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Abstract.  This paper develops a four-unknown refined plate theory and the Galerkin method to investigate the size-dependent
stability behavior of functionally graded material (FGM) under the thermal environment and the FGM having temperature-
dependent material properties. In the current study two scale coefficients are considered to examine buckling behavior much
accurately. Reuss micromechanical scheme is utilized to estimate the material properties of inhomogeneous nano-size plates.
Governing differential equations, classical and non-classical boundary conditions are obtained by utilizing Hamiltonian
principles. The results showed the high importance of considering temperature-dependent material properties for buckling
analysis. Different influencing parametric on the buckling is studied which may help in design guidelines of such complex

structures.
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1. Introduction

In the current century, the use of materials that have the
ability to work in environments with a high temperature is
increasingly felt. These environments can be the spacecraft,
aircraft and plasma coatings for fusion reactors etc. In order
to overcome this need, composite materials which material
properties graded in different directions such as thickness
were presented (Shahsavari et al. 2018e, Kar and Panda
2015a, b, Chamkha et al. 2018, Shahsavari et al. 2018c,
Nayebi et al. 2015, Damadam et al. 2018, Bensaid and
Kerboua 2017).

These days due to the wonderful applications of
materials at Nano-scale, these materials have been widely
used in different nano-electro-mechanical systems
(NEMSs). So the predictions of these structures is felt more
and more. As you know classical continuum theories cannot
predictions the size-dependent behavior of nanostructure
systems. Therefore, to overcome this problem different size-
dependent theories were presented (i.e., nonlocal theory
(Karami et al. 2018a, f, Shahsavari et al. 2018a, 2017,
Apuzzo et al. 2017, Barretta et al. 2018b, Romano and
Barretta 2017, Bensaid and Guenanou 2017), modified
couple stress theory (Ghayesh et al. 2013a, b, 2014, Farokhi
et al. 2013, Farokhi and Ghayesh 2015, Ghayesh and
Farokhi 2015), strain gradient theory (Karami and
Janghorban 2016, Nami and Janghorban 2014b), and
recently combinations of nonlocal and strain gradient theory
so-called nonlocal strain gradient theory (Karami et al.
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2017, 2018d, 2019a). Eringen nonlocal model considers
size-dependent behavior of nanostructure systems using
nonlocality effects. In the past decades, Eringen nonlocal
theory has been widely used to model the different
nanostructures (Tounsi et al. 2013, Zenkour 2016, Aydogdu
and Arda 2016, Heydari and Shariati 2018, Eltaher et al.
2016, Bensaid 2017, Barzoki et al. 2015, Taghizadeh et al.
2015, Aissani et al. 2015, Tufekci et al. 2016, Karami et al.
2019b, 2018I, Shahsavari and Janghorban 2017, Nami et al.
2015), but due to the fact that the mentioned model only
considers nonlocality mechanism of size-dependency, this
theory cannot properly address the size-dependent behavior
of nanostructures. Hence, Askes and Aifantis (2009)
presented a complete model in which size-dependent
behavior of nanotubes systems capture by two different
approaches of size-dependency namely strain gradient size-
dependency and nonlocality considering two small scale
parameters. After that Lim et al. (2015) developed a more
comprehensive model of this theory in which the authors
showed that this theory is more accurate than the Eringen
model considering both stiffness softening and hardening
mechanisms. This claim proved using experimental tests by
matching the results for the wave frequency of nano-size
beams. Recently on the basis of nonlocal strain gradient
model different analyzes have been done by various
investigators (Houari et al. 2018, Arani et al. 2017,
Sahmani et al. 2018, Ghayesh and Farajpour 2018, Malikan
et al. 2018, El-Borgi et al. 2018, She et al. 2018b, d, Shafiei
and She 2018, Karami et al. 2018b, c, ¢, h, i, j, Shahsavari
et al. 2018b, Barretta and de Sciarra 2018, Barretta et al.
2018a, Bensaid et al. 2018a). Nami and Janghorban (2014a)
studied the forced vibrations of micro/nano-plates via
nonlocal strain gradient theory where the small scale effects

