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Abstract. This research is aimed at studying the asymmetric thermal buckling of porous functionally graded (FG) annular
nanoplates resting on an elastic substrate which are made of two different sets of porous distribution, based on nonlocal elasticity
theory. Porosity-dependent properties of inhomogeneous nanoplates are supposed to vary through the thickness direction and are
defined via a modified power law function in which the porosities with even and uneven type are approximated. In this model,
three types of thermal loading, i.e., uniform temperature rise, linear temperature distribution and heat conduction across the
thickness direction are considered. Based on Hamilton’s principle and the adjacent equilibrium criterion, the stability equations
of nanoporous annular plates on elastic substrate are obtained. Afterwards, an analytical solution procedure is established to
achieve the critical buckling temperatures of annular nanoplates with porosities under different loading conditions. Detailed
numerical studies are performed to demonstrate the influences of the porosity volume fraction, various thermal loading, material
gradation, nonlocal parameter for higher modes, elastic substrate coefficients and geometrical dimensions on the critical
buckling temperatures of a nanoporous annular plate. Also, it is discussed that because of present of thermal moment at the

boundary conditions, porous nanoplate with simply supported boundary condition doesn’t buckle.

Keywords:

nanoporous annular nanoplates; asymmetric buckling; thermal loading; analytical solution; nonlocal theory

1. Introduction

Functionally graded materials (FGMSs), a new member
of advanced composite materials, that possesses micro-
scopical heterogeneity initiated by a group of Japanese
scientists. During the past decade, structures made of FGMs
have attracted tremendous attention from research and
engineering communities due to their unique advantages
offered by smooth and continuously graded distribution of
material composition along one or more directions
(Ebrahimi and Salari 2015a).

The materials that contain pores are defined as porous
materials. Porosities occurring inside the structure during
fabrication have a significant effect on mechanical
performance of inhomogeneous structures. Nowadays, there
has been a great research effort to analyze static, buckling
and vibration of scale-free FG structures with porosity
(Ebrahimi et al. 2016). Among them, Wattanasakulpong and
Ungbhakorn (2014) applied a differential transform method
(DTM) for linear and nonlinear vibration of elastically end
restrained FGM beams with porosities based on the
modified power law function. They showed that the
porosity volume fraction results in lower natural
frequencies. Wattanasakulpong and Chaikittiratana (2015)
investigated flexural vibration analysis of porous FG beams
based on Timoshenko beam theory and using Chebyshev
collocation method (CCM), under two types of porosity
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distributions and boundary conditions.

As mentioned before, investigation of mechanical
behavior of scale-free plates has been extensively
conducted in the literature based on conventional
continuum theories. However, these theories are impotent to
describe the size effects on the nanostructures. Therefore,
higher-orderha continuum mechanics approach was widely
used in the modelling of small-scale structures. In general,
these theories can be categorized into four different classes
namely the strain gradient family, microcontinuum, surface
elasticity and nonlocal elasticity theories (Fang and Zhu
2017). In addition, the nonlocal elasticity theory was
improved by Eringen (1983). Nonlocal elasticity theory was
initially formulated in an integral form and later
reformulated by Eringen (1983) in a differential form by
considering a specific kernel function. The nonlocal
elasticity theory has been broadly applied to examine the
mechanical behaviors of nanoscale structures (Ehyaei et al.
2016, Bouadi et al. 2018, Aydogdu et al. 2018, Reddy 2007,
Civalek and Demir 2011, Akgoz and Civalek 2016, Fang et
al. 2018a, Zhu et al. 2017). Recently, Mercan and Civalek
(2017) developed the harmonic differential quadrature
method (HDQ) for the stability of the silicon carbide
nanotube based on the Euler-Bernoulli beam model for
different boundary conditions in conjunctions with the
surface effect and nonlocal elasticity theory. Also, Mercan
and Civalek (2016) presented a simple mechanical model
for buckling behavior of boron nitride nanotube (BNNT)
surrounded by an elastic matrix based on the Euler-
Bernoulli beam theory. The separation of variables and
method of discrete singular convolution (DSC) were used to

ISSN: 2287-237X (Print), 2287-2388 (Online)



26 Erfan Salari, Alireza Ashoori and Seyed Ali Sadough Vanini

solve the governing equations for critical buckling loads of
boron nitride nanotube.

Moreover, remarkable development in the application of
structural components such as FG beams and FG plates in
the orders of micron and sub-micron in micro/nano electro-
mechanical systems (MEMS/ NEMS), due to their
prominent chemical, mechanical, and electrical properties,
led to a provocation in modeling of micro/nano scale
structures (L0 et al. 2009). Consequently, understanding
buckling, vibration and bending analysis of such structures
is of great importance in the research community.

The governing equations of structures derived from the
aforementioned size-dependent models can be solved using
either analytical methods or numerical approaches (Civalek
2006, 2008, 2013, 2017, Glrses et al. 2009, Baltacioglu et
al. 2010, 2011, Akgoz and Civalek 2011a). In the category
of FGM structures, Kiani and Eslami (2013) employed an
analytical approach for thermal buckling analysis of FGM
annular plates resting on elastic foundation based on the
classical continuum theory. They reported that only fully
clamped plates made of FGMs exhibit the bifurcation-type
buckling. Also, a unified solution method for the vibration
analysis of the FGM circular, annular and sector plates with
general boundary conditions was presented by Wang et al.
(2016) based on first-order shear deformation theory.
Effects of material non-homogeneity and two-parameter
elastic foundation on the fundamental frequency parameters
of the simply supported beams were studied by Avcar
(2016) based on Timoshenko beam theory. Discrete singular
convolution for buckling analysis was also presented for
simply supported conical panels. This model was employed
by Demir et al. (2016) to study the effect of geometric and
material parameters on critical buckling load of isotropic,
composite laminated and functionally graded panels.
Shahba et al. (2011) employed the finite element method to
solve the governing equations of the axially functionally
graded tapered Euler-Bernoulli beam for free vibration and
stability of FG beams with different boundary conditions.
The asymmetrical buckling behavior of isotropic homo-
geneous annular plates resting on a partial Winkler-type
elastic foundation under uniform temperature rise was
presented by Bagheri et al. (2017). In another work,
Bagheri et al. (2018) studied the buckling analysis of FG
annular plates resting on partial Winkler-type elastic
foundation under uniform temperature elevation based on
first order shear deformation plate theory. Chen and Li
(2013) investigated the micro-scale free vibration analysis
of composite laminated Timoshenko beam model based on
the new modified couple stress theory. Akgoz and Civalek
(2011b) developed modified strain gradient elasticity and
modified couple stress theories for the buckling analysis of
single walled carbon nanotubes. Thermal stability analysis
of FG microplate under the action of thermal loading was
discussed by Ashoori and Vanini (2016a) based on the
modified couple stress theory. In another work, Ashoori and
Vanini (2017a) studied the nonlinear bending, postbuckling
and snap-through of circular FG piezoelectric microplates
on the basis of the modified couple stress theory. Also, Shen
et al. (2018) proposed a size-dependent model of clamped-
clamped composite laminated electro-static Euler—Bernoulli

microbeams with piezoelectric layers based on a new
modified couple stress theory and generalized differential
quadrature method for anisotropic elasticity.

