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Abstract.  Unwanted vibration is an issue in many industrial systems, especially in nano-devices. There are many 

ways to compensate these unwanted vibrations based on the results of the past researches. Elastic medium and smart 

material etc. are effective methods to restrain unnecessary vibration. In this manuscript, dynamic analysis of 

viscoelastic nanosensor which is made of functionally graded (FGM) nanobeams is investigated. It is assumed that, 

the shaft is flexible. The system is modeled based on Timoshenko beam theory and also environmental condition, 

external linear varying loads and thermal loading effect are considered. The equations of motion are extracted by 

using energy method and Hamilton principle to describe the translational and shear deformation’s behavior of the 

system. Governing equations of motion are extracted by supplementing Eringen’s nonlocal theory. Finally vibration 

behavior of system especially the frequency of system is developed by implementation Semi-analytical differential 

transformed method (DTM). The results are validated in the researches that have been done in the past and shows 

good agreement with them. 
 

Keywords:  nanosensor; dynamic analysis; functionally graded material; viscoelastic material; linear 

varying loads; thermal loading effects; Eringen nonlocal theory 

 
 
1. Introduction 

 
Nanosensors are devices for measuring physical-chemical changes and convert into 

understandable signals for humans. These sensors respond the specific reactions that are foreseen 

to them beforehand. In all of these nanosensors, a substance is always in contact with the study 

environment. The task of this substance is to detect changes in the study environment. The 

accuracy of the sensor, response speed, dismissing the impact of disturbing environment and 

power of choice are examples of important parameters in nanosensors. 

Nanosensors are included nanotubes, nanodevices, quantum nanosensors and etc. quantum 

nanosensors consist of semiconductor crystals and transmits the information by attracting optical 

magnetic fields and converting them into expected wavelengths. These sensors are used in optical 

devices but nanotubes are derived from the novel material such as carbon, ceramic, metal and etc. 

composites. These nanotubes have wide applications such as identifying low concentration –high 

speed material, detection of gas molecules at low concentration and etc. 
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There are many studies about nanostructure with consideration of thermal effect (Ebrahimi and 

Shaghaghi 2016), “buckling (Ebrahimi et al. 2014, 2016b, 2018) vibration (Ebrahimi et al. 2014, 

2018, Ghadiri et al. 2015, Ebrahimi et al. 2015), nonlinear vibration (Ebrahimi and Shaghaghi 

2018), “wave propagation (…….), “nanosensors (Duan et al. 2018) and dynamics of nanostructure 

(Zhu and Li 2017). 

Also there are kinds of size-dependent continuum theories like couple stress elasticity theory 

(Zhou et al. 2018), “strain gradient theory (Li and Hu 2017), “nonlocal strain gradient theory 

(…………..) and modified couple stress theory which are announced to consider the size effect. 

FG materials are one of the novel composites that have continuously varying material 

composition and properties through certain dimension (thickness direction) of the structure to 

achieve the desired goals. As the fiber-reinforced composites have mismatch material. In 

functionally graded materials, ceramics are used to improve thermal properties and metals are used 

to improve strength properties. Method of placement and amount of each of these materials 

determines the rates and mode of mechanical properties’ changes in the structure. The nonlinear 

vibration of shear deformable FGM carbon nanotube which is reinforced by composite based on 

the first-order shear deformation beam theory and von Kármán geometric nonlinearity is studied 

by Wu et al. (2016), “In other work, Fernandes and his colleagues presented the response of 

single-walled carbon nanotube’s (CNT) longitudinal linear and nonlinear free vibration which is 

embedded in an elastic medium and subjected to boundary conditions (Fernandes et al. 2017), 

“Ebrahimi and Farazmand Nia proposed a higher-order shear deformation beam theory (HSBT) 

for analysis of functionally graded carbon nanotube’s (FG-CNTRC) free vibration. This study has 

been done on sandwich beams and thermal effects are considered (Ebrahimi and Farazmand 2017), 

“In other research work, the influences of critical speed on the spinning 3D single-walled carbon 

nanotubes (SWCNT) free vibration behavior are investigated by Ghadiri et al. (2015), “Ansari et 

al. (2016) established a nonlinear fractional nonlocal Euler-Bernoulli beam model by using the 

concept of fractional derivative and also nonlocal elasticity theory to investigate the size-

dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The effect 

of non-local higher order stress on the nonlinear vibration of carbon nanotube (CNT) conveying 

viscous nanoflow resting on the elastic foundation is investigated by Mohammadimehr et al. 

(2017). 

There are many other research activities on the vibration of mechanical structures, for example, 

Murmu and Adhikari (2013) developed a single layer graphene sheets (SLGS) mass sensor by 

considering nonlocal elasticity incorporates the small scale effects or in other words nonlocality. In 

a study, Karličić et al. (2015) used the nonlocal Kirchhoff-Love plate theory to describe single-

layered graphene sheet’s mechanical behavior as an orthotropic nanoplate. Arda and Aydogdu 

(2017) investigated the longitudinal vibration of a carbon nanotube with an attached damper by 

accomplishing the nonlocal stress gradient elasticity theory. Li et al. (2015) are studied free 

vibration and mass detection of carbon nanotube-based sensors. In this paper exact equations for 

the resonance frequencies of nanoscale resonators are derived, explicit expressions for calculating 

the fundamental frequencies are provided and formulae for identifying attached mass are 

established. The theoretical framework for a single-walled carbon nanotube serving as a virus or 

bacterium sensor, with the complicating influences of non-locality and considering surface effects 

developed by Elishakoff et al. (2013), “Hwang and his colleagues examined brake friction 

materials containing multi-wall carbon nanotubes (CNTs) to determine their effect on the braking 

performance (Hwang et al. 2010), “Ebrahimi et al. examined thermo-mechanical buckling problem 

of functionally graded (FG) nanoplates supported by Pasternak elastic foundation subjected to 
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linearly/non-linearly varying loadings is analyzed via the nonlocal elasticity theory (Ebrahimi et al. 