ISSN: 2287-237X (Print), 2287-2388 (Online)



52 Behrouz Karami and Sara Karami

were considered separately. Using nonlocal strain gradient
theory wave characteristics of nano-size beams made of
FGMs was presented by (Li et al. 2015). Forced vibration
analysis of nanoplates with uniform and graded porosities
was studied by (Barati 2017) based on nonlocal strain
gradient theory. (Karami et al. 2018k) investigated the wave
propagation of temperature-dependent FG nanoplates based
on nonlocal strain gradient theory. Effect of thickness on the
mechanics of nanobeams was presented by (Li et al. 2018)
using nonlocal strain gradient theory. Wave propagation,
vibration and bending behavior of porous nanotubes were
investigated by She et al. (2018a, ¢, 2019) via nonlocal
strain gradient theory. Shahsavari et al. (2018d) presented
shear buckling analysis of single layer graphene sheets
based on the different nonlocal strain gradient theories for
the first time.

Among the different plate theories (i.e., classical plate
theory (CPT), first-order shear deformation plate theory
(FSDT), higher-order shear deformation refined plate
theory (HSDT), etc. (Bensaid et al. 2017, 2018b), the
authors in the current investigation decided to use a refined
model of plate theories. This is due to this fact that the
refined model does not require to use of any shear
correction coefficients. Therefore, this theory has been
widely considered to analyze the behavior of advanced
composite material plates (Kant and Swaminathan 2001,
Wu et al. 2008). Transient analysis of carbon nanotubes
reinforced nanocomposite plates were presented by (Phung-
Van et al. 2018) using nonlocal strain gradient theory
considering thermal effects. Wave characteristics of nano-
size plates made of FGMs were reported by (Karami et al.
2018g) via a nonlocal strain gradient refined model. In
addition, (Ebrahimi et al. 2016) studied the wave dispersion
of a nonlocal strain gradient FGM nnao-size plates.

It is clear that there are many studies have been reported
to study the stability, dynamic and static response of
nanoplates and nanobeams made of FGMs, but with the best
knowledge of authors, it is the first time that thermally
affected buckling of a nanoplates made of FGMs is studied
in which the material properties are temperature- dependent.

In the current work, a nonlocal strain gradient refined
plate model is presented to examine the size-dependent
buckling response of nanoplates made of FGMs in the
thermal environment. Reuss micromechanical model is
utilized to estimate the temperature-dependent material
properties where the properties are varying via the thickness
direction. After owning governing equations and boundary
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Fig. 1 Geometry of rectangular FGM plate with uniform
thickness in the rectangular Cartesian coordinates

conditions via Hamiltonian principles, a semi-numerical
solution is applied to find the critical buckling force of the
nanoplate. Furthermore, the influence of material variation,
temperature changes, and scale parameters on the stability
response of such structures is presented afterward in a
parametric investigation.

2. Theoretical formulation

2.1 Temperature-dependent material properties of
FG elastic nanoplates

An FG nano-size plate made of a composition of
ceramics and metals is assumed (see Fig. 1). The basic
assumption for material properties is that, the properties for
FGMs are varying via thickness direction. The produces
estimation of the Young modulus and Poisson ratio are
respectively as

ECEm
= v, @y rEL AV, @) W)

vz)= Vel
TV AV, @) v AV, @) @)

(2)= Co
P AV, @) +an AV, (@) @)

where

V, @)=V, + V. v, )y 4

2h

in which n is the power law material index parameter and
the subscripts m and ¢ are the metallic and ceramic phases,
respectively. It is clear that when n=0 the plate is fully
ceramic, while n = —oo means that the plate is fully metal.
The variation of Young modulus with respect to different
power-law material parameter index is illustrated in Fig. 2.

