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Abstract.  An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) 

nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical 

properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law 

model. To capture the small size effects, Eringen’s nonlocal elasticity theory is adopted. Employing Hamilton’s 

principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they 

are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric 

voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP 

nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, 

this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams. 

 
Keywords:  functionally graded piezoelectric nanobeam; buckling; nonlocal elasticity theory; third-order 
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1. Introduction 
 

Functionally graded materials (FGMs) are well known as an alternative materials which are 

extensively applied in chemical, mechanical, electronic, civil, automotive and optical industries 

due to possessing supreme mechanical performance compared to classical composite materials. 

FGMs have microscopically heterogeneous structure and material properties changes with 

continuous composition gradation from one surface to another. 

Nowadays, FGMs have gained its applicability in micro and nano electro-mechanical systems 

(MEMS/NEMS) which are composed of different structural elements including nanoscale beams 

and plates. Therefore, in the last decade nano scale structures achieved severe interest by 

researchers. The classical continuum theory can properly applied in the mechanical analysis of the 

macroscopic structures, but fails to capture the size effect on the mechanical behaviors on 

micro/nano structures. To consider the nanoscale influences the classical continuum theory must 

extended. So this can be achieved through the nonlocal elasticity theory proposed by Eringen 
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which supposes that the stress state at a desired point is a function of the strain at all neighbor 

points of the body. 

Many papers, dealing with static and dynamic behavior of FGM nanobeams, have been 

published recently. Among them, Eltaher et al. (2012, 2013a) presented a finite element analysis 

for free vibration of FG nanobeams using nonlocal Euler-Bernulli beam model. In another study 

they researched the static and stability behavior of FG nanobeams based on nonlocal continuum 

theory (Eltaher et al. 2013b). Also, based upon nonlocal Timoshenko and Euler-Bernulli beam 

models, Simsek and Yurtcu (2013) investigated bending and buckling behavior of size-dependent 

FG nanobeam usnig analytical method. Nonlinear free vibration of FG nanobeams within the 

framework of Euler–Bernoulli beam model including the von Kármán geometric nonlinearity 

studied by Sharabiani and Yazdi (2013). Also, forced vibration analysis of FG nanobeams based on 

the nonlocal elasticity theory and using Navier method for various shear deformation theories 

studied by Uymaz (2013). Rahmani and Pedram (2014) analyzed the size effects on vibration of 

FG nanobeams based on nonlocal TBT. Nonlinear free vibration of FG nanobeams with fixed ends, 

i.e., simply supported-simply supported (SS) and simply supported-clamped (SC), using the 

nonlocal elasticity within the frame work of EBT with von Kármán type nonlinearity is studied by 

Nazemnezhad and Hosseini-Hashemi (2014). Also, recently Hosseini-Hashemi et al. (2014) 

investigated free vibration of FG nanobeams with consideration surface effects and piezoelectric 

field using nonlocal elasticity theory. Most recently Ebrahimi et al. (2015, 2016) examined the 

applicability of differential transformation method in investigations on vibrational characteristics 

of FG size-dependent nanobeams. In another work, Ebrahimi and Salari (2015a, b) presented a 

semi-analytical method for vibrational and buckling analysis of FG nanobeams considering the 

position of neutral axis. An exact solution for the nonlinear forced vibration of FG nanobeams in 

thermal environment based on surface elasticity theory is presented by Ansari et al. (2015). 

Recently, Rahmani and Jandaghian (2015) presented buckling analysis of FG nanobeams based on 

a nonlocal third-order shear deformation theory. Also, mechanical responses of FG nanoscale 

beams using a refined shear deformation beam theory examined by Zemri et al. (2015). 

Moreover, piezoelectric materials are known as a type of smart structures which can create 

electricity when exposed to mechanical stresses. Also, they will work in reverse, producing a strain 

by the application of an electric field. Therefore, the piezoelectrics materials can be used in several 

fields including micro/nano electromechanical systems, resonators, mechanical and chemical 

sensors. Until now, several articles have investigated mechanical behavior of FGP beams. 

Mechanical behavior of a FGP cantilever beam exposed to various loadings is studied by Shi and 

Chen (2004). They characterized the piezoelectric beam by continuously graded properties for one 

elastic parameter and the material density. Also, static and vibrational responses of monomorph, 

bimorph, and multimorph actuators made of FGP materials under a combined thermal-electro-

mechanical load based upon Timoshenko beam model studied by Yang and Xiang (2007). 

Doroushi et al. (2011) investigated the free and forced vibration characteristics of an FGPM beam 

subjected to thermo-electro-mechanical loads using the higher-order shear deformation beam 

theory. Kiani et al. (2011) analysed buckling behavior of FGM beams with or without surface-

bonded piezoelectric layers subjected to both thermal loading and constant voltage. Komijani et al. 

