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Abstract.   This work represents the study of the vibration response of the double walled carbon nanotubes 
(DWCNT) for various boundary conditions. The inner and outer carbon nanotubes are modeled as two individual 
Euler-Bernoulli’s elastic beams interacting each other by Van der waals force. Differential transform method (DTM) 
is used as a numerical method to solve the governing differential equations and associated boundary conditions.  
The influence of Winkler elastic medium on vibration frequency is also examined and results are interpreted. 
MATLAB is used as a tool for solving the governing differential equations. The fundamental natural frequencies are 
validating with those available in literature and observed a good agreement between them. 
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1. Introduction 
 

Advanced materials and nano-scale structures with enhanced mechanical, thermal, and 
electrical properties, such as graphene sheets, are widely used in many nanoelectro-mechanical 
systems. Thus understanding the dynamic response of these nanostructures is much needed for 
design and development of a new class of nano-systems such as nano- actuators and nano-sensors. 

Iijima’s (1991) discovery paper on multi-walled carbon nanotubes led to a major revolution in 
the area of nano science and nanotechnology. Carbon nanotubes have subjected to much attention 
as a result of their extending applications in the different emerging fields of nanotechnology. 

In aerospace industries, there is a great demand for new materials which show improved 
mechanical properties i.e., high strength to weight ratio, high thermal stability, and high corrosion 
resistance. Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. Nanotubes 
have been fabricated with l/d ratio of up to 132,000,000:1, significantly larger than any other 
material (Ball 2001, Rafiee and Moghadam 2014). The structure of a single walled carbon 
nanotube can be characterized by packaging a one-atom-thick layer of graphite called graphene 
into a flawless cylinder (Ball 2001, Baughman et al. 2002, Qian et al. 2002). Carbon nanotubes are 
capable of withstanding a temperature of 2800°C, which is much higher than the current carbon 
fiber of 1600°C (Pop et al. 2007, Pop et al. 2005, Roth and Carroll 2015). Carbon nanotubes are 
the strongest and stiffest materials yet discovered in terms of the tensile strength and Elastic 
Modulus respectively (Treacy et al. 1996, Stallard et al. 2018). 
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As carbon nanotubes have very high tensile strength and elastic property. Therefore the 

vibration and buckling analysis of carbon nanotubes is much essential to get insight in to its 
capability for industrial applications. By experimental observations, it has been observed that the 
small-scale effects play a significant role in the physical behavior of nano- structures (Affoune et 
al. 2001, Karličić et al. 2015). However, performing experiments on the nano-scale level is not an 
easy task due to weak control of parameters in the system and high-cost of such research (Frank et 
al. 2007, Thamaraikannan and Pradhan 2016). For this reason, the researchers are focused on 
developing the theoretical methods. In the branch of theoretical models, two main techniques exist: 
(i) atomistic models; and (ii) continuum models. Atomistic methods such as deterministic and 
stochastic molecular dynamics, density function theory etc., are very important and useful for 
nano-structures composed of a small number of particles (Frank et al. 2007). However, for the 
systems that are composed of a large number of particles, this method is computationally 
prohibitive (Pei et al. 2010, Ansari et al. 2010). Due to mentioned demerits of the experimental 
and atomistic techniques, theoretical models based on continuum theories attracted a great 
attention of researchers in recent years. 

For vibration analysis of one dimensional beam-like structures, Euler–Bernoulli beam model 
and Timoshenko beam model were usually employed, which assumed that the cross-section of 
beams remained plane under bending deformation (Wang and Varadan 2006, Murmu and Pradhan 
2009a, Ravi Kumar 2017a, Mandal and Pradhan 2014, Jiang et al. 2017). Size-dependent 
continuum-based methods (Murmu and Pradhan 2009b, Bikramsingh and Sankara Subramanian 
2017, Kumar and Reddy 2017, Kumar and Deol 2016, Fang et al. 2013, Akgöz and Civalek 2016) 
are becoming popular in modeling small sized structures as it offers much faster and accurate 
solutions. Hosseini et al. (2014) analyzed the vibration of a single-layered graphene sheet 
introducing the Mindlin plate theory and nonlocal elasticity. Solutions for natural frequencies were 
obtained in closed form for simply-supported graphene sheets. Recently, some researchers have 
analyzed nanoplates by utilizing the nonlocal high order shear deformation plate theories 
(Bounouara et al. 2016, Mandal and Pradhan 2014). Yoon et al. (2002) analyzed the vibration 
behaviour of Multi-walled carbon nanotubes utilizing Multiple-elastic beam model and Euler 
beam theory. They identified the non co-axial vibration response of carbon nanotubes under 
simply supported boundary condition. Which is determined to agree well with more recent 
atomistic simulations on the noncoaxial vibration of multi-walled carbon nanotubes (Zhao et al. 
2003, Li and Chou 2004, Yoon et al.2002). 

