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On static stability of electro-magnetically affected
smart magneto-electro-elastic nanoplates
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Abstract. This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally
graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented
theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law
distribution. Eringen’s nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using
Hamilton’s principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of
MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential,
electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant

effects on critical buckling loads of MEE-FG nanoscale plates.

Keywords:
theory

magneto-electro-elastic nanoplate; functionally graded material; buckling; Quasi-3D plate theory; nonlocal

1. Introduction

An example for a smart material is piezoelectric-
magnetic-elastic material in which magnetic-electric
environments may lead to mechanical deformation. This
means that there is a coupling between magnetic-electric
and elastic performances in such materials. In such
materials, the material properties can be characterized by
elastic, piezoelectric and magnetic constants. Structural
components (beams, shells and plates) made of such smart
materials are broadly utilized in actuators, sensors and
intelligent systems. The material distribution in these
structures may be homogenous or non-homogenous. When
the material profile is variable thorough the thickness of a
structure, the material distribution may be non-
homogenous. As an example, a functionally graded material
is a non-homogenous material in which two materials are
involved and all material properties change from one
material to another (Ebrahimi et al. 2011, Ebrahimi 2010,
Tang et al. 2019), Based on the percentage and volume
fraction of each material, the complete behavior of the
structure can be defined. There are several investigations on
smart piezoelectric-magnetic-elastic  structures having
functionally graded distribution (Pan and Han 2005,
Ramirez et al. 2006, Wu et al. 2010, Tanaka 2018).

The smart material discussed in previous paragraph has
been extensively applied in nano-structures and nano-
devices. However, at the nanoscale, the behavior of
structure differs from macro scale counterpart. This is due

*Corresponding author, Ph.D., Professor,
E-mail: febrahimy@ut.ac.ir

Copyright © 2019 Techno-Press, Ltd.
http://lwww.techno-press.org/?journal=journal=anr&subpage=5

to the existence of small size effects (Tounsi et al. 2013,
Wang et al. 2018), Such small size effects are incorporated
in non-classical elasticity theories such as Eringen’s theory
(Eringen 1983) which is also used by other authors (Ke and
Wang 2014, Li et al. 2014, Ebrahimi and Barati 2016a-d),
Functionally graded nanostructures are also studied before
based on nonlocal theory introduced by Eringen. The
simplest form of this theory involving one scale parameter
which defines small scale size-dependency is used in
previous researches (Ebrahimi and Dabbagh 2018,
Ebrahimi and Barati 2016e-K).

Finally, it can be mentioned that reported papers on
buckling of magneto-electro-elastic plates are limited in the
literature, especially those at nanoscale. In this article,
critical buckling characteristics of MEE-FG nanoplates
under magneto-electrical field are examined in the
framework of a quasi-3D sinusoidal theory. The present
theory accounts for both shear deformation and thickness
stretching influences by a higher order variation of
displacements through the thickness. Material properties of
nanoplate are graded in the thickness direction according to
the power-law model. The governing equations are derived
by using Hamilton principle and Eringen’s nonlocal
elasticity theory and are solved via an analytical solution.
The detailed mathematical derivations are presented while
the emphasis is placed on investigating the effect of several
parameters such as external electric voltage, magnetic
potential, different boundary conditions, power-law index
and nonlocal parameter on buckling characteristics of size-
dependent MEE-FG nanoplates.
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2. Governing equations

2.1 Power-law functionally graded material
(P-FGM) plate

Each material property (P) for a smart nanoplate shown
in Fig. 1 can defined as

P=P,V,+PV, (1)

P, and P; are the material properties of top and bottom
sides, V, and V; are the volume fraction of top and bottom
surfaces, respectively and are related by

z 1
Vz = (ﬁ*‘i) " V1 :1_\/2 2

where (p > 0) is power-law exponent which determines the
material distribution across the plate thickness. Finally, the
effective material properties of MEE-FG plates takes the
following form

P(z)=(P2—Pl)(;+;j ) @3)

In this study, the top surface at z = +h / 2 of MEE-FG
nanoplate is fully CoFe,O,4, whereas the bottom surface (z =
-h 12) is fully BaTios with the properties presented in Table
1.