(2013) studied free vibration of FGPM beams with rectangular cross sections under in-plane 

thermal and electrical excitations in pre/post-buckling regimes. Lezgy-Nazargah et al. (2013) 

suggested an efficient three-nodded beam element model for static, free vibration and dynamic 

response of FGPM beams. Large amplitude free flexural vibration of shear deformable FGM 

beams with surface-bonded piezoelectric layers subjected to thermo-piezoelectric loadings with 
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random material properties presented by Shegokar and Lal (2014). Li et al. (2014) developed a 

size-dependent FGP beam model using the modified strain gradient theory and Timoshenko beam 

theory. Therefore it could be noted that the main deficiency of above-mentioned studies is that the 

small size effects is not considered in these works. To capture the size effect, recently a parametric 

study is performed to explore the influences of size-dependent shear deformation on static bending, 

buckling and free vibration behavior of microbeams based on modified couple stress classical and 

first shear deformation beam models by Dehrouyeh-Semnani and Nikkhah-Bahrami (2015). They 

mentioned that the effect of size-dependent shear deformation on mechanical responses of the 

microbeams has an ascending trend with respect to dimensionless material length scale parameter. 

Also, size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage 

based on strain gradient theory investigated by Sahmani and Bahrami (2015). Therefore, it is clear 

that a work to study vibrational responses of FGP nanobeams using a parabolic shear deformation 

beam theory is not yet published. It can be seen that most of recent works for studying influences 

of piezoelectric materials on mechanical behavior of FG nanobeams have done based on Euler-

Bernoulli (EBT) and Timoshenko beam (TBT) theories. It is well known that Euler-Bernoulli 

beam model fails to capture the influences of shear deformations and hence the buckling loads and 

natural frequencies of nanobeams are overestimated. Timoshenko beam model has the potential to 

capture the influences of shear deformations, but a shear correction factor is required to perfect 

demonstration of the deformation strain energy. Several higher-order shear deformation theories 

which are needless of shear correction factors are introduced such as the parabolic shear 

deformation theory proposed by Reddy (2007), the generalized beam theory proposed by Aydogdu 

(2009), sinusoidal shear deformation theory of Touratier (1991) and hyperbolic shear deformation 

presented by Soldatos (1992). 

This paper aims to develop a higher order beam model for the buckling analysis of simply 

supported FG piezoelectric nanobeams. The electro-mechanical material properties of the beam 

are supposed to be graded in the thickness direction according to the power law distribution. The 

small size effect is captured using Eringen’s nonlocal elasticity theory. Nonlocal governing 

equations for the buckling of a higher order FG nanobeam have been derived via Hamilton’s 

principle. The most beneficial feature of the present theory is that it accounts for a parabolic 

variation of the transverse shear strains across the thickness direction and verifies the zero traction 

boundary conditions on the top and bottom surfaces of the beam without using shear correction 

factors. Governing equations are solved using Navier type method and various numerical 

examples are provided investigating the influences of external electric voltage, power-law index, 

slenderness ratio and nonlocal parameter on buckling behavior of FG piezoelectric nanobeams. 

 

 

2. Theoretical formulations 
 

2.1 The material properties of FGP nanobeams 
 

Assume a FG nanobeam composed of PZT-4 and PZT-5H piezoelectric materials exposed to an 

electric potential 𝛷(𝑥, 𝑧, 𝑡), with length 𝐿 and uniform thickness ℎ, as shown in Fig. 1. The 

effective material properties of the FGPM nanobeam are supposed to change continuously in the 

𝑧-axis direction (thickness direction) based on the power-law model. So, the effective electro 

mechanical material properties of the FGP beam, 𝑃, can be stated in the following form (Komijani 

et al. 2013, 2014) 
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Fig. 1 Configuration of a functionally graded piezoelectric nanobeam 

 

 

𝑃 𝑧 =  𝑃2 − 𝑃1  
𝑧

ℎ
+

1

2
 
𝑝

+ 𝑃1 . (1) 

 

where 𝑃1 and 𝑃2 denote the material properties of the bottom and top surfaces, respectively, 𝑝 

is power-law exponent which is non-negative and estimates the material distribution through the 

thickness of the nanobeam and 𝑧 is the distance from the mid-plane of the graded piezoelectric 

beam. It must be noted that, the top surface at 𝑧 = +ℎ/2 of FGP nanobeam is assumed PZT-4 

rich, whereas the bottom surface (𝑧 = −ℎ/2) is PZT-5H rich. 

 

2.2 Nonlocal elasticity theory for the piezoelectric materials 
 

Contrary to the constitutive equation of classical elasticity theory, Eringen’s nonlocal theory 

(Eringen and Edelen 1972, Eringen 1972, 1983) notes that the stress state at a point inside a body 

is regarded to be function of strains of all points in the neighbor regions. For a nonlocal 

homogeneous piezoelectric solid the basic equations with zero body force may be defined as 
 

𝜎𝑖𝑗  𝑥 =  𝜚  𝑥 − 𝑥′  , 𝜏  𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙  𝑥
′ − 𝑒𝑘𝑖𝑗 𝐸𝑘 𝑥

′  dv 𝑥′ 
v

, 

𝐷𝑖 𝑥 =  𝜚  𝑥 − 𝑥′  , 𝜏  𝑒𝑖𝑘𝑙 𝜀𝑘𝑙  𝑥
′ + 𝜅𝑖𝑘𝐸𝑘 𝑥

′  dv 𝑥′ 
v

, 

(2) 

 

where 𝜎𝑖𝑗 , 𝜀𝑖𝑗 , 𝐷𝑖  and 𝐸𝑖  denote the stress, strain, electric displacement and electric field 

components, respectively; 𝐶𝑖𝑗𝑘𝑙 , 𝑒𝑘𝑖𝑗  and 𝜅𝑖𝑘  are elastic, piezoelectric and dielectric constants, 

respectively; 𝜚  𝑥 − 𝑥′  , 𝜏  is the nonlocal kernel function and  𝑥 − 𝑥′   is the Euclidean distance. 