Latterly, researchers have studied static and dynamic
analysis of perfect FG nanostructures based on the nonlocal
elasticity theory (Ebrahimi and Salari 2015b, 20164,
Dastjerdi and Akgoz 2018). For instance, thermo-electro-
mechanical vibration characteristics of functionally graded
piezoelectric Timoshenko nanobeams subjected to in-plane
thermal loads and applied electric voltage were studied by
Ebrahimi and Salari (2016b). Post-buckling behavior of FG
nanobeams with the von-Kérméan geometric nonlinearity
was illustrated by Li and Hu (2017) based on Euler—
Bernoulli beam model. Aydditionally, the mechanical
buckling analysis of circular and annular FG nanoplates
under uniform compressive in-plane loads was presented by
Bedroud et al. (2015). It is observed that the critical
buckling loads for FG nanoplates may be axisymmetric or
asymmetric. Fang et al. (2018b) examined the surface
energy effect on the nonlinear buckling and postbuckling
behavior of functionally graded piezoelectric cylindrical
nanoshells subjected to lateral pressure based on the electro-
elastic surface/interface theory together with von-Karman-
Donnell-type kinematics of nonlinearity. Also, Ashoori et
al. (2016) presented thermal stability analysis of perfect FG
annular nanoplates based on the nonlocal theory. It is found
that the critical buckling load decreases by increasing the
value of the nonlocal parameter. Due to the existence of
porosities in FGMs, it is important to consider porosity
effect when analyzing the mechanical behavior of porous
FGM structures.

While aforementioned researches were conducted
assuming a perfect state for the nanomaterials, observations
demonstrate that there is porosity inside the material during
the fabrication of structures even at nanoscale (Zhang et al.
2014). Examination of porosity effect in analysis of
micro/nanostructures is a novel topic which is presented by
only a few researchers. Among those research papers,
application of higher-order rectangular plate theory in free
vibration analysis of porous FG nanoplates is examined by
Mechab et al. (2016). They stated that the influence of
porosity parameter on the frequencies is prominent for FG
nanostructures. She et al. (2018) presented the vibration
behaviors of porous nanotubes in thermal environment
based on nonlocal strain gradient theory in conjunction with
a refined beam model. It was shown that the presence of
porosity can increase or decrease the natural frequency,
depending upon the value of volume fraction index.
Recently, Shojaeefard et al. (2017) implemented modified
couple stress theory to model the free vibration and thermal
buckling response of a porous FG circular microplate. The
GDQ method and nonlinear temperature distribution are
used to achieve the critical buckling temperatures and
frequencies corresponding to different porosity parameters
and aspect ratios. This work is limited to symmetrical
thermal buckling of microplates and as we demonstrate
next, due to the bending-stretching coupling of FG plates,
bifurcation buckling does not take place for FG plates with
simply supported boundary condition. It can be evaluated
from the literature survey that there is no study on the
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asymmetric thermal buckling of nanoporous annular
nanoplates resting on elastic substrate via nonlocal elasticity
theory.

In view of the above, the aim of the present article is to
develop a nanoporous annular nanoplate resting on elastic
substrate for asymmetric thermal buckling analysis of thin
porous nanoplates within the framework of nonlocal
elasticity theory. It is supposed that two different sets of
porosity distribution, namely, even and uneven distribution,
are considered based on modified power law function.
Eringen’s elasticity theory is served to study the nano-scale
effect. Also, three types of thermal loading are taken into
account, i.e., uniform temperature rise, linear temperature
distribution and heat conduction across the thickness
direction. Additionally, the equilibrium equations of annular
nanoplates with porosities are derived utilizing Hamilton’s
principle and von-Karméan geometric nonlinearity. After a
pre-buckling study is accomplished, suitable boundary
conditions are chosen to assure the existence of bifurcation
point. Then the nonlocal porosity-dependent stability
equations are derived via the adjacent equilibrium criterion
and the resulting equations are solved by using exact
analytical solution. A parametrical study is carried out to
examine the influence of porosity parameters, nonlocality
for higher modes, various thermal loading, material
gradation, elastic substrate coefficients and geometrical
dimensions on the structural performance of such
nanoporous annular systems. The results of this paper can
be a good reference for designing and optimizing the elastic
NEMSs.

2. Theory and formulation

2.1 Porosity-dependent functionally graded
materials

An annular FG nanoplate on Winkler-Pasternak elastic
substrate with porosities is under investigation. Inner radius,
outer radius, and thickness of the nanoplate are denoted by,
respectively, b, a, and h, as shown in Fig. 1. The material at
the upper surface (z = h/2) is full ceramic (Al,O3) and that
at the lower surface (z = -h/2) is full metal (Al). Polar

Fig. 1 Configuration of nanoporous annular nanoplate on
elastic substrate: (a) Porosity-I; (b) Porosity-I11
coordinate system (r, 9, z) is applied to the nanoplate where

the origin is located at the mid-surface center of the plate.
Also, the annular nanoplate is assumed to contain porosities
that disperse evenly (see Fig. 1(a)) or unevenly (see Fig.
1(b)) through the nanoplate thickness direction.