2.2 Basic equations

A quasi-3D plate model accounting for shear
deformation and thickness stretching effects is considered.
The displacement field of present theory can be written as
(Hebali et al. 2014)

u, (X, y,z)=u(x,y)—z—axb - f(2) 6xs (4)
oW, oW,
1 Y = ] - 7b_f >

U, (% y,2)=v(x,y)-2 Y (2) Y (5)

AN

N
b BaTi0,

Fig. 1 Geometry of FG nanoplate under magneto-
electrical field

Table 1 Magneto-electro-elastic coefficients of material
properties (Ramirez et al. 2006)

Properties BaTiO; CoFe,04
C11 = Cy, (GPa) 166 286
Ca3 162 269.5
C13 = Cp3 78 170.5
C1» 77 173
Css 43 45.3
Ces 445 56.5
es1 (Cm?) -4.4 0
€33 18.6 0
€15 11.6 0
031 (N/Am) 0 580.3
O33 0 699.7
Ois 0 550
s (10° C?Pm2NY 11.2 0.08
Sa3 12.6 0.093
711 (108 Ns? C2/2) 5 -590
X33 10 157
d11 = dp = dgs 0 0

Us (X, Y, Z) = W, (X, ¥) + W, (X, Y) + 9(2)w, (X, y) (6)

in which u, v, w,, ws and w, are five unknowns of
displacements of mid-plane. Also, f(z) is a shape function
that determines the distribution of shear stress across the
plate thickness. Hence, there is no need for any shear
correction factor. The present theory has a function in the
form

f(2)=z-sin(é2)/ & @)

The electric potential and magnetic potential
distributions across the thickness are approximated via a
combination of a cosine and linear variation to satisfy
Maxwell’s equation in the quasi-static approximation as
follows (Ke and Wang 2014)

D(X,Y,2,t)=—cos(Ez)d (X, Y,1) +2T1ZV (8)

Y(X,Y,2z,t)=—cos(Ez)y (X, y,t)+%§2 9)

where & =z / h. Also, V and Q are the external electric
voltage and magnetic potential applied to the MEE-FG
plate. Nonzero strains of quasi-3D plate model are
expressed by

©
o

&, & Ky K5
0 b s s
& K, K, ’ )
y [ _J%y szd v b L Yy —g 7y ,g=1*i(10)
£, g's, 0 0 Ya v oz
}/Xy y)?y K:y K:y
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where

o | _o®wy
ExX OX K‘b 8X2

0 ov X 2
¢y v b "W

— 1oy K9 =1

0 ayz
Ly Wz Kb

0 Xy 2
rxy 67u+@ 0 “Wp

oy Ox oxoy 1)
762WS
2
K')s( 6X s 8\NS + 8WZ
Kf, _ _62WS ryz } _Joy oy
> ,

S ay y)s(Z 76\/\,3 +7aNZ

KXy 22w, OxXx  ox
_2 S
OXoy

According to Eq. (8), the relation between electric field
(Ex, E,, E,) and electric potential (@), can be obtained as

o o
E, =—®, =cos({z)—, (12)
o¢
E,=—®, = ,
y ==, COS(SZ)a, (13)
E,=-®,=-&sin (fZ)¢—2r\]/ (14)

Also, the relation between magnetic field (H,, Hy, H,)
and magnetic potential (Y) can be expressed from Eq. (9) as

v or
H, =-T, =cos(¢z) . (15)
H, =-Y :cos(fz)@, (16)
y y oy
H, =—Y, =—&sin («52)7—27Q an

Using Hamilton’s principle, the equation of motion can
be derived by

I;é'(l_[s +11,,)dt=0 (18)

Here ITs is strain energy, Ily is work done by external
forces. The virtual variation of strain energy can be written
as

o1l = L 00 & dv =L (o, 0&,+ ocb¢e,+0,0¢,
+0,0)y+t0,07,+0,07,
-D,sE, —D,6E, —D,JE,
-BoH,-B,6H, -B,0H,)dV