𝜏 = 𝑒0𝑎/𝑙 is defined as scale coefficient, where 𝑒0 is a material constant which is determined 

experimentally or approximated by matching the dispersion curves of plane waves with those of 

atomic lattice dynamics; and 𝑎 and 𝑙 are the internal and external characteristic length of the 

nanostructures, respectively. Finally it is possible to represent the integral constitutive relations 

given by Eq. (2) in an equivalent differential form as 
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𝜎𝑖𝑗 −  𝑒0𝑎 
2∇2𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗 𝐸𝑘 , 

𝐷𝑖 −  𝑒0𝑎 
2∇2𝐷𝑖 = 𝑒𝑖𝑘𝑙 𝜀𝑘𝑙 + 𝜅𝑖𝑘𝐸𝑘 , 

(3) 

 

where ∇2  is the Laplacian operator and 𝑒0𝑎  is the nonlocal parameter revealing the size 

influence on the response of nanostructures. 

 

2.3 Nonlocal FG piezoelectric nanobeam model 
 

Based on parabolic third-order beam theory, the displacement field at any point of the beam is 

supposed to be in the form 
 

𝑢𝑥 𝑥, 𝑧 = 𝑢 𝑥 + 𝑧𝜓 𝑥 − 𝛼𝑧3  𝜓 +
𝜕𝑤

𝜕𝑥
 , 

𝑢𝑧 𝑥, 𝑧 = 𝑤 𝑥 , 

(4) 

 

where 𝑢 and 𝑤 are displacement components in the mid-plane along the coordinates 𝑥 and 𝑧, 

respectively, while 𝜓 denotes the total bending rotation of the cross-section. 

To satisfy Maxwell’s equation in the quasi-static approximation, the distribution of electric 

potential along the thickness direction is supposed to change as a combination of a cosine and 

linear variation as follows 
 

𝛷 𝑥, 𝑧, 𝑡 = − cos 𝜉𝑧 𝜙 𝑥, 𝑡 +
2𝑧

ℎ
𝑉, (5) 

 

where 𝜉 = 𝜋/ℎ. Also, 𝑉 is the initial external electric voltage applied to the FGP nanobeam; and 

𝜙 𝑥, 𝑡  is the spatial function of the electric potential in the 𝑥-direction. Considering strain–

displacement relationships on the basis of parabolic beam theory, the non-zero strains can be stated 

as 

𝜀𝑥𝑥 = 𝜀𝑥𝑥
(0)

+ 𝑧𝜀𝑥𝑥
(1)

+ 𝑧3𝜀𝑥𝑥
(3)

,    𝛾𝑥𝑧 = 𝛾𝑥𝑧
(0)

+ 𝑧2𝛾𝑥𝑧
(2)

. (6) 
 

where 
 

𝜀𝑥𝑥
(0)

=
𝜕𝑢

𝜕𝑥
,     𝜀𝑥𝑥

(1)
=

𝜕𝜓

𝜕𝑥
,     𝜀𝑥𝑥

(3)
= −𝛼  

𝜕𝜓

𝜕𝑥
+
𝜕2𝑤

𝜕𝑥2
 , 

𝛾𝑥𝑧
 0 

= 𝜓 +
𝜕𝑤

𝜕𝑥
,     𝛾𝑥𝑧

(2)
= −𝛽  𝜓 +

𝜕𝑤

𝜕𝑥
 ,     𝛽 =

4

ℎ2. 

(7) 

 

According to the defined electric potential in Eq. (5), the non-zero components of electric field 

(𝐸𝑥 , 𝐸𝑧) can be obtained as 

 

𝐸𝑥 = −
𝜕𝛷

𝜕𝑥
= cos 𝜉𝑧 

𝜕𝜙

𝜕𝑥
,     𝐸𝑧 = −

𝜕𝛷

𝜕𝑧
= −𝜉 sin 𝜉𝑧 𝜙 −

2

ℎ
𝑉. (8) 

 

The principle of virtual work can be stated in the following form to obtain the governing 

equations of equilibrium 
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 𝛿(Π𝑆 + Π𝑊)d𝑡
𝑡

0

= 0, (9) 

 

where Π𝑆 is the total strain energy and Π𝑊  is the work done by external applied forces. The first 

variation of strain energy Π𝑆 can be calculated as: 
 

𝛿Π𝑆 =    𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 − 𝐷𝑥𝛿𝐸𝑥 − 𝐷𝑧𝛿𝐸𝑧 d𝑧
ℎ/2

−ℎ/2

d𝑥
𝐿

0

. (10) 

 

Inserting Eqs. (6) and (8) into Eq. (10) yields 
 

𝛿𝛱𝑆 =   𝑁𝛿𝜀𝑥𝑥
 0 

+ 𝑀𝛿𝜀𝑥𝑥
 1 

+ 𝑃𝛿𝜀𝑥𝑥
 3 

+ 𝑄𝛿𝛾𝑥𝑧
 0 

+ 𝑅𝛿𝛾𝑥𝑧
 2 

 d𝑥
𝐿

0

 

+   −𝐷𝑥 cos 𝜉𝑧 
𝜕𝛿𝜙

𝜕𝑥
+ 𝐷𝑧𝜉 sin 𝜉𝑧 𝛿𝜙 d𝑧

ℎ/2

−ℎ/2

d𝑥
𝐿

0

. 