2.2 Nonlocal strain gradient elasticity

The classical continuum model cannot predict the size-
dependent behavior of nanostructure systems. In this way
(Askes and Aifantis 2009) presented a model incorporating
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Fig. 2 The variation of Young modulus as a function of
power-law index parameter
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the two different approaches of size-dependency to
investigate the nanostructure systems. This model includes
two small scale parameters as

Oy = O'iEO) —Vadﬁh (5)

0)

where o, and aig.l) are respectively related to strain g;;

and strain gradient Ve;;, and are given as

L
050) - J'Cijkl a, (X, x",e,a)e, (x )dx ' (6)
0

L
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herein Cjj, ea and | are the elastic constants, the effect of
nonlocal stress field and the strain gradient length scale
parameter (Karami and Janghorban 2016).

The general constitutive relation for nonlocal strain
gradient elasticity can be expressed as

(l—sz)Gij :Cijkl [(l_/lvz)gkl :I (8)

in which 4 = I and x = (ea). The equivalent form of Eq. (7)
is presented as

Ly(jij :CijkIngkl (9)
where the linear operators are defined as
L, =@0-uv?),L, =(1-aV?) (10)

It is obvious that by ignoring the strain gradient
parameter in Eq. (8), the equation is reduced to the Eringen
nonlocal theory. Besides, the gradient equations of motion
without considering nonlocal effects can be obtained by
omitting nonlocal parameter in Eq. (8). Further, the classical
theory which was used for macro plates will be achieved by
neglecting small-scale parameters.

2.3 Refined higher order plate theory

For isotropic FGMs, the nonlocal strain gradient
constitutive relations can be written as

Oy Q, Q, O 0 0 &,

Oy Q, Qp O 0 0 &y
Lz, t=| 0 0 Q, 0 0 |Lir (11)

v 0 0 0 Q; O Yy

T 0 0 0 0 Qg Yy

herein (oy, 6y, 02, Ty2, Txas Ty) AN (64, &y €2, Jyzr Pxr Vxy) @re the
stress and strain components, respectively. Elastic constants
of FGM layer can be defined as

E(z)

=g}

Q.=Q,= Q. =vQy (12)

E(z)

Qu =Qs5 =Q¢q = 2(1+v)

(12)

Based on refined plate model proposed by Shimpi and
Patel (2006), the basic assumption for the displacement
field of the plate can be described as

ow, ow
U(X,y,Z,t):UO(X,y,t)—ZE f(Z) X (13)

ow ow

1 Y lt = 0 ’ !t - b_f :
v(xyz)v(xy)zay (Z)ay (14)
W(X,yyz1t)=Wb(va1t)+Ws(va1t) (15)

where uq and v, are displacement of mid-plane along x, y-
axis and wy,, ws are the bending and shear components of
transverse displacement of a point on the mid-plane of the
plate and t is the time. The shape function of transverse
shear deformation is considered as Shimpi and Patel (2006)

z 5z°

The nonzero strain-displacment relastions are given as
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2.4 Governing equations

The equations of motion for the buckling of the FG
nanoplate can be derived from Hamilton's principle as
follows

j; SU 4V )dt =0 (19)
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where U and V are respectively strain energy and work done
by external (applied) forces. The first variation of strain
energy can be concluded as

oJ :J. 0'55 +0,08, +7,6, +1,,6, +7,,&, JdV

L

= [[N, 080 +N 3 + N, 575, +M ?ok? +M ok
] (20)
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+Q;. 73 #Qi 7 Jdx =0

The first variation of work done by applied forces can
be stated as

Y j[ a(w W )65(Wabx+w)

X 6(\Nb+ws)65(wb+ws)

’ oy oy

126N 0 ow, +w,) sw, +w )
Y OX oy

w dsw  ow dsw )}:

ox ox oy oy

+N?

(21)
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where N¢, Ny and N, are in-plane applied loads
(buckling loads); the external force N' according to the
changes of temperature is expressed as

NT = I%E (2)a(z )(AT )dz (22)

Note: The variation of temperature field will be
introduced in section 3.