(19)

Substituting Egs. (10) and (11) into Eq. (19) yields

_fab,, OdUu b O°OW, A
ot _-[0 J.O[NXW_MX o Mg
2 2
AN, OV T (s TOWs gy
oy oy
2 2
+ny(65u N 65V)—2|v|§y 0°ow, _2m, O°OW,
oy ox oxoy oxoy
O0OW, JOow 00w, JOow,
+ S ¢+ —— 2) 4 S + z)]dxd
Qy( o oy )+ Qe (F =+ ldxdy  (20)

+J~Oa J~Ob ﬂ;[ — D, cos(£2) 5(23) - D, cos(£7) 5(25}
+D,&sin(£z) 8 ¢ — B, cos(£z) 5(%}
- B, cos(¢&z2) 5(2;/] +B,&sin(£z) S y]dzdxdy

in which the variables at the last expression are expressed
by

(NG MM = [ (L2, o dA i=(xy,xy) (21
Q =[, go.dA i=0a,y2) (22)

R, = L\ g'c, dA (23)

The first variation of work done by applied forces can
be written in the form

o(w, +w, +g(z)w,) 95 (W, +W, +g(2)w,)
OX oX

o(w, +Ww, +g(z)w,) 95 (W, +W, +g(z)w,)
oy oy

o O(W, +W, +g(2)w,) o (w, + W, +g(z2)w,)

Xy ax ay

Oy = Ioa.[ob(NE

+Ny (24)

+26N

)dxdy

where NS,N;’,NSy are in-plane applied loads. In this
study it is assumed that the MEE-FG nanoplate is under
external electric voltage, ma%netic potential and the shear
loading is ignored. So Nj, =0 and N{,NJ are the
normal forces induced by external electric voltage V and
external magnetic potential Q, respectively and are defined
as

NP =NJ=N"+NF+N" (25a)

NE =" 6, 2 dz, N =—["* 4,22 dz (250)

h2 3t h —hi2 Bt R

The equations of motion for a quasi-3D MEE-FG
nanoplate are obtained by inserting Eqgs. (20) and (24) in
Eq. (18) when the coefficients of du, ov, dwp, ows, OW,, d¢
and oy are equal to zero
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OoN
N, +—2%=0 (26)
ox oy
ON
N, +—=2=0 (27)
OX oy
azM b aZM b aZM b
ox? axay oy? (28)

—(N°+N® +N")V?(w, +w, +gw,) =0

M S ’M: *MS 0

0 M2*+2 Y 4 zy+aQXZ+ i

ox axoy | oy x| oy (29)
—(N"+NE+N")V?(w, +w, +gw,) =

anz + 8Qyz _ Rz
x oy (30)
—g(N°+NE+N")V?*(w, +w, +gw,) =0

Il

+&sin(£z)D, jdz =0

31)

h/2
jh/z
2.3 Nonlocal elasticity theory for the magneto-
electro-elastic materials

jdz =0(32)

In general form, the nonlocal elasticity for smart piezo-
magnetic-elastic materials can be defined as

Oij =J.VOt(X'—

X ,T) [Cijk| Exl (X')

(333)
— € Em (X') = Qi Hn (X,)] dV (x)
D= _[ [e|k|8k| (X )
(33h)
+ SimEm (x )+ dinHa (X)]dV (X)
B = ikl €kl
I [q 2() (33c)

+ dimEm (X + pinHa (X' )]dV (x")

in which aj;, Dj, Bj denotes the components of stress, electric
displacement and magnetic induction. Also, all of other
parameters are completely defined and discussed in
previous papers (Ke and Wang 2014, Ebrahimi and Barati
2016b), The differential form of nonlocal elasticity with one
scale parameter epa can be represented as

— (& a)*V?0y = Cija& —Emij Em — G H (34a)

Di — (8 @)° V2D = €& + SimEnm + dinH (34b)