(11) 

 

in which 𝑁 , 𝑀  and 𝑄  are the axial force, bending moment and shear force resultants, 

respectively. Relations between the stress resultants and stress components used in Eq. (11) are 

defined as 

 𝑁,𝑀, 𝑃 =  𝜎𝑥𝑥  1, 𝑧, 𝑧3 d𝐴
𝐴

, 

 𝑄, 𝑅 =  𝜎𝑥𝑧  1, 𝑧2 d𝑧
𝐴

. 

(12) 

 

The first variation of the work done due to electric voltage, 𝛿Π𝑊 , can be written in the form: 
 

𝛿Π𝑊 =     𝑁𝐸 + 𝑁𝐵 
𝜕𝑤

𝜕𝑥

𝜕

𝜕𝑥
+ 𝛼𝑃

𝜕2

𝜕𝑥2
+ 𝑞 𝛿𝑤 + 𝑓𝛿𝑢 

𝐿

0

 

 −𝑁𝛿𝜀𝑥𝑥
 0 

−𝑀 
𝜕𝛿𝜓

𝜕𝑥
− 𝑄 𝛿𝛾𝑥𝑧

(0)
 d𝑥, 

(13a) 

 

in which 𝑀 = 𝑀 − 𝛼𝑃 , 𝑄 = 𝑄 − 𝛽𝑅  and 𝑞(𝑥)  and 𝑓(𝑥)  denote the transverse and axial 

distributed loads and  𝑁𝐵  is the buckling load and 𝑁𝐸  is normal force due to applied electric 

voltage 𝑉 which is defined as 
 

𝑁𝐸 = − 𝑒31

2

ℎ
𝑉d𝑧

ℎ/2

−ℎ/2

. (13b) 

 

For a FGPM nanobeam exposed to electro-mechanical loading in the one dimensional case, the 

nonlocal constitutive relations (3) may be rewritten as 
 

𝜎𝑥𝑥 −  𝑒0𝑎 
2
𝜕2𝜎𝑥𝑥
𝜕𝑥2

= 𝑐11𝜀𝑥𝑥 − 𝑒31𝐸𝑧 , (14) 
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𝜎𝑥𝑧 −  𝑒0𝑎 
2
𝜕2𝜎𝑥𝑧
𝜕𝑥2

= 𝑐55𝛾𝑥𝑧 − 𝑒15𝐸𝑥 , (15) 

 

𝐷𝑥 −  𝑒0𝑎 
2
𝜕2𝐷𝑥

𝜕𝑥2
= 𝑒15𝛾𝑥𝑧 + 𝜅11𝐸𝑥 , (16) 

 

𝐷𝑧 −  𝑒0𝑎 
2
𝜕2𝐷𝑧

𝜕𝑥2
= 𝑒31𝜀𝑥𝑥 + 𝜅33𝐸𝑧 . (17) 

 
Inserting Eqs. (11) and (13) in Eq. (9) and integrating by parts, and gathering the coefficients of 

𝛿𝑢, 𝛿𝑤, 𝛿𝜓 and 𝛿𝜙, the following governing equations are obtained 

 
𝜕𝑁

𝜕𝑥
+ 𝑓 = 0, (18) 

 

𝜕𝑀 

𝜕𝑥
− 𝑄 = 0, (19) 

 

𝜕𝑄 

𝜕𝑥
−  𝑁𝐸 + 𝑁𝐵 

𝜕2𝑤

𝜕𝑥2
+ 𝛼

𝜕2𝑃

𝜕𝑥2
+ 𝑞 = 0, (20) 

 

  cos 𝜉𝑧 
𝜕𝐷𝑥

𝜕𝑥
+ 𝜉 sin 𝜉𝑧 𝐷𝑧 d𝑧

ℎ/2

−ℎ/2

= 0. (21) 

 

Also, the boundary conditions are 

 

Specify  𝑢   or   N (22a) 

 

Specify  𝜓   or   M (22b) 

 

Specify 𝑤   or   𝑄 −  𝑁𝐸 + 𝑁𝐵 
𝜕𝑤

𝜕𝑥
+ 𝛼

𝜕𝑃

𝜕𝑥
 (22c) 

 

Specify 𝜙    or     cos 𝜉𝑧 𝐷𝑥  d𝑧
ℎ/2

−ℎ/2

 (22d) 

 
By integrating Eqs. (14)-(17) over the beam’s cross-section area, the force-strain and the 

moment-strain of the nonlocal third-order FGP beam theory can be obtained as follows 

 