2016a, b, Ebrahimi and Barati 2016a-j) 

In this manuscript, dynamic analysis of FGM nanosensor subjected to various linear and non-

linear varying normal in-plane forces and resting on Pasternak foundation with intrinsic 

viscoelastic properties are investigated for the first time. Thermal effects and surface effects are 

also considered. Nanosensor is modeled based on Timoshenko beam theory. Nonlocal elasticity 

theory and Hamilton’s principle are utilized to extract the governing equations and the DTM’s 

method is applied to solve them. The presented shows a good agreement with the results available 

in literate. The small size effect on the vibration behaviors of functionally graded rectangular 

nanobeams is presented through considering various parameters such as FG-index, the length of 

nanoplates, numerical loading factor, nonlocal parameter, aspect ratio and the mode numbers. 

 

 

2. Formulation 
 

2.1 Nonlocal theory 
 

The constitutive equation of classical elasticity is an algebraic relationship between the stress 

and strain tensors while that of Eringen’s nonlocal elasticity involves spatial integrals which 

represent weighted averages of the contributions of strain tensors of all points in the body to the 

stress tensor at the given point (Eringen 1983), “Though it is difficult mathematically to obtain the 

solution of nonlocal elasticity problems due to the spatial integrals in constitutive equations, these 

integro-partial constitutive differential equations can be converted to equivalent differential 

constitutive equations under certain conditions. 

The theory of nonlocal elasticity, developed by Eringen and Edelen (1972) states that the 

nonlocal stress-tensor components σij at any point x in a body can be expressed as 

 

  ( ) , ( ) ( )ij ijx x x t x d x  


    
 

(1) 

 

where tij(x′) are the components of the classical local stress tensor at point x, which are related to 

the components of the linear strain tensor εkl by the conventional constitutive relations for a 

Hookean material, i.e. 

klijklij Ct   (2) 

 

The meaning of Eq. (1) is that the nonlocal stress at point x is the weighted average of the local 

stress of all points in the neighborhood of x, the size of which is related to the nonlocal Kernel α(|x′ 

‒ x|, τ). Here |x′ ‒ x| is the Euclidean distance and τ is a constant given by 

 

l

ae0  (3) 

 

Which represents the ratio between a characteristic internal length, a (such as lattice parameter, 

C–C bond length and granular distance) and a characteristic external one, l (e.g., crack length, 

wavelength) through an adjusting constant, e0, dependent on each material. The magnitude of e0 is 
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determined experimentally or approximated by matching the dispersion curves of plane waves 

with those of atomic lattice dynamics. According to (Eringen and Edelen 1972) for a class of 

physically admissible kernel α(|x′ ‒ x|, τ) it is possible to represent the integral constitutive 

relations given by Eq. (1) in an equivalent differential form as 

 

klkl tae  ))(1( 2

0  
(4) 

 

In which 2 is the Laplacian operator. Thus, the scale length e0a takes into account the size 

effect on the response of nanostructures. For an elastic material in the one dimensional case, the 

nonlocal constitutive relations may be simplified as (Miller and Shenoy 2000) 
 

2

2

xx
xx xxE

x


  


 

  
(5) 

 

Where σ and ε are the nonlocal stress and strain respectively, μ = (e0a)2 is the nonlocal 

parameter and E is the elasticity modulus (Ebrahimi et al. 2016a, b, c, d), “Parameter of e0a can be 

vary among 0 to 5 nm which e0a = 0 equals to classical continuum theory. 
 

2.2 Functionally graded nanobeam 
 

As depicted in Fig. 1, an FGM nanosensor of length 𝑙𝑥  and thickness h that is made of a 

mixture of ceramics and metals is considered. It is assumed that the materials at bottom surface 

(𝑍 = −𝑕 2) and the top surface (𝑍 = 𝑕 2) of the nanoplate are metals and ceramics, respectively. 

