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1. Introduction 
 

In the current century, the use of materials that have the 

ability to work in environments with a high temperature is 

increasingly felt. These environments can be the spacecraft, 

aircraft and plasma coatings for fusion reactors etc. In order 

to overcome this need, composite materials which material 

properties graded in different directions such as thickness 

were presented (Shahsavari et al. 2018e, Kar and Panda 

2015a, b, Chamkha et al. 2018, Shahsavari et al. 2018c, 

Nayebi et al. 2015, Damadam et al. 2018, Bensaid and 

Kerboua 2017). 

These days due to the wonderful applications of 

materials at Nano-scale, these materials have been widely 

used in different nano-electro-mechanical systems 

(NEMSs). So the predictions of these structures is felt more 

and more. As you know classical continuum theories cannot 

predictions the size-dependent behavior of nanostructure 

systems. Therefore, to overcome this problem different size-

dependent theories were presented (i.e., nonlocal theory 

(Karami et al. 2018a, f, Shahsavari et al. 2018a, 2017, 

Apuzzo et al. 2017, Barretta et al. 2018b, Romano and 

Barretta 2017, Bensaid and Guenanou 2017), modified 

couple stress theory (Ghayesh et al. 2013a, b, 2014, Farokhi 

et al. 2013, Farokhi and Ghayesh 2015, Ghayesh and 

Farokhi 2015), strain gradient theory (Karami and 

Janghorban 2016, Nami and Janghorban 2014b), and 

recently combinations of nonlocal and strain gradient theory 

so-called nonlocal strain gradient theory (Karami et al. 
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2017, 2018d, 2019a). Eringen nonlocal model considers 

size-dependent behavior of nanostructure systems using 

nonlocality effects. In the past decades, Eringen nonlocal 

theory has been widely used to model the different 
nanostructures (Tounsi et al. 2013, Zenkour 2016, Aydogdu 

and Arda 2016, Heydari and Shariati 2018, Eltaher et al. 

2016, Bensaid 2017, Barzoki et al. 2015, Taghizadeh et al. 

2015, Aissani et al. 2015, Tufekci et al. 2016, Karami et al. 

2019b, 2018l, Shahsavari and Janghorban 2017, Nami et al. 

2015), but due to the fact that the mentioned model only 

considers nonlocality mechanism of size-dependency, this 

theory cannot properly address the size-dependent behavior 

of nanostructures. Hence, Askes and Aifantis (2009) 

presented a complete model in which size-dependent 

behavior of nanotubes systems capture by two different 

approaches of size-dependency namely strain gradient size-

dependency and nonlocality considering two small scale 

parameters. After that Lim et al. (2015) developed a more 

comprehensive model of this theory in which the authors 

showed that this theory is more accurate than the Eringen 

model considering both stiffness softening and hardening 

mechanisms. This claim proved using experimental tests by 

matching the results for the wave frequency of nano-size 

beams. Recently on the basis of nonlocal strain gradient 

model different analyzes have been done by various 
investigators (Houari et al. 2018, Arani et al. 2017, 

Sahmani et al. 2018, Ghayesh and Farajpour 2018, Malikan 

et al. 2018, El-Borgi et al. 2018, She et al. 2018b, d, Shafiei 

and She 2018, Karami et al. 2018b, c, e, h, i, j, Shahsavari 

et al. 2018b, Barretta and de Sciarra 2018, Barretta et al. 

2018a, Bensaid et al. 2018a). Nami and Janghorban (2014a) 

studied the forced vibrations of micro/nano-plates via 

nonlocal strain gradient theory where the small scale effects 
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were considered separately. Using nonlocal strain gradient 

theory wave characteristics of nano-size beams made of 

FGMs was presented by (Li et al. 2015). Forced vibration 

analysis of nanoplates with uniform and graded porosities 

was studied by (Barati 2017) based on nonlocal strain 

gradient theory. (Karami et al. 2018k) investigated the wave 

propagation of temperature-dependent FG nanoplates based 

on nonlocal strain gradient theory. Effect of thickness on the 

mechanics of nanobeams was presented by (Li et al. 2018) 

using nonlocal strain gradient theory. Wave propagation, 

vibration and bending behavior of porous nanotubes were 

investigated by She et al. (2018a, c, 2019) via nonlocal 

strain gradient theory. Shahsavari et al. (2018d) presented 

shear buckling analysis of single layer graphene sheets 

based on the different nonlocal strain gradient theories for 

the first time. 