—(e0 @)’ V?Bi = Qs + dimEm + zinHn (34c)

where V? is the Laplacian operator. The constitutive
equations can be expressed by

(1_1uv2)o-xx =C~11‘9xx +C~12‘9yy +(§13‘922 &, E, -0 H, (35)

(1—uv? )o,, = 125 +C115 +C135 -6, E,—G;,H, (36)
(A~ uV?)o,, =Cpaey +Cre,, +Cre, —6,E, — G H, (37)
(1-1V*)o,, =Coe, (38)

(L-uV*)o,, =Cogt, —Es B~ s H, (39)

(- V)0, =Cyr,, —€5E, — G H, (40)
1-uV?)D, =&y, +5,E, +d, H, (41)
(1-uV?)D, =64y,, +5,E, +d, H, (42)

(- uV?)D, =8, 6, + 638, +65,8, +55,E, +dyH, (43)
(1— yVZ) Bx = q15 Ve T c’illEx + fllH X (44)
(1— ILIVZ) By = q15 7yz + d11Ey + leH y (45)

(1_,UV2)BZ =0yt qSlgyy + 058, + assEz +75H, (46)

where C;.6;.0;.d;.5; and 7; are reduced constants for

the FG plate under the plane stress state (Ke and Wang
2014) which are given as

~ C2 C2 .
C11 :Cn_& ) ClZ = ClZ -, Cee = Csev
Cas Cy
~ - C.e
€15 =€5) €3 =6 — 5
Cs3
N - C.0
Ois = Oi5r Uz = U3y -
Ca
[ e (47)
d11 = dll’ d33 = d33 + S )
Cy
. . €
S1 =80 S =St
Cas
~ = Us
Xu =X Xz = X3 + 2
Cas

By integrating Egs. (35)-(46) over the area of plate
cross-section, the complete relations for the force-strain and
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the moment-strain and other necessary relation of the
presented can be obtained. The governing equations of
quasi-3D MEE-FG nanoplate in terms of the displacements
and potentials can be derived by substituting Egs. (Al)-
(A9), into Egs. (26)-(32) as follows

2

A11 Ase +(A12 Aes)

oy* X ay
Bu —(By, +ZBee) Bn

o’w, ow,
oA ¢+A31 Lt X,y 2

—(By, +2Bg,

2

o°u
Aae +Azzay Ay Ag) oxdy

83W o’w, s 0w,
_Bzz W:_(Blz"'ZBss) Zaby_ 22 8y3 (49)

oy X
A31 + A31 ay 13

63
ox?

ow,

—(By, +2Bg oy

£=0

53 3
B 8 +(812+2866) ay +(B12+2B66)a 8y
v o*w, a ¢ az¢
+82267y3_D11 OX 4b

7)

o? ¢ o? ¢
_AiS ) 2(D2+2D66) 6X25;2
4 4
8 o'W, _D 0 V:IS
oy’ OX
S S a4WS
_2(D12+2D66 W
m Oy  Oy\ e 0% Oy
7+ 2)_A15 7T 2
oy ox® oy
4 2 2
_DZSZ aayv\zfs +Y13(aa)\(/\2lZ + aayV\ZIZ)
2 b E H
+@A—puVI))(N>+N=+N")

VZi(w, +w, +gw,)) =0

- D22
(50)

)

B11 +(BS +2866)a 6'y

o%v s OV
Koy oy
5 52¢ o’¢
0.2 ax G S
62 w,
8y2

+ (B, +2B) ——

Ay O A (51)
. O'w
-D,, 4b
ay oy
s 0w, o'w,
- H11 ox* 2(H12 +2H66) 8)/
o'w, _., 0% o
45 +F ?"‘7?)
oy oy

—-2(Dy, +2D 6)

s
7H22

m 0y, O o 7 %y
F
+ 31(a 7 ) — A.Ls( * 52 —3)
s o*w, o*w,
5 13 2 4 Y23
+ (A5 + ) (A Y) (51)