Bikramsingh and Sankara Subramanian (2017), Kumar and Reddy (2017), Ravi Kumar et al. 
(2017), Karličić et al. (2015), Tounsi et al. (2013) carried out vibration and buckling analysis of 
single and double -walled carbon nanotubes embedded in an elastic medium and visco-elastic 
medium. They presented a detailed structural analysis of nanoscale materials and devices. 
Relevant vibration analyses are reported by many authors in literature by considering both linear 
and non-linear cases (Gul and Aydogdu 2018, Fernandes et al. 2017, Manevitch et al. 2017, Askari 
and Esmailzadeh 2017). 

In the present work, differential transform method is used to study the vibration of carbon 
nanotubes embedded in an elastic medium. Zhou proposed differential transformation method to 
solve both linear and non-linear initial value problems in electric circuit analysis. Chen and Ho 
(1999) applied this method to eigen value problems. 
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Table 1 Differential transformations for mathematical equations 

Original function Transformed function 

y(x) = u(x)  v(x) Y(i) = U(i)  V(i) 
y(x) = λu(x) Y(i) = λU(i) 

y(x) = 
n

n

dx

xud )(
 Y(i) = (i+1)(i+2)...(i+n)U(i+n) 

 
 
2. Differential transform method 
 

The differential transform method is a semi-analytical method which is based on the Taylor 
series expansion. The differential transformation of the ith derivative of the function u(x) is defined 
as follows 
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And the differential inverse transformation of U(i) is expressed as 
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In real application function, u(x) is expressed as finite series and Eq. (2) can be written as 
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Now using certain transformation rules we can convert the governing differential equation and 

associated Boundary Conditions into some algebraic equations and after solving them we can get 
the desired results. We can use the following transformation table for this purpose. 
 
 
3. Formulation 
 

Based on the Euler–Bernoulli beam model, the governing equation of motion of a beam is 
given by 

2 4

2 4
(x)

w w
A EI P

t x
  

 
 

(4)

 
Where x and t are the axial coordinate and time, respectively. w(x, t) and p are the deflection of 

carbon nanotubes and the distributed transverse force acted on the nanotubes, respectively. E and I 
are the elastic modulus and the moment of inertia of a cross-section, respectively. A is the cross-
sectional area and ρ is the mass density of nanotubes. 
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For the double walled carbon nanotubes, the interaction between inner and outer nanotubes is 
considered to be coupled together through the Van der Waals (vdW) forces. Eq. (4) can be applied 
to each layer of the inner and outer nanotubes of the double-walled carbon nanotubes. Thickness 
of inner and outer nanotubes is assumed to be constant. Based on the Euler-Bernoulli beam model, 
we have 
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Where, the subscripts 1 and 2 denote the quantities associated with the inner and outer 

nanotubes respectively. 
The pressure P1 acting on the inner nanotube is due to the van der waals interaction is given by 
 

)( 121 wwcp   (7)
 
Where, c is the vdW interaction coefficient between inner and outer nanotubes. 
The pressure acting on the outer layer due to the surrounding elastic medium can be given by 
 

2kwpw   (8)
 
Where negative sign indicates that pw is in the direction opposite to the deflection of nanotubes. 

k is the spring constant. 
Thus, for the embedded DWCNTs, the pressure of the outer nanotube supported by the elastic 

medium is given by 
)( 122 wwcpp w   (9)

 
In the model Van der waals interaction (vdW) coefficient (c) can be obtained from the interlayer 

energy potential, given as (He et al. 2006) 
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Here a = 0.142 nm (carbon to carbon atom bond length). R1, R2 are the inner and outer radii of 

double walled carbon naotubes. σ = 0.34 nm, ԑ = 2.967 meV are the vdW radius and the well depth 
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of Lennard-Jones potential respectively as given by Saito et al. (2001). 
Thus 
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In this analysis, we consider that the deflection of double walled carbon nanotubes has different 

vibrational modes, Wj (x), j = 1, 2 for the inner and outer nanotubes. 
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Using the Table 1, the differential transformation of Eqs. (11) and (12) can be written as 
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The above equations can be solved for natural frequency by using the appropriate boundary 

conditions and transformed boundary conditions. 
 
3.1 Boundary conditions 
 
SIMPLY SUPPORTED CNTs 
For the simply supported CNT beam boundary conditions at both ends are defined 

mathematically as 
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CLAMPED-CLAMPED CNTs 
For clamped-clamped CNT case, the boundary conditions at both ends are defined as 
 

0    ,0     ,0     ,0 2
2

1
1 

dx

dw
w

dx

dw
w  (17)
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CLAMPED-HINGED CNTs 
For clamped-hinged CNT case, the boundary conditions are defined as 
At x = 0 
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dx
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At x = L 
 

0    ,0     ,0     ,0
2

2
2

22
1

2

1 
dx

wd
w

dx

wd
w  (19)

 
 

4. Results and discussions 
 

4.1 Comparison with analytical solutions 
 
In this study, we consider double walled carbon nanotubes embedded in a Winkler medium. 