Based on above relations, the governing equations are
obtained by inserting Egs. (20) and (21) in Eq. (19) when
the coefficients of dug, dvo, owp, and ows are equal to zero
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2
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herein N, M, and Q denote the stress resultants and are
given as follows

ol I g e

in which
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The classical and non-classical boundary conditions can
be observed in the derivation process when using the
integrations by parts. Thus, we obtain classical boundary
conditions at x =0 oraand y = 0 or b as (Barati 2018)

booM? M?P aMP
Specifyw, or[ag/lx Xy]nx+[ v Dy n, =0

oy o
S oM oM oM}
Specifyw , or M, My +Q, |n + —=+—L+Q,, |n, =0 (30)
x o y | ox

Speufy > or MynZ+n.n My +M/n’ =0

in which o0 _ =n @+ny 0, ; Ny and n, denote the x and
on OX oy

y-components of the unit normal vector on the nanoplate

boundaries, respectively and the non-classical boundary

conditions are

b =0
(31)

y =0

2.5 Equations of motion

Integrating Eq. (11) over the plate’s cross-section area,
the nonlocal strain gradient refined FG nanoplates relations
can be obtained as follows

aUO (Alz Aes)aQV_BnmN}

5 S B (32)

U
L| {All aX ! ABB
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ow ow 3. Temperature field

+L| {_(812 + ZBGG)W - Blsl X

; —(sz+2855>a‘fg;z}:0 (32)
Temperature dependent material properties can be
expressed as following form (Touloukian and Ho 1970,
&, &, &, A Bensaid and Bekhadda 2018)
LI {Aee X 2 A (A12 Ass)a 8223[)}
ER x% o (33) P=PR,(P.,T *+PT +P,T > +PT *+1) (36)

=0

]‘1 BlZ+ZBSG a%N B;Z (‘ﬂNas _(BISZ+ZBGSG) a:‘ivs . .
ox oy X ox "oy in which Py, P4, Py, P, and P; are the temperature-

dependent coefficients, which are needed to be uniquely

determined for a specified material (see Ref. Reddy and

M{B %Jr(B o8 )ﬂﬁB 28, v, } Chin 1998) and temperature-dependent material properties
T ey T ey of SUS304 and SisN, can be seen in the Table 1.

In the present study, three different pattern of tempera-

+ {+Bzzﬁl§_D11%_2(D1z D,) *ftNa;Z} ture field variations are used as follows.
)
o, oW, s o, o, 3.1 Uniform temperature
+L| _Dzz 4 D11 (D1z 2Dee) Dzz 4 [ (34) . . . .
ox or* oxoy* oy The uniform case temperature rise can be defined by Li
et al. (2009
+L{ TVMb+W)NOaMb+w) Noawijv)} (2009)
o T (2)=T,+AT (2) 37)
2
i s TW )| - :
. b oxoy Often the initial temperature Ty is the temperature of the
surface with pure metal T, and equals the room temperature
(ie., To = T, = 300 K), and AT(z) = T, — Ty, where T,
A, s ok, . oV denotes the temperature of the surface with pure ceramic.
L {B (B +285) 22+ (B 4280 ay} P P

3.2 Nonlinear temperature

+B, ——DS
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n oy 4 55 o2 44 6y2

In this subsection with basic assumptions in which

0w, oW temperature distribution is only along the thickness
+1, {-2(Dy, + 2Dg) a ay Dp— o —Huaxf} direction the plate. In this non-linear case, one-dimensional
(35) steady-state heat conduction equation is applied for the
AL 2He) S e by Li et al. (2009)
o, +w.) o*w, +w,) d dT
L, iNTV? N? b * +N -— =0 38
: W, +w)+ ox’? ox° dz (2 )dz (38)

{ 8‘\/\/ s a‘\/vs} temperature field in the thickness direction and can be given

g O, +w)| . . _
+L,12N, =0 By utilizing polynomials series Eq. (38) solve as
following form

Table 1 Temperature-dependent coefficients for SUS304 and SisN, (Reddy and Chin 1998)

Material Properties Po P4 P, P, P
E (GPa) 201.4 0 -3.079x10*  -6.534x107 0
a (K 12.330x10°® 0 8.086x10° 0 0

SUS304 e (W/mk) 15.379 0 -1.264x10°  2.092x10°  -7.223x107%°
p (Kg/m®) 8166 0 0 0 0
v 0.3262 0 -2.002x10*  3.797x107 0