+(1—uv? )(—(N +NE+N™)
V2 (W, +w, +gw,)) =0

ou  ov o’w,  o°w,
7X13(&+5)+Y13( i ayg )
azws S 82wZ
82 62 w,
+ &5( axz )

—ZgW, H33¢ Hay+9@- ,UV)

+Yi5(

v? (W, +w, +gw,))=0

2 2
o'W, OW,

Asel(i ay) E31 8X2 + 8y2 )
. ow, az o° ¢ o’
- F31 15 b Fu — +t 53
( )( ay ( +8y) (53)

m@
+F11(67}/ 7)+H33W F33¢ 37 0

Ag”z(g—“ﬁ)—Eg(ﬂZb 2Lty
m o°w, 6‘2 o° ¢ o%¢
- F31 = I:11 2 54
( ay )+ ( 8y) (54)
0%y 62}/

+X11(7+7)+H33W F33¢ X337 0

3. Solution procedure
Based on Galerkin’s method, it is possible to provide a
solution for buckling problem of quasi-3D piezo-magnetic
nanoplates based on the boundary conditions:
e Simply-supported (S)
w=w=N=M=0 at x=0,a
(55)
=w,=N,=M =0 at y=0,b
e Clamped (C)

u=v=w,=wW,=0 at x=0,a and y=0,b (56)

o Free (F)
M,=M,=Q,=0 at x=0, a

(57)
M,=M,, =Q, =0 at y=0, b

In next step, the seven variables based on quasi-3D
piezo-magnetic plate model can be defined by
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u:iiu X (X)Y( ) (58)
V=33V, X, (0 22 (59)

m=1 n=1 ay

ZZ bmn m(X)Y (y) (60)
w, = ZZ o X (X) Y, () (61)
W, = 2 2 W, X (Y, (1) ©2)
§=2 Y B X (Y, 63
y=iiYmn a(X) Y, (Y) (64)

where (Umn, Vinek Womns Wasmne Womn, @mns Pmn) are the
unknown coefficients and the functions X, and Y, are
tabulated in detail in Table 2 for different boundary
conditions (@« = mz / a, f = mz / b), Inserting Eqgs. (58)-
(64) into Eqgs. (48)-(54) respectively, leads to

[( Ailrl + A&serz )]U mn +(A12 + AEG ) r2an

=Byt +(Byy +2Bg ) 1, Wy + [_(Blsz +2Bg ) I (65)

_Blslrl)]vvsmn + Aslr.jl.lq)mn + Aslr Y nt XlSri.lemn =0

[(Am + AGB)r ]Umn +[Aeer + Azzr
—(By, +2Bg ), W, +[-B5, (BS + 2Bg)nW,,, (66)
+ AP + ARG, Y + Xgh W, =0

zmn

[Bur + (B, + 2B )1, U, +[(By, +2Bge)r, + B, ls Vo
+[-D,,r; —2(D,, + 2D )r, ~Dpyl;)

+(N®+ N+ Nl + 20+ 1) = (1 + 1)) Wy,
+[-Dj,r; —2(D;, + 2Dg )r, — D5, L,

+ (NP + N+ N (u(r, +2r, +1,)

=1 + 1)) Way +[Egy (1o + 1)1, +[E5i (1 +10)1Y 1,
+ ¥ (1 + 1) +9(N" +NF +N")

(ua(ry + 20 +1,) = (g + 1)) W,y =0

(67)

[Bir + (B, +2B3)r U, +[(BS, + 2Bg)r; + By, V...,
+[-D;ir;, —2(Dy, +2Dg )ty — D,,r,)

(N +NE+N") (s +26+1) = (g + )W, (68)
+[AL(ng +15) —Hply —2(H, + 2Hg ) —Hor,

+ (N +NE+ N (u(r +2r+1,) = (r, +1,))

= u(r5 + 21, +1,)) W, +[(F391 - Afs)(rlo +1)]P .,
+ (FsT - Airg)(rlo + rQ)Ymn +[(Y1§ + A:4)(r9 + rlO)
+g(N® +N&+N")(u(r, +2r, +1,)