Among the different plate theories (i.e., classical plate 

theory (CPT), first-order shear deformation plate theory 

(FSDT), higher-order shear deformation refined plate 

theory (HSDT), etc. (Bensaid et al. 2017, 2018b), the 

authors in the current investigation decided to use a refined 

model of plate theories. This is due to this fact that the 

refined model does not require to use of any shear 

correction coefficients. Therefore, this theory has been 

widely considered to analyze the behavior of advanced 

composite material plates (Kant and Swaminathan 2001, 

Wu et al. 2008). Transient analysis of carbon nanotubes 

reinforced nanocomposite plates were presented by (Phung-

Van et al. 2018) using nonlocal strain gradient theory 

considering thermal effects. Wave characteristics of nano-

size plates made of FGMs were reported by (Karami et al. 

2018g) via a nonlocal strain gradient refined model. In 

addition, (Ebrahimi et al. 2016) studied the wave dispersion 

of a nonlocal strain gradient FGM nnao-size plates. 

It is clear that there are many studies have been reported 

to study the stability, dynamic and static response of 

nanoplates and nanobeams made of FGMs, but with the best 

knowledge of authors, it is the first time that thermally 

affected buckling of a nanoplates made of FGMs is studied 

in which the material properties are temperature- dependent. 

In the current work, a nonlocal strain gradient refined 

plate model is presented to examine the size-dependent 

buckling response of nanoplates made of FGMs in the 

thermal environment. Reuss micromechanical model is 

utilized to estimate the temperature-dependent material 

properties where the properties are varying via the thickness 

direction. After owning governing equations and boundary 

 

 

 

Fig. 1 Geometry of rectangular FGM plate with uniform 

thickness in the rectangular Cartesian coordinates 

conditions via Hamiltonian principles, a semi-numerical 

solution is applied to find the critical buckling force of the 

nanoplate. Furthermore, the influence of material variation, 

temperature changes, and scale parameters on the stability 

response of such structures is presented afterward in a 

parametric investigation. 
 

 

2. Theoretical formulation 
 

2.1 Temperature-dependent material properties of 
FG elastic nanoplates 

 

An FG nano-size plate made of a composition of 

ceramics and metals is assumed (see Fig. 1). The basic 

assumption for material properties is that, the properties for 

FGMs are varying via thickness direction. The produces 

estimation of the Young modulus and Poisson ratio are 

respectively as 
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in which n is the power law material index parameter and 

the subscripts m and c are the metallic and ceramic phases, 

respectively. It is clear that when n=0 the plate is fully 

ceramic, while n = →∞ means that the plate is fully metal. 

The variation of Young modulus with respect to different 

power-law material parameter index is illustrated in Fig. 2. 
 

2.2 Nonlocal strain gradient elasticity 
 

The classical continuum model cannot predict the size-

dependent behavior of nanostructure systems. In this way 

(Askes and Aifantis 2009) presented a model incorporating 

 

 

 

Fig. 2 The variation of Young modulus as a function of 

power-law index parameter 
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the two different approaches of size-dependency to 

investigate the nanostructure systems. This model includes 

two small scale parameters as 
 

(0) (1)

ij ij ij     (5) 

 

where 𝜎𝑖𝑗
(0)

 and 𝜎𝑖𝑗
(1)

 are respectively related to strain εij 

and strain gradient εij, and are given as 
 

(0)

0 0

0

( , , ) ( )

L

ij ijkl klC x x e a x dx        (6) 

 

(1) 2

1 1

0

( , , ) ( )

L

ij ijkl kll C x x e a x dx        (7) 

 

herein Cijkl, ea and l are the elastic constants, the effect of 

nonlocal stress field and the strain gradient length scale 
parameter (Karami and Janghorban 2016). 