Assuming porosities spread equally among the metal
and ceramic phases, the thermo-mechanical effective
material properties of the nanoporous annular plate, with a
porosity volume fraction a (a << 1), gives the modified
function (Wattanasakulpong and Ungbhakorn 2014)

P:PC(VC—%j+Pm(Vm —%) Q)

where P, and P,, are the material properties of the ceramic
and metal constituents, respectively; and V. and V,, are
volume fractions of ceramic and metal, respectively. Also,
the volume fractions of constituents are defined as V. + Vi,
= 1. The constituent volume fraction of the ceramic and
metal phases of annular FG nanoplate is supposed to be
expressed as
1

z
VCZ(F+E)pI Vm :1_Vc (2)

Using Egs. (1) and (2), the general material properties of
the porous FG nanoplate can be written as

P(z)—(PC—Pm)(ZF+%) +Pm—(PC+Pm)% ©)

For the annular nanoplate with evenly distributed
porosities (Porosity-1), the effective material properties such
as Young's modulus E, thermal expansion coefficient ot and
thermal conductivity « are stated as

E@)=(E, —Em)(%%) +E, —%(Ec +E, )
aT (Z):(aTc _aTm )(%+_) +aTm _%(aTc +aTm) (4)

K(Z)z(/cC —Km)[%+%)p K, —%(KC +Km>

where p is the non-negative power law exponent which
determines the material variation profile through the
thickness of the nanoplate.

In the uneven distribution of porosities (Porosity-I1)
developed by (Wattanasakulpong and Chaikittiratana 2015),
the material properties in Eq. (4) can be replaced by the
following forms

_ z 1)’ a 2|Z|
O e E(Ec*Em)(l T}
p
a1 (Z)z(aTC “%m )(ZF+%) t _%(aTc + gy )[1_%] )

K(Z)=(KC _Km)[%+%) +i, —%(KC K, ){1—%}

From above definition, it can be mentioned that porosity
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phases spreading mostly nearby the middle zone of the
cross-section and the amount of porosity seems to be
linearly decrease to zero at the top and bottom of the cross-
section (Wattanasakulpong and Chaikittiratana 2015).

2.2 The nonlocal theory

Considering the stress tensor at a reference point x in the
domain of material dependent to strain tensor at all other
points in the domain, and considering the interaction
between different points of a material, the Eringen’s
nonlocal elasticity theory was introduced by (Eringen
1983).

These assumptions have made the nonlocal theory one
of the most credited theories in studying nanostructures and
for that reason, in this paper, the nonlocal elasticity theory
is implemented to study the annular nanoplate in which for
an elastic solid the nonlocal stress—strain relationship is
expressed as

1 = [ aflx' x| )ty (v () ®)

o(X' — x|, 7) is nonlocal kernel function, which contains
the small scale effects incorporating into constitutive
equations the nonlocal effects at the reference point x
produced by local strain at the source x’, and |x’ — x| is the
Euclidean distance. © = epa/l is defined as scale constant,
where e, is a material constant which is determined
experimentally or approximated by matching the dispersion
curves of plane waves with those of atomic lattice
dynamics; and a and | are the internal and external
characteristic length (e.g., lattice spacing and wavelength)
of the nanostructures, respectively. gj is the nonlocal stress
tensor at the reference point and t is the classical stress
tensor at local point. In addition, the conventional stress
tensor is defined in the following way

t=C:¢ (7

where C is the fourth order elasticity tensor and *:’
denotes the double dot product. For the type of physically
admissible kernel a, it is possible to express the integral
constitutive relation given by Eg. (6) in an equivalent
differential form as

(1-uV¥Ho=C:¢e, u=(oa)? (8)

where V2= @* [ orf + 1/ ro | or + 1/ r%6° | 06 is the
Laplacian operator in the polar coordinate system and the
size effect is taken into consideration using the nonlocal
parameter as x = (e,a)’. Based on the nonlocal theory and
plane stress assumption, the nonlocal thermoelastic
constitutive equations of porous FG nanoplates subjected to
thermal loadings can be represented as (Eringen 1983)

O m 1w 0 & at (Z )

o2 _E@ _
Oy t— MV {0y =17 v 1 0 g9 1 —Oya1 ()| (9)
Tro Tro 00 (1_ V)/2 Vo 0

where @ = T — T, denotes the temperature rise and T and Ty

are the temperature distribution and reference temperature,
respectively. Furthermore, the parameter epa is the scale
coefficient revealing the small scale effect on the responses
of structures of nanosize. The value of the small-scale
parameter depends on boundary condition, chirality, mode
shapes, number of walls, and the nature of motions. The
parameter e, = (z° — 4)"%/2z = 0.39 was given by Eringen
(1983). The nonlocal parameter, u = (eqa)?, is experi-
mentally obtained for various materials; for instance, a
conservative estimate of x < 4 (nm)? for a single-walled
carbon nanotube is proposed (Wang 2005). There is no
rigorous study made on estimating the value of small scale
to simulate mechanical behaviour of functionally graded
micro/nanoplates (Ebrahimi and Salari 2015b). Hence all
researchers who worked on size-dependent mechanical
behaviour of FG nanoplates based on the nonlocal elasticity
method investigated the effect of small scale parameter on
mechanical behaviour of FG nanoplates by changing the
value of the small scale parameter. In the present study, a
conservative estimate of the small-scale parameter is
considered to be in the range of 0—4 (nm)® (Bedroud et al.
2015).

2.3 Kinematic assumptions and equilibrium
equations

Displacement field in the nanoplate domain is assumed
to obey the classical plate theory (CPT). Based on the CPT,
the displacement components of the nanoplate may be
considered as

u(r,0,z)=uy(r,0)—zw, (r,0)
v(r,@,z)=v0(r,6)—z?woﬂ(r,9) (10)
w(r,8,z)=w,(r,6)

where (Uo, Vo, Wo) are the displacements along the (r, 6, z)-
directions on the mid-surface of the porous nanoplate.

Buckling of structures is a nonlinear phenomenon and
thus a geometrically nonlinear formulation must be
presented. Also, the von-Karméan geometric nonlinearity,
consistent with the small strains, and large displacements in
the polar coordinates system, takes the form

1 >
& =Uy +EW,r

1 1 1
Ego :Fvyg +?U +?W 129 (11)

lu +V 1V + 1W w
7ro = - -
re r 0 ,r r r 0" r

where ¢, and gy are the radial and circumferential normal
strains and y, denotes the shear strain component. In these
equations, a comma indicates the partial derivative with
respect to its afterwards. For a classical plate theory, the
components of stress resultants are related to the stress field
through the following equations

hi2
(Nrr’NHH’Nrﬁ):v[hlz(o-rrlo-ae’fra)dz (12)
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h/2

(Mrr:Magerg):I (O'rrldaavfre)ZdZ (12)

-h/2

Substitution of Eq. (9) into Eq. (12) with the aid of Egs.
(10) and (11), obtains the nonlocal stress resultants in terms
of the mid-plane displacements of the porous annular
nanoplate as