𝑁 − 𝜇
𝜕2𝑁

𝜕𝑥2
= 𝐴𝑥𝑥

𝜕𝑢

𝜕𝑥
+  𝐵𝑥𝑥 − 𝛼𝐸𝑥𝑥  

𝜕𝜓

𝜕𝑥
− 𝛼𝐸𝑥𝑥

𝜕2𝑤

𝜕𝑥2
+ 𝐴 31

𝑒 𝜙 − 𝑁𝐸 , (23) 

 

𝑀 − 𝜇
𝜕2𝑀

𝜕𝑥2
= 𝐵𝑥𝑥

𝜕𝑢

𝜕𝑥
+  𝐷𝑥𝑥 − 𝛼𝐹𝑥𝑥  

𝜕𝜓

𝜕𝑥
− 𝛼𝐹𝑥𝑥

𝜕2𝑤

𝜕𝑥2
+ 𝐵 31

𝑒 𝜙, (24) 
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𝑃 − 𝜇
𝜕2𝑃

𝜕𝑥2
= 𝐸𝑥𝑥

𝜕𝑢

𝜕𝑥
+  𝐹𝑥𝑥 − 𝛼𝐻𝑥𝑥  

𝜕𝜓

𝜕𝑥
− 𝛼𝐻𝑥𝑥

𝜕2𝑤

𝜕𝑥2
+ 𝐸 31

𝑒 𝜙, (25) 

 

𝑄 − 𝜇
𝜕2𝑄

𝜕𝑥2
=  𝐴𝑥𝑧 − 𝛽𝐷𝑥𝑧   

𝜕𝑤

𝜕𝑥
+ 𝜓 − 𝐴 15

𝑒
𝜕𝜙

𝜕𝑥
, (26) 

 

𝑅 − 𝜇
𝜕2𝑅

𝜕𝑥2
=  𝐷𝑥𝑧 − 𝛽𝐹𝑥𝑧   

𝜕𝑤

𝜕𝑥
+ 𝜓 − 𝐷 15

𝑒
𝜕𝜙

𝜕𝑥
, (27) 

 

  𝐷𝑥 − 𝜇
𝜕2𝐷𝑥

𝜕𝑥2
 cos 𝜉𝑧 d𝑧

ℎ/2

−ℎ/2

=  𝐴 15
𝑒 − 𝛽𝐷 15

𝑒   
𝜕𝑤

𝜕𝑥
+ 𝜓 + 𝐴 11

𝜅
𝜕𝜙

𝜕𝑥
, (28) 

 

  𝐷𝑧 − 𝜇
𝜕2𝐷𝑧

𝜕𝑥2
 𝜉 sin 𝜉𝑧 d𝑧

ℎ/2

−ℎ/2

= 𝐴 31
𝑒

𝜕𝑢

𝜕𝑥
+  𝐵 31

𝑒 − 𝛼𝐸 31
𝑒  

𝜕𝜓

𝜕𝑥
− 𝛼𝐸31

𝑒
𝜕2𝑤

𝜕𝑥2
− 𝐴 33

𝜅 𝜙, (29) 

 

where 𝜇 =  𝑒0𝑎 
2 and all quantities used in the above equations are defined as 

 

 𝐴𝑥𝑥 , 𝐵𝑥𝑥 , 𝐷𝑥𝑥 , 𝐸𝑥𝑥 , 𝐹𝑥𝑥 , 𝐻𝑥𝑥  =  𝑐11 1, 𝑧, 𝑧2 , 𝑧3 , 𝑧4 , 𝑧6 d𝑧
ℎ/2

−ℎ/2

, (30) 

 

 𝐴𝑥𝑧 , 𝐷𝑥𝑧 , 𝐹𝑥𝑧  =  𝑐55 1, 𝑧2 , 𝑧4 d𝑧
ℎ/2

−ℎ/2

. (31) 

 

 𝐴 31
𝑒 , 𝐵 31

𝑒 , 𝐸 31
𝑒  =  𝑒31 1, 𝑧, 𝑧3 𝜉 sin 𝜉𝑧 d𝑧

ℎ/2

−ℎ/2

, (32) 

 

 𝐴 15
𝑒 , 𝐷 15

𝑒  =  𝑒15 1, 𝑧2 cos 𝜉𝑧 d𝑧
ℎ/2

−ℎ/2

 (33) 

 

 𝐴 11
𝜅 , 𝐴 33

𝜅  =   𝜅11 cos2 𝜉𝑧 , 𝜅33𝜉
2 sin2 𝜉𝑧  d𝑧

ℎ/2

−ℎ/2

. (34) 

 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 

derivative of 𝑁 from Eq. (19) into Eq. (23) as follows 

 

𝑁 = 𝐴𝑥𝑥

𝜕𝑢

𝜕𝑥
+ 𝐾𝑥𝑥

𝜕𝜓

𝜕𝑥
− 𝛼𝐸𝑥𝑥

𝜕2𝑤

𝜕𝑥2
+ 𝐴 31

𝑒 𝜙 − 𝑁𝐸 − 𝜇
𝜕𝑓

𝜕𝑥
. (35) 