The local effective material properties of an FGM nanobeam can be calculated using 

homogenization method that is based on the Mori–Tanaka scheme. According to the Mori–Tanaka 

homogenization technique, the effective material properties of the FGM nanobeam such as 

Young's modulus(𝐸), “Poisson's ratio(𝜈), “mass density  𝜌 and thermal extension coefficient (𝛼) 

can be determined as follows (Mori and Tanaka 1973) 
 

𝐸 𝑧 = 𝐸𝑐𝑉𝑐(𝑧) + 𝐸𝑚𝑉𝑚  (6a) 

 

𝜌 𝑧 = 𝜌𝑐𝑉𝑐(𝑧) + 𝜌𝑚𝑉𝑚  (6b) 

 

𝛼 𝑧 = 𝛼𝑐𝑉𝑐(𝑧) + 𝛼𝑚𝑉𝑚  (6c) 

 

𝜈 𝑧 = 𝜈𝑐𝑉𝑐(𝑧) + 𝜈𝑚𝑉𝑚  (6d) 

 

Here, the subscripts m and c refer to metal and ceramic phases. The volume fraction of the 

ceramic and metal phases can be defined by the power-law function as 
 

𝑉𝑓 𝑧 =  
1

2
+
𝑧

𝑕
 
𝑘

 (7) 

 

Where k represents the power-law index. Additionally, the neutral axis of FGM nanobeam 

where the end supports are located on, can be determined by the following relation 
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Fig. 1 Schematic view of functionally graded nanosensor 

 

 

𝑧0 =
 𝑧𝐸 𝑧 𝑑𝑧
 𝑕 2  

− 𝑕 2  

 𝐸 𝑧 𝑑𝑧
 𝑕 2  

− 𝑕 2  

 (8) 

 

2.3 Governing equation 
 

u and w, are component of displacement’s field of an arbitrary point in the mid-plane along the 

x and z directions, respectively. According to the Timoshenko beam theory, the displacement field 

can be presented as 
 

𝑢𝑥 𝑥, 𝑧, 𝑡 = 𝑢 𝑥, 𝑡 + 𝑧𝜑 𝑥, 𝑡 ,       𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) (9) 

 

U and W, are the displacement components of an arbitrary point (x, z) at a distance z from the 

middle of the plate thickness in the x and z directions, respectively. The strain-displacement 

relationships are presented following strain field. These equations are independent of constitutive 

equations. The tensorial strain field can be shown as 

 

𝜀𝑥𝑥 = 𝜀𝑥𝑥
0 + 𝑧𝑘0 ,      𝜀𝑥𝑥

0 =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
,      𝑘0 =

𝜕𝜑 𝑥, 𝑡 

𝜕𝑥
 (10a) 

 

𝛾𝑥𝑧 =
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
+ 𝜑 𝑥, 𝑡  (10b) 

 

In which, 𝜀𝑥𝑥
0 and 𝑘0 represent the strain on the middle plane and curvature respectively. 

The nanobeam is made of frictional viscoelastic material. The frictional viscoelastic nanobeams 

are modeled based on the Kelvin-Voigt theory as follows 

 

(1 )xx xxE g
t




 


 

  
(11) 
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According to this theory, the main axial stresses σxx is not just function of the elastic modulus 

but also the viscoelastic coefficient g and frictional order 𝛼 also effect it. Frictional order always 

has a value between 0 and 1 and is extracted individually from the following function (Ansari et al. 

2016) 

'

'
1

0

1 ( ) (0)
( ) ( )

(1 ) (1 )

t

t

w t w
D w I w d

t

 

 




  


 

  
   


 

(12) 

 

The effect of surface stresses on the behavior of system based on Gurtin-Murdoch theory can 

be represents as follows 
 

0sl s s

k kC e E        
 

(13) 

 

In which, 𝜏𝛼𝛽
0  shows residual surface stresses at upper and downer surface of structure. 𝐶𝛼𝛽𝛾𝛿

𝑠  

and 𝑒𝛼𝛽𝑘
𝑠  represents other coefficient of equation that are related to Lame coefficient. 

 

𝜏𝑥𝑥 = 𝜏0 + 𝐸𝑠 𝑢𝑥,𝑥 ,           𝐸𝑠 = 2𝜇0 𝜆0 ,          𝜏𝑧𝑥 = 𝜏0 𝑢𝑧,𝑥  (14) 

 

Where μ0 and λ0 are Lame coefficient which are related to surface properties. In the Gurtin-

Murdoch theory one cannot negligible σzz so σzz is defined as follows 
 

2 2

2 2

2
( )o o

z w w

h x t


  

 


 
zz

 
(15) 

 

Now, by using Hamilton principle 
 

0
( ) 0

t

extU T W dt     
(16) 

 

Where U, T and Wext represents strain energy, kinetic energy and the work done by external 

forces respectively. First order variation of system’s strain energy can be shown as 
 

( )s s

ij ij xx xx xx xx xz xz xz xz
v v

U dV dV                 
(17) 

 

By substituting strains obtained from strain-displacement relation it can be shown 
 

0 0

0
( ( ) ( ) ( ))

L

x xx x xzU N M k Q dx       
(18) 

 

where Nx, Mx and Q are axial forces, bending moment and lateral forces, respectively that’s 

defined as below 

   , ,

( )

s s

xx xx xx xx
A A

s

s xz xz
A

N dA M zdA

Q K dA

   

 

   

 

 

  

(20) 
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The variation of kinetic energy of Timoshenko beam can be represents as 
 

2 2 2

0 2 2

1
( )( ( ) ( ) ) ( )( )

2

L
s sx z z

h h
A

u u u
T z dAdx

t t t
  

 

   
       
 

 

(21) 

 

First order variation of system’s strain energy can be shown as 
 

0 1
0

2
2 2

( ) ( )

( )

L

s s

h h

u u w w u u
T I I

t t t t t t t t

w w
I dx

t t t t

    


  
 

 

       
            

    
      



 

(22) 

 