The general constitutive relation for nonlocal strain 

gradient elasticity can be expressed as 

 
2 2(1 ) (1 )ij ijkl klC         

 (8) 

 

in which λ = l2 and μ = (ea)2. The equivalent form of Eq. (7) 

is presented as 
 

ij ijkl l klC L L  (9) 

 

where the linear operators are defined as 
 

2 2(1 ), (1 )l       L L  (10) 

 

It is obvious that by ignoring the strain gradient 

parameter in Eq. (8), the equation is reduced to the Eringen 

nonlocal theory. Besides, the gradient equations of motion 

without considering nonlocal effects can be obtained by 

omitting nonlocal parameter in Eq. (8). Further, the classical 

theory which was used for macro plates will be achieved by 

neglecting small-scale parameters. 

 

2.3 Refined higher order plate theory 
 

For isotropic FGMs, the nonlocal strain gradient 

constitutive relations can be written as 
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herein (ζx, ζy, ζz, ηyz, ηxz, ηxy) and (εx, εy, εz, γyz, γxz, γxy) are the 

stress and strain components, respectively. Elastic constants 

of FGM layer can be defined as 
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Based on refined plate model proposed by Shimpi and 

Patel (2006), the basic assumption for the displacement 

field of the plate can be described as 
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where u0 and v0 are displacement of mid-plane along x, y-

axis and wb, ws are the bending and shear components of 

transverse displacement of a point on the mid-plane of the 

plate and t is the time. The shape function of transverse 

shear deformation is considered as Shimpi and Patel (2006) 
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The nonzero strain-displacment relastions are given as 
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2.4 Governing equations 
 

The equations of motion for the buckling of the FG 

nanoplate can be derived from Hamilton's principle as 

follows 
 

0
( ) 0

t

U V dt    (19) 
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where U and V are respectively strain energy and work done 

by external (applied) forces. The first variation of strain 

energy can be concluded as 
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The first variation of work done by applied forces can 

be stated as 
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where 𝑁𝑥
0, 𝑁𝑦

0  and 𝑁𝑥𝑦
0  are in-plane applied loads 

(buckling loads); the external force NT according to the 

changes of temperature is expressed as 
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Note: The variation of temperature field will be 

introduced in section 3. 

Based on above relations, the governing equations are 

obtained by inserting Eqs. (20) and (21) in Eq. (19) when 

the coefficients of δu0, δv0, δwb, and δws are equal to zero 
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herein N, M, and Q denote the stress resultants and are 

given as follows 
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The classical and non-classical boundary conditions can 

be observed in the derivation process when using the 

integrations by parts. Thus, we obtain classical boundary 

conditions at x = 0 or a and y = 0 or b as (Barati 2018) 
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; nx and ny denote the x and 

y-components of the unit normal vector on the nanoplate 

boundaries, respectively and the non-classical boundary 

conditions are 
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2.5 Equations of motion 
 

Integrating Eq. (11) over the plate’s cross-section area, 

the nonlocal strain gradient refined FG nanoplates relations 

can be obtained as follows 
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3. Temperature field 
 

Temperature dependent material properties can be 

expressed as following form (Touloukian and Ho 1970, 

Bensaid and Bekhadda 2018) 

 

 1 2 3

0 1 1 2 3P P P P P P 1T T T T

      (36) 

 

in which P0, P-1, P1, P2 and P3 are the temperature-

dependent coefficients, which are needed to be uniquely 

determined for a specified material (see Ref. Reddy and 

Chin 1998) and temperature-dependent material properties 

of SUS304 and Si3N4 can be seen in the Table 1. 

In the present study, three different pattern of tempera-

ture field variations are used as follows. 

 

3.1 Uniform temperature 
 

The uniform case temperature rise can be defined by Li 

et al. (2009) 
 

   0T z T T z   (37) 

 

Often the initial temperature T0 is the temperature of the 

surface with pure metal Tm and equals the room temperature 

(i.e., T0 = Tm = 300 K), and ΔT(z) = Tc ‒ Tm where Tc 

denotes the temperature of the surface with pure ceramic. 