E, vE, 0 E, vE, 0
Ng VE, E, 0 vE, E, 0 Voo + g+ =W 2, NT
No v 1-v x NT
N 1|00 TE“ o0 TE‘ L Vs —2vg s Lwy 0
2 0 Yoo or — Vo T WoeWo,
(1—;1V) S r R e T (13)
M, [ 157|E, vE, 0 E, vE, 0 - M
Mo, VE, E, 0 VE, E, 0 , M7
M, 0 o 1*VE1 0 o 1—VE2 “rWoe = Wo 0

In the above equation, N" and M" are the thermally
induced force and moment and E,, E; and E, are constant
coefficients, which are given below

(Ema£g=£ﬁEaﬂLLzﬁm

1 h/2
(NMT) ==

(14)
E(z)ar(2)©(Lz)dz

Static version of Hamilton’s principle, also known as the
virtual displacement principle, may be employed to obtain
the nonlinear equilibrium equations of the nanoplate with
porosities. Therefore, for an equilibrium position of porous
FG nanoplate on elastic substrate the following identity
should be satisfied (Ashoori and Vanini 2016b)

oIl=0 (15)

where II is the total potential energy and ¢ shows the
variation symbol. Here, the total potential energy can be
defined as the summation of two different parts: the strain
energy which results from the stresses of porous nanoplate
Us and the strain energy due to the elastic substrate Ur.
Consequently, the first variation of this energy may be
written according to the following form

a p2r phl2
5(US+UF):J'.[ j (G 82 + Oy + 1,077 )1 Oz d AT
b JO -h/2
a p2r 1 (16)
+.[ I (KQ(W(JI,(SWO‘r +—2W0_05W0_0)+waoéwojrdrde
b J0 r

where K, and K, denote the Winkler constant and the
Pasternak constant of the surrounding elastic substrate,
respectively.

Substituting Eqgs. (10)-(12) into Eq. (16) and taking the
variation of up, Vo and wy, integrating the resulting
expression by parts and setting the coefficients of dug, Jvg
and ow, equal to zero, a set of equations for the equilibrium
state of the porous annular nanoplate resting on elastic
substrate are obtained as follows

1 1
5U0: N r +F(N . _N()g)+FN ro,o =0
(17)

Ny: 1N6€6+ENrS+Nré)r:0
r ' r '

2 1 1 2
Wo: My +—M +7M6’H‘6'97?M99,r+?Mr9‘r9

m,r mr rZ
+£M +N Wy, +N iw +1W
rz ro,0 mho,m 00 rz 0,60 r or (17)

1 1 1 1
+2N rf}(?wo‘rf} ’rTWO,a]+ Kg (Wo,rr +?W0,r *FWO,QHJ’KWWO =0

3. Pre-buckling analysis

Pre-buckling deformations and stresses should be
obtained to assure the occurrence of primary-secondary
equilibrium path. Only the flat pre-buckling configurations
are considered in the present paper, which lead to
bifurcation-type buckling. In the pre-buckling state of
bifurcation-type buckling, if occurs, of initially flat annular
nanoplates, the mid-plane must be undeflected, i.e.

w(r,0)=0 (18)

here, a superscript 0 is adopted to indicate the primary
equilibrium path characteristics. Also, the pre-buckling state
must be symmetric due to the symmetry of thermal loading.
This implies that

v(r,0)=0 (19)

It should be noted that if nanoplates with porosity are to
undergo in-plane compressive thermal loads, radial
immovability is needed. Therefore, solving Egs. (13) and
(17) for immovable in-plane boundary conditions, provided
that the nonlinear terms are set equal to zero, yields

ug(r,0)=0 (20)

In view of Eg. (13), the nonzero pre-buckling stress
resultants are derived as follow

N2=NZ=-NT
M2=Mg, =-MT (21)
NPH:MPH:O

Generally speaking, the property distribution of the
porous nanoplate are graded unsymmetrically with respect
to the mid-plane of the plate. Besides, the unsymmetrical
distribution of properties results in thermal moments for
general types of thermal loading, i.e., uniform temperature
rise, linear distribution and heat conduction across the
thickness direction. In such conditions, due to bending-
stretching coupling of FG nanoplates with porosities, even
uniform temperature rise triggers thermal moments defined
by Eq. (14). In turn, these thermal moments are responsible
for the commencement of deflection prior to the
temperature at which buckling phenomenon occurs. In other
words, for the case when edge supports are capable of
supplying the induced thermal moment prior to stability
loss, plate remains undeflected and the bifurcation buckling
may occur. According to Eq. (21), only clamped type of
out-of-plane boundary conditions supplies the extra
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moments when is necessary. Therefore, porous annular
nanoplates are assumed to be clamped at both inner and
outer edges throughout this research.

4. Adjacent equilibrium criterion and nonlocal
stability equations

Adjacent equilibrium criterion is a general tool to obtain
the linearized stability equations of the nanoplate associated
with the onset of buckling (Brush and Almroth 1975).
According to this criterion, each of the displacement
components on the primary equilibrium path is perturbed
infinitesimally to establish a new equilibrium state. Assume
that a pre-buckling equilibrium position of the porous
nanoplate is defined in terms of the displacement
components u, v and w{. Another equilibrium position
may exist, adjacent to the primary one. Displacement
components of the secondary path differ by uj, v{ and
w¢ with respect to the displacement components of the pre-
buckling state. As a result, the components of total
displacement field are

Ug =g +Uug
Vo=V Vs (22)

Wy =Wo +W
Similar to Eq. (22), the nonlocal stress resultants are
divided into the stable equilibrium, and the neighboring

state consisting of linear functions of displacements,
represented by superscripts 0 and 1, respectively

N,=N2+N:

o Mrr:Mr?+Mr1r
N99:N39+N;,9, M992M29+M;9 (23)
Npp=Ng+Ny M=Mg+My,

Substituting Egs. (22) and (23) into equilibrium Eq. (17)
and simplifying the results, the stability equations of porous
annular plate can be represented as

1 1
err,r +F(N " _Née)*'FN rla,g =0

1 2
_N;H,€+_erﬁ+N rle,r =0
r r
2 1 1 2
M rlr,rr +FM rlr,r +FM ;0,99 _FM ;H,r +FM 3€.r€ (24)

2 1 0,1 of1 1 14
+r7M r0.0 TN aWor +Ng r7W 0,00 ‘*'?W or

1 1 1 1
0 1 1 1 1 1 1
+2N rH[FWO,rH_FWO,H +K, Wo,rr‘*’?Wo,r"'?Wo,ey -Kwo=0

The nonlocal stability equations may be expressed in
terms of the displacements. To this end, upon substitution of
nonlocal Eq. (13) into Egs. (24) and eliminating second and
higher order terms of incremental displacements, the
stability equations of porous annular nanoplates resting on