E (GPa) 348.43 0 -3.070x10*  2.160x107  -8.964x10™
a (KY 5.8723x10® 0 9.095x10° 0 0

SizN, x (W/mKk) 13.723 0 -1.032x10°  5.466x107  -7.876x10™
p (Kg/m?) 2370 0 0 0 0
v 0.2400 0 0 0 0
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T (Z )=Tm +(Tc T )77(2 ) (39)
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where

C =1— Kem + Kczm _ K:m
"7 (N +1)x, (2N +1)x?2 (3N +1)&3
. . (41)

Kem Kem

TN =D&t (5N +1)x8

here kcm = K¢ — km in Which x. and «x;, respectively represent
thermal conductivity of the bottom and top surfaces.

3.3 Sinusoidal temperature
In the case of sinusoidal temperature rise, the

temperature rise can be defined as follow (Gupta and Talha
2017)

T (Z ) =T, +(Tc _Tm)n(z ) (42)

. h h
with T[Ej =T, T(_Ej =Th.

4. Solution procedure

In this subsection to satisfy the equations of motion,
using Galerkin’s method following series are presented
(Barati 2018)

u =§gu - X amx(x )Yn(y) (43)
v —gni_l\/mnxm(x)ayg,y(y) (44)
Wy = S 3Win X (6, (V) (45)
W= 3 Wip X, 00 9) (46)

where (Umn, Vi, Womn, Wemn) are the unknown coefficients
and the functions X, and Y, satisfy the boundary conditions.
The classical and non-classical boundary condition based
on the present plate model are (Barati 2018)

w, =w, =0
v, _w, o, dw,
aXZ aXZ ayZ ayz

(47)

ow, ow, ow, ow,
x*  ox* oyt oyt =0 (47)

By substituting Eqgs. (43)-(46) into equations of mation
(Egs. (32)-(35)), one can write these four equations in
matrix format to find the critical buckling force. It is
important to note that to investigate the stability behavior of
mentioned nanostructure following relegation is considered:

N =&PNJ =&P Ny =0 (48)

“where P, is the force per unit length; {; and ¢, are changed
according to different loading conditions.” In present
investigation biaxial compression load is used to investigate
the size-dependent buckling response of nanopltes made of
functionally graded materials. Note that the following
parameters are introduced to consider the small-scale
effects on the results in the next section

771=/J/a,772=/1/a (49)

5. Numerical results and discussions

Some of researchers have been presented the importance
of temperature-dependent material properties to investigate
the vibration of plate type structures (Shahrjerdi et al. 2011,
Huang and Shen 2004). Therefore, the authors of the
present paper decided to study the stability response of
nano-size plates made of FGMs having temperature-
dependent properties due to the lack of any study on the
stability —analysis of such nanostructures. Reuss
micromechanical scheme is considered to estimate the
material properties where. the influence of thermal
environments is captured. For the geometrical parameters, it
is assumed that the length of the nanoplate is a=10 nm, and
the thickness of the plate is variable.

Firstly, to show the accuracy of present model the
results for free vibration of rectangular FG plate is
compared with those of (Shahrjerdi et al. 2011) and (Huang
and Shen 2004) and results tabulated in Table 2. The effect
of thermal environment is also validated with mentioned
studies. Good agreement can be seen between different
mathematical model.

The variations of size-dependent non-dimensional
critical buckling loads as a function of uniform, nonlinear
and sinusoidal temperature fields in simply-supported
nanoplates made of FGMs are illustrated in Figs. 3-5 when
n1 =n2 = 0.1 the geometrical conditions are a =b =10
nm and a/h = 10. The non-dimensional critical buckling
load parameter is defined as Q = Ra*h’E,. The bottom
surface temperature is equal to room temperature and heat
applied from the top surface.