 

3.2 Nonlinear temperature 
 

In this subsection with basic assumptions in which 

temperature distribution is only along the thickness 

direction the plate. In this non-linear case, one-dimensional 

steady-state heat conduction equation is applied for the 

temperature field in the thickness direction and can be given 

by Li et al. (2009) 
 

  0
d dT

z
dz dz


 

  
 

 (38) 

 

By utilizing polynomials series Eq. (38) solve as 

following form 

 

 

Table 1 Temperature-dependent coefficients for SUS304 and Si3N4 (Reddy and Chin 1998) 

Material Properties P0 P-1 P1 P2 P3 

SUS304 

E (GPa) 201.4 0 -3.079×10-4 -6.534×10-7 0 

α (K-1) 12.330×10-6 0 8.086×10-6 0 0 

κ (W/mk) 15.379 0 -1.264×10-3 2.092×10-6 -7.223×10-10 

ρ (Kg/m3) 8166 0 0 0 0 

v 0.3262 0 -2.002×10-4 3.797×10-7 0 

Si3N4 

E (GPa) 348.43 0 -3.070×10-4 2.160×10-7 -8.964×10-11 

α (K-1) 5.8723×10-6 0 9.095×10-6 0 0 

κ (W/mk) 13.723 0 -1.032×10-3 5.466×10-7 -7.876×10-11 

ρ (Kg/m3) 2370 0 0 0 0 

v 0.2400 0 0 0 0 
 

55



 

Behrouz Karami and Sara Karami 

     m c mT z T T T z    (39) 
 

where 
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(41) 

 

here κcm = κc ‒ κm in which κc and κm respectively represent 

thermal conductivity of the bottom and top surfaces. 

 

3.3 Sinusoidal temperature 
 

In the case of sinusoidal temperature rise, the 

temperature rise can be defined as follow (Gupta and Talha 

2017) 

     m c mT z T T T z    (42) 

 

with .
2
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2
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h

TT
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4. Solution procedure 
 
In this subsection to satisfy the equations of motion, 

using Galerkin’s method following series are presented 

(Barati 2018) 
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1 1
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w W X x Y y
 

 

  (46) 

 

where (Umn, Vmn, Wbmn, Wsmn) are the unknown coefficients 

and the functions Xm and Yn satisfy the boundary conditions. 

The classical and non-classical boundary condition based 

on the present plate model are (Barati 2018) 
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By substituting Eqs. (43)-(46) into equations of motion 

(Eqs. (32)-(35)), one can write these four equations in 

matrix format to find the critical buckling force. It is 

important to note that to investigate the stability behavior of 

mentioned nanostructure following relegation is considered: 
 

0 0 0

1 1 2 1, , 0x y xyN P N P N     (48) 

 

“where P1 is the force per unit length; ζ1 and ζ2 are changed 

according to different loading conditions.” In present 

investigation biaxial compression load is used to investigate 

the size-dependent buckling response of nanopltes made of 

functionally graded materials. Note that the following 

parameters are introduced to consider the small-scale 

effects on the results in the next section 
 

1 2,a a      (49) 

 

 

5. Numerical results and discussions 
 

Some of researchers have been presented the importance 

of temperature-dependent material properties to investigate 

the vibration of plate type structures (Shahrjerdi et al. 2011, 

Huang and Shen 2004). Therefore, the authors of the 

present paper decided to study the stability response of 

nano-size plates made of FGMs having temperature-

dependent properties due to the lack of any study on the 

stability analysis of such nanostructures. Reuss 

micromechanical scheme is considered to estimate the 

material properties where. the influence of thermal 

environments is captured. For the geometrical parameters, it 

is assumed that the length of the nanoplate is a=10 nm, and 

the thickness of the plate is variable. 

Firstly, to show the accuracy of present model the 

results for free vibration of rectangular FG plate is 

compared with those of (Shahrjerdi et al. 2011) and (Huang 

and Shen 2004) and results tabulated in Table 2. The effect 

of thermal environment is also validated with mentioned 

studies. Good agreement can be seen between different 

mathematical model. 

The variations of size-dependent non-dimensional 

critical buckling loads as a function of uniform, nonlinear 

and sinusoidal temperature fields in simply-supported 

nanoplates made of FGMs are illustrated in Figs. 3-5 when 

η₁= η₂=  0.1. the geometrical conditions are a = b = 10 

nm and a/h = 10. The non-dimensional critical buckling 

load parameter is defined as Ω = Ra2/h3Em. The bottom 

surface temperature is equal to room temperature and heat 

applied from the top surface. 