- (rlO + r9))]\szn =0

(68)

[ X13 ]Umn+[ X13r ]an+[Y13( )
+g(N°+NE+N" Yu(r, +2r,+1;)

- (rlo + rg))]]\men +[(Y1§ + Aj4) (r9 + rlO)

+g(N°+ N+ N")(u(r, +2r,+1,) (69)
- (rlO + rg))]]Wsmn + [_ZS3r8
+9°(N° +NE+ N )(u(r, +2r, +1,)

- (rlo + rg))]wzmn + H§3r8q)mn + Hegrstn =0

ASlrloumn + Aalrvmn +[ E (rlo + I )]\men
+[(Eles - FSel)(rlo +I )]Wsmn +[F1i(r10 + rg) - Fszrs]q)mn (70)
+[F1T (rlo + rg) - F3r;r8]Ymn + H§3r8Wzmn = O

A:il’lou m + A:;rirvmn - E’:i(rlo +h )Wbmn

+(E1r2_F31 +r) smn

+[

F1r1n (rlo + rg) - Fsg]rs]q)mn (71)

+ [Xlnil (rlO + r9) - X33r8]Ymn + H;;rBWzmn =0

where

rrr J‘J‘

X"(x)Y'(y),

x(x)my),x(m (v)}

{600} II;
X' (x)Y

{r. 1.0} .['[
X”(X)Y”

) =[ ) X(

X (x)Y

"(y )

(72)
X" ()Y (y), 73
( )Y (y)j ey
””(X)Y (¥), o
" (y ey
)Y (¥). 5)
Y (y)jdxdy

By finding the coefficient of stiffness matrix from above

equations, one can write

[Kl7x7

=0 (76)
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The non-trivial solution is obtained when the
determinant of stiffness matrix is set to zero (|K| = 0) to find
critical buckling loads. The non-dimensional form of
buckling load can be defined by

2
N=NP2 D, =cjn’ (77)
DC

S SSSS S C Csss S C CCsS C

C CSCS S C ccee CcC C CCFF C

S C F
Fig. 2 Boundary conditions of FG nanoplate

Table 2 The admissible functions X,, (x) and Y, (y)

4. Numerical results and discussions

In this section, effects of different parameters such as
magneto-electrical field, nonlocality, boundary conditions
and material composition on critical buckling loads of
MEE-FG nanoplates are examined. Considered boundary
conditions for nanoplate are illustrated in Fig. 2. The length
of nanoplate is considered to be a = 10 nm. For the
verification purpose, critical buckling loads are campared
with those of FG nanoplates presented by Sobhy (2015) and
a good agreement is found according to the results
presented in Table 3. For the verification study, the material
properties are assumed as: Ec = 380 GPa, Em = 70 GPa and
vc=vm =0.3.

In Figs. 3 and 4, variation of dimensionless buckling
load of MEE-FG nanoplates vesus power-law index (p) is
illustrated for different boundary conditions, electric
voltages and magnetic potentials when a/h = 100 and p =
0.5 nm?. It is deduced that critical buckling loads of MEE-
FG nanoplate are siginificantely influenced by the
magnitude and sign of magnetic and electric potentials for
every value of power-law index. It is concluded that
negative values of magnetic potential give lower buckling
loads than positive magnetic potentials for all boundary
conditions. While, smaller values of electric voltage lead to

Boundary conditions

The functions X,, and Y,

Atx=0,a Aty=0,b X (%) Y, ()

Ssss Xn(0)=X,(0)=0 Y, (0) =Y, (0)=0 Sin(ax) Sin(By)
Xp (@) = X (@) = 0 Y,(b) =Y, (b) =0