It is concluded that non-dimensional critical buckling
loads are reduced with increasing temperature. This is due
to the changes in Young’s modulus by temperature
variations. In a similar area of temperature variation, the
greatest impact of temperature conditions is obtained for the
plate under uniform temperature variation condition
followed by nonlinear, and sinusoidal respectively. Further
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Table 2 Non-dimensional natural frequency parameter of simply supported (SizN4#/SUS304) FG plate
in thermal environments (nonlinear temperature distribution)

T;=300 Ty=400 Ty=600
n Model Temperature- Temperature- Temperature- Temperature-
dependent independent dependent independent
SSDT® 12.506 12.175 12.248 11.461 11.716
Ceramic  TSDT® 12.495 13.397 12.382 11.984 12.213
Present 12.5317 12.2728 12.4001 11.7429 12.0785
SSDT? 8.652 8.361 8.405 7.708 7.887
n=05 TSDT® 8.675 8.615 8.641 8.269 8.425
Present 8.6313 8.4603 8.5205 8.1133 8.2688
SSDT? 7.584 7.306 7.342 6.674 6.834
n=1 TSDT® 7.555 7.474 7.514 7.171 7.305
Present 7.5657 7.4180 7.4591 7.1190 7.2242
SSDT? 6.811 6.545 6.575 5.929 6.077
n=2 TSDT® 6.777 6.693 6.728 6.398 6.523
Present 6.7897 6.6570 6.6856 6.3893 6.4625
SSDT? 5.410 5.161 5.178 4.526 4.682
Metal TSDT® 5.405 5.311 5.335 4971 5.104
Present 5.4210 5.3116 5.3116 5.0857 5.0857

*a: Shahrjerdi et al. 2011; b: Huang and Shen 2004

Non-dimensional critical buckling load

300 400 500 600 700 800
Uniform Temperature rise (K)
Fig. 3 The non-dimensional critical buckling load versus
uniform temperature field for simply supported FG
nanoplates (a=b =10 nm, a’/h =20, , =%, =0.1)

more, from Fig. 3, it is observed that the buckling load of
the nanoplate decreases with the rises of temperature until it
approaches the critical buckling temperature. This is due to
the reduction in total stiffness of the plate since geometrical
stiffness decreases when the temperature rises. Buckling
load reaches to zero at the critical temperature point. The
increase in temperature yields in higher buckling load after
the branching point. Moreover, it is seen from Figs. 4 and 5
that the branching point of the nanoplate is postponed by
changing temperate variation model.

Present investigation tries to provide a benchmark
results for nanoplates made of FGMs in which material
properties is depend on temperature. So, as a benchmark
results Tables 3-4 present buckling response of FG
nanoplates under nonlinear temperate variation condition

—e— n=5
0 1 1 1

Non-dimensional critical buckling load

300 400 500 600 700 800
Non-linear Temperature rise (K)

Fig. 4 The non-dimensional critical buckling load versus
nonlinear temperature field for simply supported FG
nanoplates (a=b =10 nm, a/h = 20, n; =%, =0.1)

n=02 —a&—n=1 —e—n=5

Non-dimensional critical buckling load

300 400 500 600 700 800
Sinusoidal Temperature rise (K)
Fig. 5 The non-dimensional critical buckling load versus
sinusoidal temperature field for simply supported FG
nanoplates (a =b =10 nm, a’h = 20, #; =, = 0.1)
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Table 3 Non-dimensional critical buckling load of simply supported SUS304/SizN4 FG square plate
under biaxial compression load in thermal environments and for different values of strain
gradient length scale parameter (a = 10, a/h = 10, , = 0)

Tp = 300 (K)
o 1 T, =300 (K) T, = 400 (K) T, = 600 (K)
Temperature- Temperature- Temperature- Temperature-
dependent independent dependent independent
0 1.7112 1.6540 1.6202 1.5167 1.4336
Ceramic 0.1 1.4291 1.3907 1.3623 1.2987 1.2275
0.2 0.9562 0.9495 0.9301 0.9333 0.8822
0 1.4371 1.3907 1.3623 1.2797 1.2096
0.5 0.1 1.2002 1.1712 1.1473 1.1004 1.0400
0.2 0.8030 0.8032 0.7868 0.7998 0.7560
0 1.3585 1.3133 1.2865 1.2070 1.1409
1 0.1 1.1345 1.1068 1.0842 1.0400 0.9830
0.2 0.7591 0.7606 0.7451 0.7601 0.7185
0 1.2996 1.2541 1.2285 1.1491 1.0861
2 0.1 1.0854 1.0578 1.0362 0.9924 0.9380
0.2 0.7262 0.7286 0.7137 0.7298 0.6898
0 1.1033 1.0543 1.0327 0.9433 0.8916
Metal 0.1 0.9214 0.8923 0.8741 0.8247 0.7795
0.2 0.6165 0.6209 0.6082 0.6259 0.5916