 
Omitting 𝑄  from Eqs. (20) and (21), we obtain the following equation 

 
𝜕2𝑀 

𝜕𝑥2
=  𝑁𝐸 + 𝑁𝐵 

𝜕2𝑤

𝜕𝑥2
− 𝛼

𝜕2𝑃

𝜕𝑥2
− 𝑞. (36) 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 

second derivative of 𝑀  from the above equation into Eq. (24) and using Eq. (25) as follows 

 

𝑀 = 𝐾𝑥𝑥

𝜕𝑢

𝜕𝑥
+ 𝐼 𝑥𝑥

𝜕𝜓

𝜕𝑥
− 𝛼𝐽𝑥𝑥

𝜕2𝑤

𝜕𝑥2
+  𝐵 31

𝑒 − 𝛼𝐸 31
𝑒  𝜙 + 𝜇   𝑁𝐸 + 𝑁𝐵 

𝜕2𝑤

𝜕𝑥2
− 𝛼

𝜕2𝑃

𝜕𝑥2
− 𝑞 , (37) 

 

where 
 

𝐾𝑥𝑥 = 𝐵𝑥𝑥 − 𝛼𝐸𝑥𝑥 ,     𝐼𝑥𝑥 = 𝐷𝑥𝑥 − 𝛼𝐹𝑥𝑥 ,     𝐽𝑥𝑥 = 𝐹𝑥𝑥 − 𝛼𝐻𝑥𝑥 ,     𝐼  𝑥𝑥 = 𝐼𝑥𝑥 − 𝛼𝐽𝑥𝑥 . (38) 

 

By substituting for the second derivative of 𝑄  from Eq. (21) into Eq. (26) and using Eq. (27), 

the following expression for the nonlocal shear force is derived 

 

𝑄 = 𝐴𝑥𝑧
∗  

𝜕𝑤

𝜕𝑥
+ 𝜓 −  𝐴 15

𝑒 − 𝛽𝐷 15
𝑒  

𝜕𝜙

𝜕𝑥
+ 𝜇   𝑁𝐸 + 𝑁𝐵 

𝜕3𝑤

𝜕𝑥3
− 𝛼

𝜕3𝑃

𝜕𝑥3
−
𝜕𝑞

𝜕𝑥
 , (39) 

 

where 
 

𝐴𝑥𝑧
∗ = 𝐴 𝑥𝑧 − 𝛽𝐷 𝑥𝑧 ,     𝐴 𝑥𝑧 = 𝐴𝑥𝑧 − 𝛽𝐷𝑥𝑧 ,     𝐷 𝑥𝑧 = 𝐷𝑥𝑧 − 𝛽𝐹𝑥𝑧 . (40) 

 

In addition, the second derivative of the identity of Eq. (25) may be written as 

 

𝛼
𝜕2

𝜕𝑥2
 𝑃 − 𝜇

𝜕2𝑃

𝜕𝑥2
 = 𝛼𝐸𝑥𝑥

𝜕3𝑢

𝜕𝑥3
+ 𝛼𝐽𝑥𝑥

𝜕3𝜓

𝜕𝑥3
− 𝛼2𝐻𝑥𝑥

𝜕4𝑤

𝜕𝑥4
+ 𝛼𝐸 31

𝑒
𝜕2𝜙

𝜕𝑥2
. (41) 

 

For a higher order FGP nanobeam by substituting for 𝑁, 𝑀  and 𝑄  from Eqs. (35), (37) and 

(39), respectively, and using Eq. (41) in Eq. (21), the nonlocal governing equations can be 

obtained as below 

 

𝐴𝑥𝑥

𝜕2𝑢

𝜕𝑥2
+ 𝐾𝑥𝑥

𝜕2𝜓

𝜕𝑥2
− 𝛼𝐸𝑥𝑥

𝜕3𝑤

𝜕𝑥3
+ 𝐴 31

𝑒
𝜕𝜙

𝜕𝑥
+ 𝑓 − 𝜇

𝜕2𝑓

𝜕𝑥2
= 0, (42) 

 

𝐾𝑥𝑥

𝜕2𝑢

𝜕𝑥2
+ 𝐼 𝑥𝑥

𝜕2𝜓

𝜕𝑥2
− 𝛼𝐽𝑥𝑥

𝜕3𝑤

𝜕𝑥3
− 𝐴𝑥𝑧

∗  
𝜕𝑤

𝜕𝑥
+ 𝜓 + 𝐴 15

𝑒
𝜕𝜙

𝜕𝑥
= 0, (43) 

 

𝐴𝑥𝑧
∗  

𝜕2𝑤

𝜕𝑥2
+
𝜕𝜓

𝜕𝑥
 + 𝛼𝐸𝑥𝑥

𝜕3𝑢

𝜕𝑥3
+ 𝛼𝐽𝑥𝑥

𝜕3𝜓

𝜕𝑥3
− 𝛼2𝐻𝑥𝑥

𝜕4𝑤

𝜕𝑥4
 

− 𝑁𝐸 + 𝑁𝐵 
𝜕2𝑤

𝜕𝑥2
+ 𝑞 − 𝐴 15

𝑒
𝜕2𝜙

𝜕𝑥2
+ 𝜇   𝑁𝐸 + 𝑁𝐵 

𝜕4𝑤

𝜕𝑥4
−
𝜕2𝑞

𝜕𝑥2
 = 0, 

(44) 