In which, (I0, I1, I2) are mass moment which are defined as below 
 

2

0 1 2( , , ) ( )(1, , )
A

I I I z z z dA 
 

(23) 

 

Variation of works done by external forces includes many terms but for physical loading it can 

be written as 

 
0

( ) ( )
L

extW f x u q x w dx     
(24) 

 

In which, f(x) and q(x) represents work done by external load and linear varying loads along the 

length direction of beam. To modeling thermal environment and its effect on the behavior of 

system firstly need to define the thermal stresses as below 
 

0( )T

x

E T T

I









  
(25) 

 

Where α and T0 shows the thermal conductivity coefficient and ambient temperature. The 

temperature is Kelvin and the initial value is 300°. The work done by thermal stresses can be 

written as 
2

th Tx

A

w
W N dA

x

  
   

   


 

(26) 

 

In which 
 

2

2

h

Tx Txh
N dz

 
 
 

 
 
 

 
 

(27) 

 

So the variation of work done by thermal stresses can be represent as 
 

2

th Tx

A

w
W N dA

x
 

  
   

   


 

(28) 
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Pasternak medium is also modeled in the same way. This foundation is considered as a set of 

springs with coefficient 𝐾𝐺 . The work done by displacement of springs can be written as 

 
2

pas G

A

w
W K dA

x

  
   

   


 

(29) 

 

And also the variation of works done by Pasternak medium’s displacement can be written as 

 
2

pas G

A

w
W K dA

x
 

  
   

   


 

(30) 

 

The residual surface stresses can be considered as an external force. So the work done by 

residual surface stress can be shown as 
 

2

02resi

A

w
W b dA

x


  
   

   


 

(31) 

 

And the variation of works done by residual surface stresses can be written as 

 
2

02resi

A

w
W b dA

x
  

  
   

   


 

(32) 

 

To modeling the humidity of the environment and its effect on behavior of system will have the 

following relation 
 

HN E HdA E HdA
A

      
 

(33) 

 

Where NH and β shows the amount of humidity in arbitrary point and humidity coefficient 

respectively. The variation of works done by the humidity stresses can be written as 

 

2
w

W N dA
Nh Nh xA

 

 
  
   

  


 


 

(34) 

 

Modeling of the linear varying loading at the end of the beam and the along the thickness 

direction that are includes all types of loading from the simple pressure to pure bending can be 

represents as 

𝑞 = −𝑃0  1 − 𝜒 
𝑦

𝑙𝑦
   (35) 

406



 

 

 

 

 

 

Vibration analysis thermally affected viscoelastic nanosensors subjected to... 

Where NH and β shows the amount of humidity in arbitrary point and humidity coefficient 

respectively. The variation of works done by the humidity stresses can be written as 

 

2
w

W N dA
Nh Nh xA

 

 
  
   

  


 


 

(36) 

 

𝜒 Specifies the amount of numerical loading factor. 𝑃0   is the compressive force per unit 

length at y = 0. This in-plane force distribution is seen at the two nanoplates opposite edges (x = 0, 

x = 𝑙𝑥 ). 𝜒’s change, shows different form of in-plane loadings. If 𝜒 = 0, then the situation of 

uniform compressive force is investigated. If 𝜒 = 1, the force decrease from -𝑃0 at y = 0, to zero 

at y = 𝑙𝑦  and if 𝜒 = 2, we’ll see pure bending. This type of modeling allows the full range of 

loads from pure compression to pure bending considered only on the basis of unit modeling. These 

different situations of loadings condition are shown in Fig. 2. 

Bsed on Fundamental Lema and by separating the coefficients of 𝛿𝑢, 𝛿𝑣 and 𝛿𝑤 the following 

equation of motion are achieved 

 
2 2

0 12 2

N u
f I I

x t t

  
  

    
(37) 

 
2

2

Q w
F I

x t

 
 

   
(38) 

 
2 2

1 22 2

M u
Q I I

x t t

  
  

    
(39) 

 

In which F and I defined as below 

 

𝐹 = (𝑞 + 2𝑏𝜏0 + 𝐾𝐺 + 𝑁𝑇𝑥 + 𝑁𝑁𝑕) (40) 

 

 

𝑃0 0.5𝑃0 0 −0.5𝑃0 −𝑃0 

     
−𝑃0 −𝑃0 −𝑃0 −𝑃0 −𝑃0 

𝜒 = 2 𝜒 = 1.5 𝜒 = 1 𝜒 = 0.5 𝜒 = 0 
 

Fig. 2 Various linear forces factor 
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0
2 2

( ( ))s s

h hI I  
 

  
 

(41) 

 

Now, by applying Eringen nonlocal theory, the small scale effect on behavior of system will be 

investigated. Therefore, the strain-stress relations changes as 

 
2

2

0 2
( ) xx

xx xxe a E
x


 


 

  

(42) 

 
2

2

0 2
( ) xz

xz xze a G
x


 


 

  
(43) 

 

So, the strain-stress relations for an nanobeams which is made from viscoelastic functionally 

graded material can be shown as follows 

 
2

2
( )(1 )xx

xx xx
E z

x
g

t






  


 






  
(44) 

 
2

2
( )xz

xz xz
G z

x


  


 

  
(45) 

 