Table 4Non-dimensional critical buckling load of simply supported SUS304/SizN4 FG square plate
under biaxial compression load in thermal environments and for different values of strain
gradient length scale parameter (a = 10, a/h = 10, , = 0)

T, =300 (K)
0 . T, =300 (K) T, =400 (K) T, =600 (K)
Temperature- Temperature- Temperature- Temperature-
dependent independent dependent independent
0 1.7112 1.6540 1.6202 1.5167 1.4336
Ceramic 0.1 2.0490 1.9917 1.9511 1.8544 1.728
0.2 3.0623 3.0051 2.9637 2.8678 2.7106
0 1.4371 1.3907 1.3623 1.2797 1.2096
0.5 0.1 1.7207 1.6769 1.6426 1.5702 1.4842
0.2 2.5717 2.5354 2.4836 2.4418 2.3079
0 1.3585 1.3133 1.2865 1.2070 1.1409
1 0.1 1.6266 1.5846 1.5522 1.4836 1.4023
0.2 24311 2.3982 2.3492 2.3133 2.1865
0 1.2996 1.2541 1.2285 1.1491 1.0861
2 0.1 1.5562 15141 1.4832 1.4151 1.3358
0.2 2.3258 2.2941 2.2472 2.1326 2.0920
0 1.1033 1.0543 1.0327 0.9433 0.8916
Metal 0.1 1.3211 1.2766 1.2505 1.1737 1.1094
0.2 1.9744 1.9436 1.9039 1.8650 1.7627

when (a = 10, a/h = 10). Non-dimensional critical buckling gradient length scale parameter while Table 4 shows the
loads Q1 = Ra*h®E, of FG nanoplates with respect to buckling behavior of nanoplates considering strain gradient
nonlocality are tabulated in Table 3 by ignoring strain size-dependency by omitting nonlocal parameter.
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Results are obtained for different power-law index
parameters. To see the effect of the power index on the
buckling response, the same values of the thermal load is
used. It is concluded that the result for nanoplates is in
between those for pure material nanoplates. This is due to
the fact that Young’s modulus increases from pure metal to
pure ceramic. Also, the non-dimensional critical buckling
load decrease by increasing the temperature difference
between the top and bottom surfaces for the same value of
the power-law index parameter. Furthermore, the nonlocal
parameter has decreasing effects on the results, while the
strain gradient length scale parameter has increasing effects
on the results of nanoplate. This phenomenon obtained in
different power-lave indexes and temperature values. The
difference between temperature-dependent and independent
FG plates is less significant.

6. Conclusions

For the first time buckling analysis of size-dependent
rectangular plates made of temperature-dependent
functionally graded materials (FGMs) is studied. Material
properties of FGMs are varied along thickness direction and
obtained based on Reuss micromechanical model. A refined
nonlocal strain gradient plate model is presented to model
the nano-size plate. Hamiltonian principles are used to
obtain the governing equations and boundary conditions
where the Galerkin method is adopted to solve the buckling
problem. Influence of thermal environment with respect to
three different distribution of temperatures namely uniform,
nonlinear and sinusoidal is also investigated. The results for
vibration analysis of FGM plates are validated and good
agreement achieved. As a result, the non-dimensional
critical buckling load decreases as temperature change
increases in all types of temperature fields. Moreover, the
impacts of small scale parameters on critical buckling load
are discussed, which concluded the parameters play a
significant role in the critical buckling loads of nano-size
plates made of FGM.
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