Winkler-Pasternak elastic substrate are derived as follows

(),
2

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
Eo(uo‘rr +?u0,r _?uo _rfzvo‘r) *?Vo,m] + o[rﬁuo,oo _?Vo,m _rfzvo‘r))

1 1 2 1
1 1 1 1 1 _
_El{WO,rn’ _rfzwo‘r +?W0‘rr _?Wo.ee+rﬁwo.eer =0

1 1 1 (1-v) 1 1 1 1
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1, 1., 1,
—Ey| W gt SWo 0 +—W =0
1[r oo 7 Wore T 3Womm (25)
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T 1 1 1 T2 1 1 1 1 1 1
-N (Wo‘rr *?Wo.r +r7W0.99 +uN VAW, +?W0‘r *Tzwnﬁa +Kg|Wor +?W0.r *Tzwoﬂe

1 1 1 1
2 1 1 1 1 1 1 1
~uKgV (Wo‘rr Jr?Wu.r *Tz""nﬁa]’KwWo*FKw (Wv‘rr *?Wo‘r *ﬁwo.selzo

After mathematical manipulations, three coupled
stability equations which are presented in Eq. (25), may be
uncoupled to gain one equation in terms of wg¢. To achieve
a single nonlocal equation, the procedure is presented in the
following step by step.

(1) The first of the stability Eq. (25) is differentiated
with respect to r and then divided by r.

(2) The second of the stability Eq. (25) is differentiated
with respect to 6.

(3) The second of Eq. (25) is divided by r.

(4) The resulting equations in steps (1)-(3) are added
and the result is multiplied by —E; / Eo (1 — V).

(5) The derived equation in step (4) is added to the third
of nonlocal stability Eq. (25).

The result is the following uncoupled equation in terms
of the incremental lateral displacement w¢

D 1 2 1 1 1 1 1 2 1 2 1 4 1 1 1
p|Womr *?W«)m 77W0‘rr +FW°-' +?W0Jr€ﬁ - raw 060 *rﬁwo.w*rTWc‘saee

1 1 1 1 1 1
T 1 T2 1 1 1 1
o o B B Bk o ) (26)

1.0 .1 1 1 [ SR St
WOJ*'?WU‘M) +K,wo - K, Wun*?wn‘r‘*'rfzwaw =0

+ngV2[wé‘,, =

_ E—Ef/E

where D, = - is the equivalent flexural rigidity of

porous FG nanoplates. For the sake of generality, it is more
appropriate to represent the stability equation in a
dimensionless form. The following non-dimensional
quantities are defined and utilized in the rest of this work

r h b D
p:—, é‘:—7 ﬂ:—’ 77:%’ d :—p
a a a a D,
K, a* K,a? NTa? @7)
k, =—%—01 kg =% n'=
DO DO D0

Considering the newly introduced dimensionless
quantities (27), the non-dimensional form of stability Eq.
(26) alters to

# 10 18\ 1o 18 n—kg-nk, k,, s
o R e B e ,0)=0
{[thﬁﬁﬁffpz592][5p2+p6p+p2692 d—n(n" k) +d—7](nT—kg) o(@0.0) (28)
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5. Analytical solution methodology

Due to the periodical conditions of the displacement
field and considering the fact that the buckling pattern of
porous annular nanoplates may be asymmetric (Wang et al.
2004), the solution of the displacement field components is
considered in the form

wg(ap,0)=W,(p)cos(nd) (29)

where n is an integer number which shows the number of
nodal diameters. The value of n = O refers to the symmetric
buckled configuration and n > 0 indicates the asymmetric
buckled shapes of the porous nanoplate. Substituting Eqg.
(29) into Eqg. (28) yields to the following ordinary
differential equation in terms of W,

d?> 1d n? d? 1d n?
[dpz +pdp_pz+ﬂin[dp2 +pdp—p2+ﬂ§JWn(p)=0(30)

in which its solution depends upon ; and Z,. First, the
following parameters are defined as

.
"k, -k, k

31)

Now, the solution procedures are classified as follows
Solution 1: k,=0,n=0

W, (p)=Cdq(4p)+cY o(Ap)+C5Inp+c, (32)
Solution 2: k,=0,n>0

Wn (p)zcln‘]n(ﬂ’p)"—CZnYn(lp)‘{'Csnpn +C4npin (33)

where

A=\B, (34)

and J, and Y, are the Bessel functions of the first and
second kind, respectively.

Solution 3: k, #0, By < 2,/B,

Wn(p):CIH[Jn(Zip);Jn(/’sz)j_i_czn[Yn(ﬂip)-lz-Yn(ﬂ,zp)] -
+C [Mj+c [Y”(ﬂip)_Yn(A?p)j(EB)
. 2i an 2
where
A, = B, +i 4B, B (36)
’ 2
in which i =+/—1.

Solution 4: ky #0, B; = 2,/B,

Wn (,0) :C].n‘]n (ﬂp)-H:ZnY n (ﬂp)+C3n p‘]n+l(ﬂp)+c4an n+l(ﬂ“p) (37)

where
Bl

=\ (38)

Solution 5: k,, #0, B; > 2,/B,

Wn (p):Cln‘]n (ﬂ'lp)'*'CZnYn (ﬂﬂp)+c3n‘]n (ﬂ'?p)+c4nY n (%p) (39)

where
2
dyy =y P T2 (40)

Now, from a mathematical point of view, adequate
boundary conditions are needed to achieve the stability
criterion. As demonstrated previously, it should be pointed
out that the porous FG nanoplates commence to deflect at
the onset of transverse thermal loading for all types of
boundary conditions unless clamped type. In the case of
clamped porous annular plate, lateral deflection is zero at
both inner and outer edges which can be written as the
following mathematical representations

(8)=W, (1)

_dw,
dp

_aw,

W, (5) i

(1)=0 (41)

Applying the above boundary conditions to Egs. (32),
(33), (35), (37) and (39) results in a system of equations in
terms of constants ¢, (i = 1, 2, 3, 4). In order to obtain a
non-trivial solution, the determinant of the coefficients
matrix must be set equal to zero. This nonlinear
determinantal equation includes both n™ and n. For every
integer number n, the obtained transcendental equation
should be solved and its smallest positive root represents
critical buckling loads n’..