By integrating above equations on the surface of the beam at the arbitrary point, the strain-force 

and strain-moment equations are obtained as follows 

 
2

2 xx xx

N u
N A B

x x x



  

  
    

(46) 

 
2

2 xx xx

M u
M B D

x x x



  

  
    

(47) 

 
2

2
( )xz

Q w
Q C

x x
 
 

  
   

(48) 

 

Where the coefficients of shear planes are defined as follows 

 

( (z) )(1 )dAs
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A
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t






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(50) 
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2( (z) )(1 ) z dAs

xx

A

D E E g
t






  


 

(51) 

 

( ( ) )S

xz s
A

C K G z G dA   
(52) 

 

Second-order derivation of the motion equations generates the following equations 

 
3 3

0 12 2
( )xx xx

u u f
N A B I I

x x x t x t x

 


    
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        
(53) 
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
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(54) 

 
3

2
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w w F
Q C I

x x t x
 

  
   

     
(55) 

 

In the last step, by substituting the shear plane’s coefficient into motion of equation, the 

governing equation of system extracted as follows 

 
22 4 2 2
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4 2
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(56) 
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(57) 

 
4 2 2

xx xx 2 1 22 2 2
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12 2 2 22
( ) ( ) 0xz

u w u u
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x x x t x t x t t

  
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      
       

          
(58) 

 

 

3. Solution procedure 
 

In order to predict solution of Eq. (58) semi-analytical approach can be applied all kind of 

boundary condition. In this paper, governing equation is solved by using the differential 

transformed method (DTM). 

 

3.1 Differential transformed method (DTM) 
 

The differential transformed method is a useful method for solving differential equations with 

least error which has the ability to solve nonlinear equations. Hassan (2002) applied the 

differential transformed method (DTM) to eigenvalue and by doing so, normalized the 

eigenfunctions. Wang (2013) investigated the axial vibration of a stepped bar consisting of two 
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uniform sections. In order to solve the dynamic equation, the differential transformation method is 

used. This method applies to a series of definitions to the governing equations and the boundary 

conditions that is the differential equations transformed to a series of algebraic equations. 

Based on the function provided by Chen (2004) transformed equation if f(x) can be represent as 

follows 
 

 
0

1 ( )
( )

!

k

x xk

d f x
F k

k dx


 

(59) 

 

Where, f(x) and F[k] shows main function and transformed equation respectively. The reverse 

transformed function is also indicated as follow 
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(60) 

 

By combining the two above equation can be shown 
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But in real use, series should be limited. 
 

 
 

0

0

0

( )
( )

!

kk

x x

N

k
k

d f xx x
f x

k dx







 

(62) 

 

With regardless of the limited point following relation can be achieved 
 

 
 

0

0

1

( )
( )

!

kk

x xk
k N

d f xx x
f x

k dx





 


 

 

(63) 

 

 

Table 1 A series of preset transformation rules (Chen 2004) 

Original function Transformed function 

    ( )f x g x h x       ( )F K G K H K   

  ? )f x g x    ( )F K G K  

    ( )f x g x h x     
0

( )
K

l

F K G K l H l


   

 
( )n

n

d g x
f x

dx
   

 !
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k n
F K G K n

k


   

  nf x x     
1

0

k n
F K K n

k n



   


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Table 2 A series of preset standard transmitted boundary condition rules (Chen 2004) 

X = 0  X = L  

Original B.C. Transformed B.C. Original B.C. Transformed B.C. 

f (0) 0  F[0] 0  f ( ) 0L   
0

[ ] 0
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dx
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
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2

2

(0)
0

dx
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2

2
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dx
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3

3
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0

dx

d f
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3
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    

0

1 2 [ ] 0
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



    

 

 

A series of transformations rules which are preset and have been recruited in the past research 

such as Chen (2004) are shown in the Table 1. 

The standard boundary condition transmitted according to the differential transformed method 

are also shown in the Table 2. 

By applying the above coefficient to the governing equations of system, algebraic equations of 

system’s motion can be represents as follows 
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(64) 

 

𝐶𝑥𝑧
 𝑘 + 2 !

𝑘!
𝑊 𝑘 + 2 +  𝑘 + 1 𝜑 𝑘 + 1 − 𝜇 𝐼 𝜔2  

 𝑘 + 2 !

𝑘!
𝑊 𝑘 + 2 + 𝐼 𝜔2𝑊 𝑘 = 0 (65) 

 

𝐵𝑥𝑥
 𝑘 + 2 !

𝑘!
𝑈 𝑘 + 2 + 𝐷𝑥𝑥

 𝑘 + 2 !

𝑘!
𝜑 𝑘 + 2  

−𝐶𝑥𝑧   𝑘 + 2 !𝑊 𝑘 + 1 + 𝜑 𝑘 + 2  − 𝜇 𝐼1 𝜔2  
 𝑘 + 2 !

𝑘!
𝑈 𝑘 + 2  

+𝐼2  𝜔2𝑊 𝑘 
 𝑘 + 2 !

𝑘!
𝜑 𝑘 + 2 + 𝐼1 𝜔2𝑈 𝑘 + 𝐼2  𝜔2𝑈𝜑 𝑘 = 0 

(66) 

 

In which U[k], W[k] and ϕ[k] shows transformed function related to u, w and 𝜑. According to 

the transformation rules which are related to the boundary conditions, simply-simply supported 

boundary condition, clamped-clamped boundary condition, clamped-simply supported boundary 

condition and cantilever boundary condition are shown in below equation respectively. 
 