It is concluded that non-dimensional critical buckling 

loads are reduced with increasing temperature. This is due 

to the changes in Young’s modulus by temperature 

variations. In a similar area of temperature variation, the 

greatest impact of temperature conditions is obtained for the 

plate under uniform temperature variation condition 

followed by nonlinear, and sinusoidal respectively. Further 
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Fig. 3 The non-dimensional critical buckling load versus 

uniform temperature field for simply supported FG 

nanoplates (a = b = 10 nm, a/h = 20, η₁= η2 = 0.1) 

 

 

more, from Fig. 3, it is observed that the buckling load of 

the nanoplate decreases with the rises of temperature until it 

approaches the critical buckling temperature. This is due to 

the reduction in total stiffness of the plate since geometrical 

stiffness decreases when the temperature rises. Buckling 

load reaches to zero at the critical temperature point. The 

increase in temperature yields in higher buckling load after 

the branching point. Moreover, it is seen from Figs. 4 and 5 

that the branching point of the nanoplate is postponed by 

changing temperate variation model. 

Present investigation tries to provide a benchmark 

results for nanoplates made of FGMs in which material 

properties is depend on temperature. So, as a benchmark 

results Tables 3-4 present buckling response of FG 

nanoplates under nonlinear temperate variation condition 

 

 

 

Fig. 4 The non-dimensional critical buckling load versus 

nonlinear temperature field for simply supported FG 

nanoplates (a = b = 10 nm, a/h = 20, η1 = η2 = 0.1) 
 

 

 

Fig. 5 The non-dimensional critical buckling load versus 

sinusoidal temperature field for simply supported FG 

nanoplates (a = b = 10 nm, a/h = 20, η1 = η2 = 0.1) 

Table 2 Non-dimensional natural frequency parameter of simply supported (Si3N4/SUS304) FG plate 

in thermal environments (nonlinear temperature distribution) 

n Model 

Tt = 300 Tt = 400 Tt = 600 

 
Temperature-

dependent 

Temperature-

independent 

Temperature-

dependent 

Temperature-

independent 

Ceramic 

SSDTa 12.506 12.175 12.248 11.461 11.716 

TSDTb 12.495 13.397 12.382 11.984 12.213 

Present 12.5317 12.2728 12.4001 11.7429 12.0785 

n = 0.5 

SSDTa 8.652 8.361 8.405 7.708 7.887 

TSDTb 8.675 8.615 8.641 8.269 8.425 

Present 8.6313 8.4603 8.5205 8.1133 8.2688 

n = 1 

SSDTa 7.584 7.306 7.342 6.674 6.834 

TSDTb 7.555 7.474 7.514 7.171 7.305 

Present 7.5657 7.4180 7.4591 7.1190 7.2242 

n = 2 

SSDTa 6.811 6.545 6.575 5.929 6.077 

TSDTb 6.777 6.693 6.728 6.398 6.523 

Present 6.7897 6.6570 6.6856 6.3893 6.4625 

Metal 

SSDTa 5.410 5.161 5.178 4.526 4.682 

TSDTb 5.405 5.311 5.335 4.971 5.104 

Present 5.4210 5.3116 5.3116 5.0857 5.0857 
 

*a: Shahrjerdi et al. 2011; b: Huang and Shen 2004 
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when (a = 10, a/h = 10). Non-dimensional critical buckling 

loads Ω  = Ra2/h3Ec of FG nanoplates with respect to 

nonlocality are tabulated in Table 3 by ignoring strain 

 

 

 

 

gradient length scale parameter while Table 4 shows the 

buckling behavior of nanoplates considering strain gradient 

size-dependency by omitting nonlocal parameter. 

Table 3 Non-dimensional critical buckling load of simply supported SUS304/Si3N4 FG square plate 

under biaxial compression load in thermal environments and for different values of strain 

gradient length scale parameter (a = 10, a/h = 10, η2 = 0) 

n η1 

Tb = 300 (K) 

Tt = 300 (K) Tt = 400 (K) Tt = 600 (K) 

