 Nonlocal flexoelectric sandwich nanobeams possess 

lower frequency results than local one attributed to 

the softening influence of nonlocal parameter on the 

beam rigidity. 

Table 7 Surface and flexoelectric effects on vibration 

frequency of piezoelectric nanobeams with respect 

to Pasternak parameter (L/h = 10, µ = 0.1) 

 

S-S without 

flexo- 

electricity 

S-S with 

flexoelectricity, 

surface 

C-C without 

flexo- 

electricity 

C-C with 

flexoelectricity, 

surface 

Kp Dimensionless frequency (HZ) 

0 5.938 6.469 11.089 12.112 

50 6.398 6.907 11.369 12.759 

100 6.831 7.340 11.840 13.080 

150 7.294 8.03 12.094 13.709 

200 7.930 8.909 12.348 14.006 
 

 

 

 

(a) S-S 

 

 

(b) C-C 

Fig. 8 Surface and flexoelectric effects on vibration 

frequency of piezoelectric nanobeams with respect 

to Pasternak parameter (L/h = 10, µ = 0.1) 

 

 

 Flexoelectricity shows an increasing influence on the 

natural frequencies, especially at lower thicknesses. 

 Effect of flexoelectricity depends on the nonlocality. 

 The natural frequencies of flexoelectric nanobeams 

depend on the number of restraints at edges. 

 That effect of Pasternak parameter on natural 

frequencies is more announced compared with 

Winkler parameter for every value of nonlocal 

parameter. 
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