6. Types of thermal loading

At this stage, three types of temperature profile are
obtained for a porous FG nanoplate subjected to thermal
boundary condition on its upper and lower surfaces. Each
type of thermal loads is presented in the following
subsections

6.1 Uniform temperature rise (UTR)

It is assumed that the porous nanoplate being initially at
the reference temperature experiences a uniform
temperature rise ®. The temperature change is (Ashoori et
al. 2017)

®(Z ) =0 (42)

It should be pointed out that even in this type of thermal
loading, initiation of thermal loading triggers thermal
moments due to the bending-stretching coupling of the
porous FG nanoplate.

6.2 Linear temperature distribution (LTD)

It is assumed that the temperature profile varies only
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through the thickness, which is compatible with the design
requirements of the FGM structures. When the nanoplate
with porosity is thin enough, the temperature distribution
may be estimated to be linear. Therefore, if T, and T, show
the temperature of ceramic-rich and metal-rich surfaces
respectively, the temperature rise field is specified as
follows through the thickness

0(2)=T, ~To+0, (%Jrzﬁj (43)

where O¢ = Te — Th.
6.3 Heat conduction (HC) across the thickness
Through-the-thickness heat conduction equation with
the known temperature boundary conditions on upper and

lower surfaces of the nanoplate in the absence of heat
generation takes the form (Ashoori and Vanini 2017b)

j—z(/((z )?TU:O

T (—%] =T, T (%) =T, +0, =T,

Employing the power series technique, the solution of
this equation is obtained as

et s 52 o

(44)

i=0 i=0

To assure the convergence of the temperature profile of
Eq. (45), sufficient terms of series expansion must be taken
into account.

7. Numerical investigation

In this section, we perform the accuracy of the proposed
model before proceeding with a detailed parametric
investigation. Thus, several numerical examples for the
asymmetric thermal buckling of porous annular nanoplates
resting on an elastic substrate are carried out, accordingly.

The computed results are then discussed in details.
Moreover, the material properties of each constituent in the
present paper, including the Young’s modulus, Poisson’s
ratio, thermal expansion coefficient, and thermal
conductivity, as listed in Table 1. To assess the effects of
size dependency on the thermal buckling behavior of an
annular nanoplate, a FGM nanoplate made of Alumina

Table 1 Material properties of nanoplate

Properties Alumina (Al,O53) Aluminum (Al)
E (GPa) 380 70
ar (K% 7.4e-6 23.0e-6
© (Wm?K™?) 10.4 204
v 0.3 0.3

(Al,03) and Aluminum (Al) materials is considered. Top
surface of the plate is Al,Osrich, while the bottom one is Al
rich. The thickness of the porous annular nanoplate is
assumed to be 0.5 nm and in the LTD and HC types of
thermal loading, the metal surface temperature is raised by
5 K. Also, in the present study, the dimensional foundation

parameters for ¢ =0.015 are considered to be in the range
of 0-7.3357e-13 N/(nm)?*for K,, and 0-7.9886e-11 N/nm for
K. However, five dimensionless foundation conditions are
considered in this examination

(kw,» kg) = (0,0) (unconstrained), (k.. kg) = (100,0)
(Winkler), (kw, kg) = (100,10) (Pasternak)

(kw, kg) = (200,10) (Pasternak), (kw, kg) = (200,20)
(Pasternak)

7.1 Comparison of results

To show the validity and accuracy of the presented
method, in Table 2, the critical buckling temperatures of
perfect FG annular plates under UTR loading is compared
with those reported in Kiani and Eslami (2013) based on the
classical continuum theory in which the nonlocal parameter
is taken to be zero. For two different magnitudes of power
index, i.e.,, p = 1, 2, and different # ratios critical buckling
temperatures of a perfect plate are evaluated. As visible
from Table 2, the buckling temperatures are in excellent
agreement which guarantees the accuracy and correctness
of the presented formulation and solution method.

7.2 Parametric studies

After validating the present model for the case of perfect
FGM plates, numerical and illustrative examples are given
to explore the asymmetric thermal buckling behavior of
annular nanoplates with porosities resting on elastic
foundation.

Tables 3-4 respectively present the critical buckling
temperature difference of in-contact porous annular FG
nanoplates under UTR and HC loading corresponding to
different values of the nonlocal parameter, various power
indexes, f ratio and porosity-l1 parameter. Nanoplate is
resting on the elastic substrate with stiffness k, = 100, ky =
10 and thickness to radius of nanoplate is set equal to ¢ =
0.015. It is inferred that the fundamental buckled shape of
the nanoplate is not associated with a symmetrical shape
since in all cases the number of nodal diameters is larger
than zero. Also, it is indicated that increasing of nonlocal
parameter leads to lower critical buckling temperature

Table 2 Comparison of critical buckling temperature
difference of perfect FGM plate under UTR loading
(6 =0.015, ky = 100, kg = 10)

B
0.3 0.5
Present study 90.77776 154.23236
(Kiani and Eslami 2013) 90.778 154.232
Present study 86.26107 141.83852
(Kiani and Eslami 2013) 86.261 141.839
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Table 3 Critical buckling temperature difference ®., of nanoporous annular nanoplates under UTR loading for various S
ratios, power indices, porosity and nonlocal parameters (k, = 100, ky = 10, ¢ = 0.015). Number of nodal diameters are

displayed as superscript

a (Porosity-1) = 0.1

o (Porosity-1) = 0.2

w(m? B Power index Power index
1 2 5 1 2 5 10
0.2 86.34222 83.03582 95.13912 107.0360°  101.97082 97.2152? 117.9200>  146.15622
0.3  103.6705 97.0923* 108.9660°  121.4939°  120.6876°  110.3785°  129.3095°  158.7784°
0 0.4  128.6995°  118.0427°  130.5006°  144.5300°  147.9909°  131.3356°  149.7521°  182.4854°
05  172.7537*  155.0137*  168.3846°  184.9919*  196.2477*  168.1478*  185.3817*  223.6904"
0.2 80.90522 78.32412 90.16932 101.65122 95.91112 92.31852 112.7009°  139.4081°
) 0.3 94.4344° 89.0540° 100.5745°  112.4478°  110.2943°  102.1509°  120.9791°  148.9935°
0.4  112.6786°  104.3393°  116.2132°  129.1378°  130.2610°  117.3358°  135.6200°  165.9028°
05  141.6543*  1285165°  140.8547*  155.3847*  161.9033*  141.2175*  158.4208*  192.1431°
0.2 76.38412 74.4060? 86.03622 97.17282 90.87222 88.2460° 107.9969°  133.8846°
A 0.3 87.0740° 82.7493° 93.9926° 105.3525°  102.1425° 95.6976° 114.4448°  141.3181°
0.4  100.9605° 94.3163* 105.7629°  117.8794°  117.2930°  107.0960°  125.2831°  153.7733°
05  121.3532*  111.2196*  122.8838*  136.0577*°  139.4838*  123.6378*  140.8212*  171.5495"