𝑊 0 = 0,     𝜑 0 = 0,     𝑈 0 = 0 

 𝑊 𝑘 = 0,

∞

𝑖=0

      𝑘 𝜑 𝑘 = 0,

∞

𝑖=0

      𝑘 𝑈 𝑘 = 0

∞

𝑖=0

 
(67a) 
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𝑊 0 = 0,     𝜑 0 = 0,     𝑈 0 = 0 

 𝑊 𝑘 = 0,

∞

𝑖=0

      𝜑 𝑘 = 0,

∞

𝑖=0

      
 

𝑈 𝑘 = 0

∞

𝑖=0

 
(67b) 

 

𝑊 0 = 0,     𝜑 0 = 0,     𝑈 0 = 0 

 𝑊 𝑘 = 0,

∞

𝑖=0

      𝑘 𝜑 𝑘 = 0,

∞

𝑖=0

      𝑘 𝑈 𝑘 = 0

∞

𝑖=0

 
(67c) 

 

      𝑊 0 = 0,     𝜑 0 = 0,     𝑈 0 = 0 

  𝑘 − 2  𝑘 − 1 𝑘 𝑊 𝑘 = 0,

∞

𝑖=0

      𝑘 𝜑 𝑘 = 0,

∞

𝑖=0

      𝑘 𝑈 𝑘 = 0

∞

𝑖=0

 
(67d) 

 

Governing equation and related boundary condition can be written as eigen function problem as 

follows 
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( ) ( ) ( ) 0

( ) ( ) ( )

A A A U

A A A W

A A A
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  

   

   
   


   
        

(68) 

 

Which matrix 3×3 describes coefficient of U, W and Φ, respectively. Hence, in order to find the 

answer of the system the coefficient’s determinism must be zero. 
 

11 12 13

21 22 23

31 32 33

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( )

A A A

A A A

A A A

  

  

  



 

(69) 

 

 

4. Results and discussion 
 

To verify the accuracy of calculated results which are extracted based on the differential 

transformed method (DTM), “reduce the problem condition to vibration analysis for simple 

Timoshenko nanobeam under simply supported boundary condition to be consistent with the 

Eltaher et al. (2014) research. The present results are compared with the results presented by 

Eltaher et al. (2014) for the natural frequency response of Timoshenko functionally graded 

nanobeam. The comparison results can be seen in Table 3 which shows a good agreement and 

verifies the presented approach. The FG nanobeam is supposed to be made of aluminum (E = 70 

GPa) and alumina (E = 380 GPa) and subjected a uniformity distributed the normal load from 

𝑥 = 0 to 𝑥 = 𝑙𝑥 . In this case, the numerical loading factor is equal to zero at  𝜒 = 0 . The 

nanobeam is rectangular with simply supported boundary condition along both edges. 

As given in Table 4, the linear fundamental natural frequency for simply supported boundary 

condition compared with Eltaher et al. (2014), “as it can be observed the results are in excellent 

agreement. 
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Table 3 Non-dimensional natural frequency comparison (𝜔 1 = 𝜔1𝐿
2 𝜌𝐴/𝐸𝐼) for 

Timoshenko nanobeam under simply supported boundary condition (b = 1000 

nm, L = 10,000 nm, h = 100 nm, p = 0) 

L/h 𝜇 × 10−12 Eltaher et al. (2014) 
Present 

DTM 

20 

0 9.8797 9.8295 

1 9.4238 9.3776 

2 9.0257 8.9828 

3 8.6741 8.6341 

4 8.3607 8.3230 

5 8.0789 8.0433 

50 

0 9.8724 9.8631 

1 9.4172 9.4097 

2 9.0205 9.0135 

3 8.6700 8.6636 

4 8.3575 8.3514 

5 8.0765 8.0707 

100 

0 9.8700 9.8679 

1 9.4162 9.4143 

2 9.0197 9.0180 

3 8.6695 8.6678 

4 8.3571 8.3555 

5 8.0762 8.0747 

 

 

Table 4 Comparison of non-dimensional frequency for FG-nanobeam 

910   

k = 0 k = 1 k = 2 k = 5 

Eltaher 

et al. 2012 
Present 

Eltaher 

et al. 2012 
Present 

Eltaher 

et al. 2012 
Present 

Eltaher 

et al. 2012 
Present 

0 9.8724 9.8679 7.0852 6.9951 6.5189 6.4225 5.9990 5.9421 

1 9.4172 9.4143 6.7583 6.6736 6.2191 6.1272 5.7218 5.6690 

2 9.0205 9.0180 6.4737 6.3926 5.9571 5.8693 5.4808 5.4303 

3 8.6700 8.6678 6.2222 6.1444 5.7257 5.6414 5.2679 5.2195 

 

 

The nonlocal parameter (𝜇 ) effect on non-dimensional frequency for various boundary 

condition in various aspect ratio shown in Figs. 3 to 5. These figures illustrates, the non-

dimensional frequency decreases by an increase in the value of the nonlocal parameter from 0 to 

10. The effects of various aspect ratio in the frequency of system increases by the increase in the 

value of aspect ratio. The amount of non-dimensional frequency in the various amount of aspect 

ratio has a large difference with each other. When the nanobeam is too narrow, beam’s stability 

disappears. 