 

where 
 

𝐴 15
𝑒 = 𝐴 15

𝑒 − 𝛼𝐸31
𝑒 − 𝛽𝐷 15

𝑒 ,     𝐴 15
𝑒 = 𝐴 15

𝑒 + 𝐵 31
𝑒 − 𝛼𝐸 31

𝑒 − 𝛽𝐷 15
𝑒 . (45) 

 

It must be cited that inserting Eq. (22) into Eqs. (28) and (29) does not provide an explicit 
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expressions for 𝐷𝑥  and 𝐷𝑧 . To overcome this problem, Eq. (23) can be re-expressed in terms of 

𝑢, 𝑤, 𝜓 and 𝜙 by using Eqs. (28) and (29) as 
 

𝐴 31
𝑒

𝜕𝑢

𝜕𝑥
+ 𝐴 15

𝑒
𝜕2𝑤

𝜕𝑥2
+ 𝐴 15

𝑒
𝜕𝜓

𝜕𝑥
+ 𝐴 11

𝜅
𝜕2𝜙

𝜕𝑥2
− 𝐴 33

𝜅 𝜙 = 0. (46) 

 

 

3. Solution procedure 
 

Here, on the basis the Navier method, an analytical solution of the governing equations for free 

vibration of a simply supported FGP nanobeam is presented. To satisfy governing equations of 

motion and the simply supported boundary condition, the displacement variables are adopted to be 

of the form 

 

𝑢(𝑥)
𝜓(𝑥)
𝑤(𝑥)
𝜙(𝑥)

 =  

 
 

 
𝑈𝑛 cos 𝜁𝑥 

𝛹𝑛 cos 𝜁𝑥 

𝑊𝑛 sin 𝜁𝑥 

𝛷𝑛 sin 𝜁𝑥  
 

 ∞

𝑛=1

, (47) 

 

where 𝜁 = 𝑛𝜋/𝐿 , and 𝑈𝑛 , 𝑊𝑛 , 𝛹𝑛  and 𝛷𝑛  are the unknown Fourier coefficients to be 

determined for each 𝑛 value. The boundary conditions for simply-supported FGP beam can be 

identified as 

 

 𝜕𝑢

𝜕𝑥
 
𝑥=0

= 0,      
𝜕𝑢

𝜕𝑥
 
𝑥=𝐿

= 0,     𝑤 0, 𝑡 = 𝑤 𝐿, 𝑡 = 0, 

 𝜕𝜓

𝜕𝑥
 
𝑥=0

=  𝜕𝜓

𝜕𝑥
 
𝑥=𝐿

= 0,     𝜙 0, 𝑡 = 𝜙 𝐿, 𝑡 = 0. 

(48) 

 

Inserting Eqs. (47) into Eqs. (42), (43), (44) and (46), yields 

 

 𝐾  ∆ =  0 , (49) 

 

where  ∆ =  𝑈𝑛 , 𝛹𝑛 ,𝑊𝑛 , 𝛷𝑛 
𝑇  and  𝐾  is the stiffness matrix. The coefficients of the symmetric 

stiffness matrix 𝑘𝑖𝑗 = 𝑘𝑗𝑖  are given by 

 

𝑘11 = 𝜁2𝐴𝑥𝑥 ,     𝑘12 = 𝜁2𝐾𝑥𝑥 ,     𝑘13 = 𝛼𝜁3𝐸𝑥𝑥 ,     𝑘14 = −𝜁𝐴 31
𝑒 , 

𝑘22 = 𝐴𝑥𝑧
∗ + 𝜁2𝐼  𝑥𝑥 ,     𝑘23 = 𝜁 𝐴𝑥𝑧

∗ − 𝛼𝜁2𝐽𝑥𝑥  ,     𝑘24 = −𝜁𝐴 15
𝑒 , 

𝑘33 = 𝜁2 𝐴𝑥𝑧
∗ + 𝛼2𝜁2𝐻𝑥𝑥  −  1 + 𝜇𝜁2 𝜁2 𝑁𝐸 + 𝑁𝐵 , 

 𝑘34 = −𝜁2𝐴 15
𝑒 ,     𝑘44 = −𝜁2𝐴 11

𝜅 − 𝐴 33
𝜅 . 

(50) 

 

By setting determinant of the coefficient matrix of Eq. (49) to zero, we can find buckling loads 

of the FGP nanobeam exposed to electrical loading. 
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4. Results and discussion 
 

In this section, some numerical examples are presented to show the influence of electric field, 

material composition, nonlocal parameter and slenderness ratio on the electro-mechanical buckling 

behavior of higher-order shear deformable FGP nanobeams. So, the nonlocal FGP beam composed 

of PZT-4 and PZT-5H, with electro-mechanical material properties listed in Table 1, is supposed. 

The beam geometry has the following dimensions: 𝐿 (length) = 10 nm and ℎ (thickness) = 

varied. 
 