Table 4 Critical buckling temperature difference ®, of nanoporous annular nanoplates under HC loading for various £ ratios,
power indices, porosity and nonlocal parameters (k,, = 100, ky = 10, ¢ = 0.015). Number of nodal diameters are

displayed as superscript

a (Porosity-1) = 0.1

o (Porosity-1) =0.2

wu(m? B Power index Power index
1 2 5 1 2 5 10
0.2  270.0879°  222.5497>  208.0891%>  214.2955%  320.07022  251.7142°  239.3100°  269.9050°
0 0.3 327.6247°  262.6374°  240.0089°  244.6599°  381.8486°  287.6452°  263.4475°  294.0399°
0.4  410.7306°  322.3859°  289.7223°  293.0402°  471.9681°  344.8505°  306.7713°  339.3701°
05  557.0078*  427.8231* 377.1785*  378.0182* 631.2487*  445.3346"  382.2805*  418.1582*
0.2  252.0348%>  209.1125° 196.6160°  202.9864°  300.0692°  238.3479>  228.2491°  257.0019°
) 0.3  296.9573°  230.7132°  220.6368°  225.6614°  347.5435°  265.1869°  245.7930°  275.3303°
0.4  357.5350°  283.3052°  256.7392°  260.7136°  413.4474°  306.6362°  276.8213°  307.6624°
05  453.7458*  352.2559* 313.6251*  315.8373* 517.8885*  371.8245%°  325.1428*  357.8366"
0.2  237.0232%  197.9386>  187.0747°  193.5810°  283.4374>  227.2316°  218.2800°  246.4404°
A 0.3 2725178 221.7328° 205.44243 210.7599° 320.6368° 247.5717° 231.9450° 260.6541°
04  318.6265° 254.7206° 232.6145° 237.0689° 370.6439° 278.6852° 254.9145° 284.4697°
0.5  386.3382*  302.9269* 272.1385*  275.2467*  443.8890" 323.8384* 287.8442*  318.4595*

difference since the nonlocal parameter decreases the
stiffness of porous annular nanoplates, especially for
annular nanoplates with higher modes of buckled shape and
p ratio. In other words, by increasing the influence of small
scale effect, the stiffness of annular FG nanoplates
decreases. In addition, one can see that the number of nodal
diameters becomes larger as the g ratio of the annular
nanoplate increases. Also, an increase in the porosity
parameter leads to the increase of the critical buckling
temperature. This is due to the increase of the porosity
which then increases the stiffness of the nanoplate.

In Table 5, the effects of the nonlocal parameter, elastic
foundation coefficients and porosity parameter on the
critical buckling temperature of FG annular nanoplates
subjected to different types of thermal loading are
demonstrated. The model parameters p = 1 and 6 = 0.015
are assumed. As seen for all types of thermal loading,
higher modes of buckling configuration occur, i.e., n > 0. As
expected with increasing the nonlocal parameter of the
nanoplate, critical buckling temperature of the plate
decreases. It is also observed that the critical buckling
temperature of nanoplate from maximum to minimum may
be sorted, in order, HC, LTD, and UTR. With increasing
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Table 5 Effect of nonlocal parameter and elastic foundation on the critical buckling temperature ®, of the Porosity-1 annular
nanoplate subjected to different types of thermal loading and porosity parameters (8= 0.3, p = 1, 6 = 0.015). Number
of nodal diameters are displayed as superscript

a=0 a=0.1 a=0.2
wiomp? o (ks k) (ko k) (ku k)
(0,0) (100,10)  (200,20) (0,0) (100,10)  (200,20) (0,0) (100,10)  (200,20)

UTR  67.5450°  90.7777° 113.0682° 74.0624> 103.6705° 131.7908° 81.6409° 120.6876° 157.7617°
0 LTD 117.3010®> 160.8733% 202.6783° 128.3491%> 183.3742% 235.6343° 140.65842 212.3206° 280.3623°
HC  208.7083% 286.2343% 360.6161° 229.3143% 327.6247%> 420.9950° 252.9675% 381.8486° 504.2183°
UTR  59.5492%  82.4691> 104.3661° 65.2951>  94.4344° 122.1878° 71.9764%> 110.2943° 147.0782°
2 LTD 102.30522 145.2908% 186.3577° 112.0555% 166.2094° 217.7877° 122.9213% 193.2458°  260.7550°
HC  182.0268% 258.5092° 331.5776° 200.2034> 296.9573° 389.1094° 221.0682> 347.5435° 468.9555°
UTR  53.2460°  75.8972° 97.5406° 58.3838%  87.0740° 114.6557° 64.3579> 102.1425° 138.6984°
4 LTD  90.4839% 132.9654° 173.5568° 99.2111° 152.5304° 203.7896° 108.9391%> 178.2848° 245.3755°
HC  160.9937% 236.5792° 308.8015° 177.2551% 272.5178° 364.0997° 1959219% 320.6368° 441.2963°
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0 2 4 6 8 10 12 14 16 18 20
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Fig. 2 Variations of the critical buckling temperature of a porous annular nanoplate under different types of thermal
loading and porosity distribution with respect to power index for various values of porosity volume fraction

(« = 2(nm)%, § = 0.3, 9 = 0.015, k, = 100, k, = 10)

Winkler and Pasternak coefficients, the thermal buckling
load and number of nodal diameters of the nanoplate
increase which is expected since the elastic stiffness of the
nanostructure enhances. In addition, it is observed that by
increasing the elastic foundation parameters of annular FG
nanoplates, buckling temperature difference will increase
too and this behavior is more significant for FG nanoplates

under HC thermal loading. Interesting results are observed
for the case of higher modes of buckling configuration. As
seen in Table 5, the effect of nonlocal parameter on critical
buckling temperatures increases for annular nanoplates
under higher modes of buckling configuration. It is again
verified that increasing of nonlocal parameter leads to lower
critical buckling temperature difference, especially for
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annular nanoplates with higher modes of buckled shape.