Nanotubes are having the inner and outer diameters of 4.8 nm and 5.5 nm, respectively. The 
effective thickness of each nanotube is taken to be as 0.34 nm. The elastic modulus of carbon 
nanotube is 1 TPa and the density is considered as 2.3 g/cm3 (Elishakoff and Pentaras 2009). 

By using the differential transformation method as the numerical method the natural frequency 
for double walled carbon nanotubes has been computed. Results are compared and interpreted. 

From Tables 2-3 it is clearly observed that fundamental frequency of double walled carbon 
nanotubes is decreasing with increasing aspect ratio (L/d, where d = diameter of the outer nanotube) 
of nanotubes. 

 
 

Table 2 DWCNTs fundamental frequency in THz for simply supported ends 

L/d 10 12 14 16 18 20 

Present [DTM] 0.46830 0.32527 0.23899 0.18298 0.14467 0.11716

Exact (Elishakoff and Pentaras 2009) 0.46830 0.32527 0.23899 0.18298 0.14467 0.11716

Bubnov (Elishakoff and Pentaras 2009) 0.47211 0.32791 0.24093 0.18447 0.14576 0.11806

Petrov (Elishakoff and Pentaras 2009) 0.46884 0.32564 0.23926 0.18319 0.14475 0.11725

(Xu et al. 2006) 0.46 ……. ……. …….. …….. 0.11 

 
 

Table 3 Clamped-clamped DWCNTs fundamental frequency in THz 

L/d 10 12 14 16 18 20 

Present [DTM] 1.06406 0.73683 0.54256 0.41371 0.32654 0.26546

Bubnov ( Elishakoff and Pentaras 2009) 1.07986 0.75063 0.55171 0.42248 0.33385 0.27043

Petrov ( Elishakoff and Pentaras 2009) 1.06478 0.73087 0.54341 0.41135 0.32505 0.26331

(Xu et al. 2006) 1.06367 …… …… ……. ……. 0.2660
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4.2 Influence of surrounding medium on vibration frequencies of DWCNTs 
 
Now if we change the value of Winkler Elasticity constant (k) from 0-300 GPa and L = 20 nm, 

we can obtain different values of vibration frequencies which are shown below. 
Influence of the surrounding medium on the vibration frequency is investigated based on the 

Winkler spring model. From Figs. 1-3, it can be found that vibration frequencies of the embedded 
double walled carbon nanotubes are larger than those of the nested double walled carbon 
nanotubes. Especially, the influences of surrounding medium on the vibration frequency are 
significant for the first in-phase modes while on the other hand stiffness of surrounding medium 
impacts very little on the vibration frequencies of the anti-phase modes. 

 
4.3 Vibration amplitude ratio (Y1 /Y2) of inner and outer nanotubes 
 
Tables 4-6 represent the vibration amplitudes of inner and outer nanotubes for various 

boundary conditions. 
 
 

 

Fig. 1 Influence of winkler foundation on vibration frequencies for simply supported DWCNTs 
 
 

 

Fig. 2 Influence of winkler foundation on vibration frequencies for clamped-clamped DWCNTs 
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Fig. 3 Influence of winkler foundation on vibration frequencies for clamped-hinged DWCNTs 
 
 

Table 4 Amplitude ratio of the inner to outer nanotubes for Simple-supported DWCNTs 

Mode 1 2 3 4 5 6 

Frequency (THz) 0.618 2.586 5.447 7.283 7.564 8.248 

Y1 / Y2 1.000 1.130 1.438 2.183 -0.546 -0.664 
 
 

Table 5 Amplitude ratio of the inner to outer nanotubes for Clamped - Hinged DWCNTs 

Mode 1 2 3 4 5 6 

Frequency (THz) 0.968 2.84 5.601 7.684 7.892 8.695 

Y1 / Y2 1.010 1.134 1.597 2.210 -0.740 -0.862 
 
 

Table 6 Amplitude ratio of the inner to outer nanotubes for Clamped - Clamped DWCNTs 

Mode 1 2 3 4 5 6 

Frequency (THz) 1.08 3.046 5.988 8.245 8.526 9.424 

Y1 / Y2 1.023 1.153 1.692 2.362 -0.964 -1.020 

 
 
Out of all these (Tables 4-6) boundary conditions, clamped –clamped boundary condition has 

the highest natural frequencies. In anti-phase mode there are very little variations in fundamental 
frequencies. These observations may be useful for the designer to estimate the fundamental natural 
frequencies in each two series. 
 
 
5. Conclusions 
 

In this study, the vibration analysis of double walled carbon nanotubes embedded in an elastic 
medium for various boundary conditions is studied by using a numerical technique called 
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differential transform method in a simple and accurate way. Results show that phase modes have a 
strong dominance on natural frequencies of carbon nanotubes. The stiffness of surrounding 
medium is also studied which shows that it has significant effect on the vibration frequencies of 
double walled carbon nanotubes for the first in-phase modes and represents very little effect on 
frequencies in anti-phase modes. 

The investigation presented may be helpful in the application of carbon nanotubes such as high-
frequency oscillators, dynamic mechanical analysis and mechanical sensors. 
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