413



 

 

 

 

 

 

Farzad Ebrahimi, Ramin Babaei and Gholam Reza Shaghaghi 

The effect of various boundary condition on non-dimensional frequency in different aspect 

ratio can be understandable from the mentioned figures. The amount of the non-dimensional 

frequency in simply supported boundary condition represents a greater amount than the non- 
 

 

 

Fig. 3 Nonlocal coefficient effect on vibration behavior of system under s-s boundary condition for 

various aspect ratio (𝑈 = 10, Δ𝑇 = 25 & 𝐾𝐺 = 10) 
 

 

 

Fig. 4 Nonlocal coefficient effect on vibration behavior of system under c-c boundary condition 

for various aspect ratio (𝑈 = 10, Δ𝑇 = 25 & 𝐾𝐺 = 10) 
 

 

 

Fig. 5 Nonlocal coefficient effect on vibration behavior of system under cantilever boundary 

condition for various aspect ratio (𝑈 = 10, Δ𝑇 = 25 & 𝐾𝐺 = 10) 
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dimensional frequency in the clamped boundary condition. And also, the amount of the non-

dimensional frequency in simply supported boundary condition represents a smaller amount than 

non-dimensional frequency in cantilever boundary condition. This behavior of the system was 

fairly predictable beforehand. 

To illustrate the effect of FG index on the non-dimensional frequency of nanobeams, the 

variation of non-dimensional frequency with FG index in various aspect ratios are presented in 

Figs. 6-8. According to these figures, it can be concluded that, the FG index effects are nearly lost 

to low aspect ratio in all cases. This is predictable because of the effect of FG index increases by 

the increase in structure’s aspect ratio. Furthermore, the gap between the amounts in different 

aspect ratio increase by the increase in FG index. Anyway, it is realized that, the amount of non-

dimensional frequency increases by increase in FG index although, this increase in low aspect 

ratio is not very tangible. 

Fig. 9 shows the effect of thermal environment on non-dimensional frequency in the various 

boundary condition. This figure shows, the frequency increases when the nanobeam placed in 

higher temperature environment, especially for cantilever boundary condition. The effects of 

thermal environment on non-dimensional frequency increases for the higher value of thermal 
 

 

 

Fig. 6 FG index effect on vibration behavior of system under s-s boundary condition for various 

aspect ratio (𝜇 = 1 × 10−9, Δ𝑇 = 25 & 𝐾𝐺 = 10) 
 

 

 

Fig. 7 FG index effect on vibration behavior of system under c-c boundary condition for various 

aspect ratio (𝜇 = 1 × 10−9, Δ𝑇 = 25 & 𝐾𝐺 = 10) 
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Fig. 8 FG index effect on vibration behavior of system under cantilever boundary condition for 

various aspect ratio (𝜇 = 1 × 10−9, Δ𝑇 = 25 & 𝐾𝐺 = 10) 

 

 

 

Fig. 9 Thermal environment effect on vibration behavior of system under various boundary condition 

(𝜇 = 1 × 10−9, 𝐿 𝑕 = 10 & 𝐾𝐺 = 10) 

 

 

 

Fig. 10 Frictional order effect on vibration behavior of system under various boundary condition 

(𝜇 = 1 × 10−9, 𝐿 𝑕 = 10, 𝑔 = 0.05 & 𝐾𝐺 = 10) 
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changes. For more information, the difference between frequencies of the system simply supported 

boundary condition is not tangible by an increase in thermal changes. Fig. 10 shows the effect of 

the frictional order of viscoelastic material on the non-dimensional frequency of various boundary 

condition. According to the figure, non-dimensional frequency decrease by the increase in 

viscoelastic frictional order. It is predictable because increase in the frictional order of material that 

subjected to the in-plane loading causes material become more flexible. The effects of frictional 

order on non-dimensional frequency more decreases for simply supported boundary condition. 

Table 5 shows the effect of Pasternak medium on non-dimensional buckling of FG nanobeams 

for various boundary condition. The results show that the frequency increases by the increase in 

the amount of Pasternak coefficient. This behavior is visible for all of cases and also, the beam’s 

frequency shows more increases for cantilever boundary condition. The important note in this 

table is the difference in the value of frequency between simply supported boundary condition and 

cantilever boundary condition. 

Table 6 Shows the effect of residual surface stresses effect on the frequency of nanobeam. Non-

dimensional frequency in the FGM nanobeam increases in the presence of residual surface stresses. 

The fundamental frequency increases significantly for cantilever boundary condition. These 

behavior occurs on the nanobeams because the degree of freedom in cantilever beams causes 

increases the impact of the beam on vibration behavior from external forces. 