Fig. 2 demonstrates the effects of porosity distributions
and thermal loading on the buckling temperature difference
of FG nanoplates under various values of porosity volume
fraction versus power index. It is obvious that as the
porosity parameter increases, the critical buckling
temperature rise increases, independently of the types of
thermal loading. Therefore, a porous annular nanoplate has
larger critical buckling temperatures than a perfect one.
Another interesting observation is that there is a large gap
as increasing of the power exponent. In fact, with the
increase of power law index, the influence of porosity
increases. The buckling temperature also decreases for
increasing values of the power index from O up to 2. This is
due to the fact that for large values of power law index, the
material properties of the nanoplate become similar to the
material properties of a metal with higher thermal
expansion coefficients in comparison to the ceramic. Thus,
one could easily control the critical buckling temperature of
the porous annular nanoplate by tuning the power index and
porosity volume fraction.

The variation of the critical buckling temperature rise
with respect to the J ratio under UTR loading and uneven
distribution for various values of elastic substrate and
nonlocal parameters is computed and shown in Fig. 3. This

T T T
700 | =]

1:4=0(mm)?
600 I 9.4 =2 mm)? )
500 3.y =4 (nm)? 1 7
5 400 2 =

0.01 0.015 0.02 0.025  0.03
o
(a) (ku,kq) = (100,0)

figure indicates that for a given value of nonlocal
parameter, increasing the o ratio, the buckling temperature
increases. Also, it can be seen that the nonlocal parameter
decreases the buckling temperature since the nonlocal
parameter decreases the stiffness of annular nanoplates.
Since the radius of the nanoplate is kept constant, the
bending stiffness of the annular plate increases due to an
increase in thickness, which consequently results in
increment of the critical temperature. Also, the elastic
substrate has an increasing effect on buckling temperatures
of porous nanoplates. In fact, increasing in Winkler and
Pasternak coefficients supplies enhancement of stiffness of
annular nanoplate.

The variation of the critical temperature with g ratio is
investigated in Fig. 4, where it is visible that an annular
nanoplate with a large f ratio undergoes a large critical
temperature difference. In this figure, both even and uneven
porosity distributions are considered. It is noted that each
circle in this figure indicates an increase in the number of
nodal diameters of the buckled mode. This figure also
demonstrates that the number of nodal diameters changes,
when the inner to outer radius ratio, g increases from 0.1 to
0.8.

In Fig. 5, the critical buckling temperature is depicted
with respect to two cases of thermal loading and various

| 1:4=0(nm)? )

600 I 9. p=2mm)? 1 7
500 | 3:u=4(nm)
5 400
300
200

100 | —=

0 . I
0.01 0.015 0.02 0.025 0.03
0

(b) (kw:kq) = (200,10)

Fig. 3 Variations of critical buckling temperature of the Porosity-11 annular nanoplate under UTR loading with
respect to J ratio for various values of elastic substrate and nonlocal parameters (¢ =0.2,p=1, #=0.5)

n=7
300 x
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250 n=5s \/ B
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Fig. 4 Variations of the critical buckling temperature of a porous annular nanoplate under UTR loading with respect
to /3 ratio for two types of porosity distribution (p = 1, x = 2(nm)?, & = 0.1, 5 = 0.015, k,, = 100, k, = 10)
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Fig. 5 Variations of critical buckling temperature of the Porosity-I annular nanoplate under different types of
thermal loading with respect to nonlocal paramert for various values of porosity volume fraction

(p=1,8=04,5=0.015, k, = 200, ky = 10)

values of porosity volume fraction for varying nonlocal
parameters. It can be seen that porosities inside the
nanomaterial lead to higher critical buckling temperature by
increase the stiffness of annular nanoplate. Again, an
annular nanoplate with porosities has larger buckling
temperature than a perfect one. The buckling temperature
also decreases for increasing values of the nonlocal
parameter from 0 up to 4 (nm)®>. The reason of this
phenomenon is due to the reduced bending stiffness of the
annular nanoplate with porosities. Also, it is found that the
discrepancy  between critical buckling temperature
difference of perfect annular FG plates (« = 0) and that of
nanoplate with porosities is more significant in HC thermal
loading in comparison with other types of thermal loading.

8. Conclusions

In this paper, asymmetric thermal buckling charac-
teristic of annular nanoplates under two types of porosity
distribution has been proposed based on the nonlocal
elasticity theory. A modified power law function has been
employed to describe the graded material properties. With
the aid of a von-Karmén type of geometrical nonlinearity
and static version of Hamilton’s principle, the complete set
of equilibrium equations considering the asymmetric
deformations of the nanoplate is obtained. Pre-buckling
analysis is presented to find the distribution of stresses and
deformations prior to thermal buckling. Afterwards, based
on the adjacent equilibrium criterion, nonlocal stability
equations are established. These equations have been solved
via exact analytical solutions to obtain critical buckling
temperatures.

Thus, we examined the effect of the material gradation,
different types of thermal loading and porosity distribution,
elastic coefficients, porosity and nonlocal parameters and
geometrical dimensions, on the thermal buckling
characteristics. Based on this parametric research, it is
found that these parameters have a significant effect on the
thermal buckling behavior of porous nanostructures. The
effects can be summarized as follows

It was seen that the critical buckling temperature of
nanoplate from maximum to minimum may be
sorted, in order, HC, LTD, and UTR, and this
prediction is the same for all values of nonlocal
parameter and elastic foundation coefficients. Also,
thermal buckling does not exist generally for
annular nanoplates with porosities unless boundary
conditions are of clamped type.

The critical temperature difference increases as the
porosity volume fraction increases, whereas the
buckling temperature decreases when the applied
porosity distribution changes from even to uneven.
It was observed that by increasing the elastic
foundation parameters of annular FG nanoplates,
buckling temperature difference and number of
nodal diameters will increase too and this behavior
is more significant for nanoplates under HC thermal
loading and higher modes of buckling configura-
tion.

It was indicated that increasing of nonlocal
parameter leads to lower buckling temperature
difference, especially for porous annular nanoplates
with higher modes of buckled shape and £ ratio.

For all cases of thermal loading, the effect of
nonlocal parameter on critical buckling tempera-
tures increases for annular nanoplates under higher
modes of buckling configuration. In other words, by
increasing the influence of small scale effect, the
stiffness of annular FG nanoplates decreases.

The buckling temperature of nanoplate decreases
with an increasing power index because of the
material degradation due to the enrichment of the
metal constituent.

It was shown that the discrepancy between critical
buckling temperature difference of perfect annular
plates and that of FG nanoplate with porosities is
more significant in HC thermal loading in
comparison with other types of thermal loading.
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