 
Temperature-

dependent 

Temperature-

independent 

Temperature-

dependent 

Temperature-

independent 

Ceramic 

0 1.7112 1.6540 1.6202 1.5167 1.4336 

0.1 1.4291 1.3907 1.3623 1.2987 1.2275 

0.2 0.9562 0.9495 0.9301 0.9333 0.8822 

0.5 

0 1.4371 1.3907 1.3623 1.2797 1.2096 

0.1 1.2002 1.1712 1.1473 1.1004 1.0400 

0.2 0.8030 0.8032 0.7868 0.7998 0.7560 

1 

0 1.3585 1.3133 1.2865 1.2070 1.1409 

0.1 1.1345 1.1068 1.0842 1.0400 0.9830 

0.2 0.7591 0.7606 0.7451 0.7601 0.7185 

2 

0 1.2996 1.2541 1.2285 1.1491 1.0861 

0.1 1.0854 1.0578 1.0362 0.9924 0.9380 

0.2 0.7262 0.7286 0.7137 0.7298 0.6898 

Metal 

0 1.1033 1.0543 1.0327 0.9433 0.8916 

0.1 0.9214 0.8923 0.8741 0.8247 0.7795 

0.2 0.6165 0.6209 0.6082 0.6259 0.5916 
 

Table 4Non-dimensional critical buckling load of simply supported SUS304/Si3N4 FG square plate 

under biaxial compression load in thermal environments and for different values of strain 

gradient length scale parameter (a = 10, a/h = 10, η2 = 0) 

n η1 

Tb = 300 (K) 

Tt = 300 (K) Tt = 400 (K) Tt = 600 (K) 

 
Temperature-

dependent 

Temperature-

independent 

Temperature-

dependent 

Temperature-

independent 

Ceramic 

0 1.7112 1.6540 1.6202 1.5167 1.4336 

0.1 2.0490 1.9917 1.9511 1.8544 1.728 

0.2 3.0623 3.0051 2.9637 2.8678 2.7106 

0.5 

0 1.4371 1.3907 1.3623 1.2797 1.2096 

0.1 1.7207 1.6769 1.6426 1.5702 1.4842 

0.2 2.5717 2.5354 2.4836 2.4418 2.3079 

1 

0 1.3585 1.3133 1.2865 1.2070 1.1409 

0.1 1.6266 1.5846 1.5522 1.4836 1.4023 

0.2 2.4311 2.3982 2.3492 2.3133 2.1865 

2 

0 1.2996 1.2541 1.2285 1.1491 1.0861 

0.1 1.5562 1.5141 1.4832 1.4151 1.3358 

0.2 2.3258 2.2941 2.2472 2.1326 2.0920 

Metal 

0 1.1033 1.0543 1.0327 0.9433 0.8916 

0.1 1.3211 1.2766 1.2505 1.1737 1.1094 

0.2 1.9744 1.9436 1.9039 1.8650 1.7627 
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Results are obtained for different power-law index 

parameters. To see the effect of the power index on the 

buckling response, the same values of the thermal load is 

used. It is concluded that the result for nanoplates is in 

between those for pure material nanoplates. This is due to 

the fact that Young’s modulus increases from pure metal to 

pure ceramic. Also, the non-dimensional critical buckling 

load decrease by increasing the temperature difference 

between the top and bottom surfaces for the same value of 

the power-law index parameter. Furthermore, the nonlocal 

parameter has decreasing effects on the results, while the 

strain gradient length scale parameter has increasing effects 

on the results of nanoplate. This phenomenon obtained in 

different power-lave indexes and temperature values. The 

difference between temperature-dependent and independent 

FG plates is less significant. 

 

 

6. Conclusions 
 

For the first time buckling analysis of size-dependent 

rectangular plates made of temperature-dependent 

functionally graded materials (FGMs) is studied. Material 

properties of FGMs are varied along thickness direction and 

obtained based on Reuss micromechanical model. A refined 

nonlocal strain gradient plate model is presented to model 

the nano-size plate. Hamiltonian principles are used to 

obtain the governing equations and boundary conditions 

where the Galerkin method is adopted to solve the buckling 

problem. Influence of thermal environment with respect to 

three different distribution of temperatures namely uniform, 

nonlinear and sinusoidal is also investigated. The results for 

vibration analysis of FGM plates are validated and good 

agreement achieved. As a result, the non-dimensional 

critical buckling load decreases as temperature change 

increases in all types of temperature fields. Moreover, the 

impacts of small scale parameters on critical buckling load 

are discussed, which concluded the parameters play a 

significant role in the critical buckling loads of nano-size 

plates made of FGM. 
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