 
 

Table 5 Pasternak foundation effect on vibration behavior of system under various 

boundary condition  𝜇 = 1 × 10−9, 𝐿 𝑕 = 10, 𝑔 = 0.05 & 𝑢 = 1   

𝐾𝐺 S-S C-C C-F 

0 2.6834 4.8204 4.9205 

5 3.1118 6.1219 6.7179 

10 3.1235 6.7315 6.9232 

 
 

Table 6 Residual Surface stresses effect on vibration behavior of system under various 

boundary condition  𝜇 = 1 × 10−9, 𝐿 𝑕 = 10, 𝑔 = 0.05 & 𝑢 = 1   

𝐻 = 2𝑏𝜏0 S-S C-C C-F 

0 2.7101 3.4394 4.0017 

2𝑏𝜏0 3.1235 4.8204 4.9205 

 
 

Table 7 The effect of different linear varying load on vibration behavior of system 

under various FG index and various nonlocal parameter (𝑦 = 0.4 × 10−9) 

 𝜒 = 0 𝜒 = 0.5 𝜒 = 1 𝜒 = 1.5 𝜒 = 2 

𝑘 

0 3.5623 2.1798 2.1518 1.8580 1.9770 

1 4.2106 3.8328 3.1801 2.6981 2.9075 

3 4.7552 4.5985 3.6655 3.6646 3.8393 

𝜇 

1 2.6896 3.0328 3.1801 2.6981 2.9075 

3 2.3615 2.5924 2.8213 2.1259 2.6285 

5 1.7327 1.9415 2.4463 2.2886 2.3317 
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Table 7 shows the effect of various linearly loading factors on the frequency of nanobeam. 

Non-dimensional frequency in the FGM nanobeam decreases by an increase in linear loading 

factors from 0 (pure pressure) to 2 (pure bending), “This increases in more tangible for a pure 

bending state. The fundamental frequency increases significantly by an increase in FG index in 

presence of various loading factor. 

Table 8 shows the effect of humidity percent on the frequency of nanobeam. Non-dimensional 

frequency in the FGM nanobeam decreases in the presence of humidity environment and this 

behavior was predictable because humidity environment causes the material becomes more 

flexible. And also non-dimensional frequency decreases by an increase in the nonlocal parameter. 

This behavior occurs in all cases. As well as the frequency of nanobeam decreases by the increase 

in FG index amount. The presences of humidity environment lead to further decrease in frequency 

by the increase in FG indexes and nonlocal parameter. 

 

 

 

 
Table 8 The effect of different humidity percent on vibration behavior of system under 

various boundary condition, nonlocal parameter and FG indexes (L = 10 nm, h 

= L/20, b = 0.5h, Δ𝑇 = 10°C) 

µ *nm2 %∆H 
k = 0.1 k = 1 

V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5 

S-S 

0 

0 9.12949 9.0449 8.9595 7.0327 6.9356 6.8370 

10 9.1177 9.0330 8.9475 6.9695 6.8714 6.7720 

20 9.1059 9.0211 8.9555 6.9057 6.8067 6.7063 

2 

0 8.3280 8.2352 8.1413 6.4140 6.3074 6.1989 

10 8.3151 8.2222 8.1282 6.3447 6.2368 6.1271 

20 8.3022 8.2091 8.1150 6.2745 6.1655 6.0544 

C-S 

0 

0 14.3275 14.2648 14.2018 11.0425 10.9706 10.8981 

10 14.3187 14.2560 14.1929 10.9956 10.9234 10.8506 

20 14.3100 14.2472 14.1841 10.9486 10.8760 10.8029 

2 

0 12.8872 12.8068 12.7258 9.9305 9.8382 9.7450 

10 12.876 12.7955 12.7145 9.8704 9.7775 9.6837 

20 12.8648 12.7842 12.7032 9.8099 9.7164 9.6220 

C-C 

0 

0 20.8331 20.7871 20.7410 16.0601 16.0074 15.9545 

10 20.8267 20.7807 20.7345 16.0258 15.9729 15.9198 

20 20.8203 20.7742 20.7281 15.9913 15.9383 15.8851 

2 

0 18.6089 18.5336 18.4580 14.3427 14.2564 14.1695 

10 18.5984 18.5231 18.4474 14.2864 14.1998 14.1126 

20 18.5879 18.5125 18.4368 14.2300 14.1430 14.0554 
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5. Conclusions 
 
A general view of the article contains a lot of content, including the importance of temperature 

raises, Pasternak foundation, size dependent effect, humidity environment, residual surface stress 

and etc. on the frequency response of functionally graded nanobeams that subjected to linear in-

plane load based on elasticity nonlocal theory. The governing equation is solved by using the 

differential transformed method. The results are compared with the results that are extracted by 

Eltaher et al. (2014) and shows good agreement with them. Various boundary condition is 

considered for the FGM nanobeam. According to the results it can be seen that, Pasternak 

foundation causes an increase in frequency for various loading condition. The non-dimensional 

frequency increases for the higher value of nanobeams temperature. Responses of non-dimensional 

frequency are lesser than local states for various loading condition in all cases. In addition, the 

frequency of system decreases for higher value of nonlocal parameter. The non-dimensional 

frequency increases by an increase in the value of FG index. For the special state, when loading 

condition makes pure in-plane bending, the effect of nonlocal is most important than other states. 

Anyway, at the huge beams the difference in the small scale effect is negligible, however, there is 

the difference between bending state and other states even for large dimension. It can be seen that, 

frequency decreases by an increase in the humidity percent. Further, the effect of small scale effect 

increases for the higher value of mode number. By increase in the FG index at linear loading 

factors, the amount of beams frequency increases by the increase in the value of nonlocal 

parameter or aspect ratio, the amount of beams frequency reduced r in linear load factor. 
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