Csss Xn(0)=X,(0)=0 Y, (0) =Y, (0)=0 Sin(ax)[Cos(ax) — 1] Sin(By)
Xp (@) = Xn(a) = 0 Y, (b) =Y, (b) =0

osCs X (0) = X, (0) =0 Y,(0) =Y,(0) =0 Sin(ax)[Cos(ax) —1]  Sin(By)[Cos(By) — 1]
Xp (@) = Xn(a) = 0 Y, (b) =Y, (b) =0

cess X (0) = X, (0) =0 Y,(0) =Y, (0)=0 Sin?(ax) Sin(By)
Xp(a) = X (a) = 0 Y,(b) =Y, (b) =0

cece X, (0) = X,:" =0 Y,(0) = Yn: 0 =0 Sin?(ax) Sin?(By)
Xn(a) =Xpn(@) =0 Y, (b) =Y, (b) =0

CCEF Xy (0) = X,,(0) =0 Y,(0) = Y,(0) =0 Sin?(ax) Cos*(By)[Sin*(By) + 1]

Xn(@) = Xpn(a) =0

Y,(b) =Y, (b) =0

Table 3 Comparison of critical buckling load of simply-supported FG nanoplates (a/b = 1, a/h = 10)

1 =0nm? i =2nm?
Gradient index, p (Sobhy 2015) Present (Sobhy 2015) Present
0 18.6876 18.6877 10.4425 10.4426
0.5 10.0638 10.0638 5.6235 5.62359
25 6.2593 6.25935 3.4976 3.49769
55 5.5200 5.52002 3.0845 3.08455
10.5 4.9677 4.96776 2.7759 2.77596
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larger buckling loads. Actually, the imposed positive/
negative magnetic potentials may produce the axial tensile
and compressive forces. While electric field shows an
opposite trend. It is also found that larger values of power-
law index have no sensible influence on buckling loads.
But, smaller values of power-law index show more
significant effect on the variation of buckling loads. Also, it
is assumed that the value of electric and magnetic potentials
are equal to zero at the ends of the FG nanoplate. For the
presented boundary conditions, a clamped-free MEE-FG
nanoplate has the highest buckling loads, and the simply-
supported one has the lowest buckling loads. For the MEE-
FG nanoplate with intermediate boundary conditions, the
results take the corresponding intermediate values.

Figs. 5 and 6 illustrate the variation of critical buckling
loads of MEE-FG nanoplate versus electric voltage and
magnetic potential, respectively for different nonlocal
parameters when a/h = 100 and p = 1. It is deduced that
buckling loads of nonlocal MEE-FG nanoplate are always
smaller than that of local MEE-FG plate. Buckling loads
decrease with the rise of the nonlocal parameter at a
constant magnetic potential and electric voltage. Such
phenomenon is owing to the fact that the small scale
influence, which captures the mutual influence of all points
in the region, may reduce the stiffness of the nanostructures.
Also, nonlocal effect is more significant for a MEE-FG
nanoplate with stronger supports at edges. Therefore,
buckling loads of nanoplate with CCFF or CCCC boundary
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conditions are more affected by nonlocal parameter than
other boundary conditions. It is also deduced that as the
electric voltage and magnetic potential chnage from
negative to positive values, the critical buckling loads
respectively reduce and increase.

Depicted in Fig. 7 is the buckling load of the graded
piezo-magnetic nanoplate with the change of length to
thickness ratio (a’h) based on various magnetic potentials.
There is no change in buckling load versus a/h when the
magnetic potential is zero. Also, applying positive of
negative magnetic potentials may increase or reduce the
buckling load with respect to a/h.

5. Conclusions

Buckling characteristics of a quasi-3D piezo-magneric
nanoplate were reported in the present article. The complete
formulation and solution for the problem based on quasi-3D
plate model was presented. There was no change in
buckling load versus side to thickness ratio when the
magnetic potential was zero. Also, applying positive of
negative magnetic potentials led to increasing or reducing
the buckling load with respect to side to thickness ratio.
Also, it was reported that the buckling behavior of the
nanoplate is sensitive to material gradient exponent.
Another observation was that size effects due to nonlocality
changed significantly the buckling behavior of piezo-
magnetic nanoplate. Also, the dependency of buckling load
to negative and positive voltages was clearly explained.
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