 

Table 1 Electro-mechanical coefficients of material properties for PZT-4 and PZT-5H (Doroushi et al. 2011) 

Properties PZT-4 PZT-5H 

𝑐11  (GPa) 81.3 60.6 

𝑐55  (GPa) 25.6 23.0 

𝑒31  (Cm−2) -10.0 -16.604 

𝑒15  (C/m2) 40.3248 44.9046 

κ11  (C2m−2N−1) 0.6712e-8 1.5027e-8 

𝜅33  (C2m−2N−1) 1.0275e-8 2.554e-8 

 
 

Table 2 Comparison of the non-dimensional buckling load for a S-S FG nanobeam with various power-law 

index (𝐿/ℎ = 20) 

𝑝 

𝜇 = 1 𝜇 = 2 

EBT (Eltaher 

et al. 2013b) 

RBT (Rahmani and 

Jandaghian 2015) 
Present 

EBT (Eltaher 

et al. 2013b) 

RBT (Rahmani and 

Jandaghian 2015) 
Present 

0 8.9843 8.9258 8.925759 8.2431 8.1900 8.190046 

0.1 10.1431 9.7778 9.777865 9.2356 8.9719 8.971916 

0.2 10.2614 10.3898 10.389845 9.7741 9.5334 9.533453 

0.5 11.6760 11.4944 11.494448 10.6585 10.5470 10.547009 

1 12.4581 12.3709 12.370918 12.0652 11.3512 11.351234 

2 13.1254 13.1748 13.174885 12.4757 12.0889 12.088934 

5 13.5711 14.2363 14.236343 13.2140 13.0629 13.062900 

𝑝 

𝜇 = 3 𝜇 = 4 

EBT (Eltaher 

et al. 2013b) 

RBT (Rahmani and 

Jandaghian 2015) 
Present 

EBT (Eltaher 

et al. 2013b) 

RBT (Rahmani and 

Jandaghian 2015) 
Present 

0 7.6149 7.5663 7.566381 7.0765 7.0309 7.030978 

0.1 8.5786 8.2887 8.288712 8.0416 7.7021 7.702196 

0.2 9.3545 8.8074 8.807489 8.3176 8.1842 8.184264 

0.5 9.8093 9.7438 9.743863 9.0585 9.0543 9.054379 

1 10.9776 10.4869 10.486847 9.9816 9.7447 9.744790 

2 11.7415 11.1683 11.168372 10.4649 10.3781 10.378089 

5 12.2786 12.0682 12.068171 11.5231 11.2142 11.214218 
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Also, the following relation is described to calculate the non-dimensional buckling loads 

 

𝑁𝐵𝑐𝑟 =
𝑁𝐵𝐿

2

 𝑐11𝐼 PZT −4
, (51) 

 

where 𝐼 = 𝑏ℎ3/12 is the moment of inertia of the cross section of the nanobeam and 𝐴 = 𝑏ℎ. 

Table 2 compares dimensionless buckling loads of the present theory with those of nonlocal FGM 

Euler and Timoshenko beams, because there are no available numerical results for the buckling 

loads of FGP nanobeams based on the nonlocal elasticity theory. For comparison study, the 

material selection is performed as follows: 𝐸𝑚 = 70 GPa, 𝜈𝑚 = 0.3for Steel and 𝐸𝑐 = 390 GPa, 

𝜈𝑐 = 0.24 for Alumina. 

In Tables 3-6, the effects of some parameters such as nonlocal scale parameter (𝜇), electric 

 

 
Table 3 Influence of external electric voltage and material composition on the non-dimensional 

buckling load of a S-S FGP nanobeam (𝜇 = 0) 

𝐿/ℎ 
Voltage 

(𝑉) 

Gradient index (𝑝) 

0 0.2 0.5 1 2 5 10 

20 

-0.25 11.6038 11.1412 10.7834 10.5247 10.3484 10.1632 10.0004 

0 11.0134 10.4858 10.0630 9.73938 9.49802 9.24789 9.05552 

+0.25 10.4230 9.83041 9.34262 8.95402 8.64768 8.33256 8.11066 

25 

-0.25 12.1739 11.7735 11.4775 11.2805 11.1658 11.0423 10.9074 

0 11.0207 10.4935 10.0705 9.74657 9.50495 9.25456 9.06191 

+0.25 9.86759 9.21343 8.66351 8.21266 7.84413 7.46681 7.21648 

30 

-0.25 13.0174 12.7096 12.5059 12.4011 12.3787 12.3474 12.2543 

0 11.0247 10.4977 10.0746 9.75050 9.50875 9.25820 9.06541 

+0.25 9.03212 8.28575 7.64333 7.09992 6.63884 6.16898 5.87649 

 

 
Table 4 Influence of external electric voltage and material composition on the non-dimensional 

buckling load of a S-S FGP nanobeam (𝜇 = 1 (mn)2) 

𝐿/ℎ 
Voltage 

(𝑉) 

Gradient index (𝑝) 

0 0.2 0.5 1 2 5 10 

20 

-0.25 10.6145 10.1993 9.87940 9.64984 9.49516 9.33248 9.18693 

0 10.0241 9.54386 9.15903 8.86449 8.64481 8.41715 8.24206 

+0.25 9.43366 8.88847 8.43866 8.07913 7.79447 7.50182 7.29720 

25 

-0.25 11.1839 10.8309 10.5728 10.4049 10.3119 10.2110 10.0933 

0 10.0307 9.55085 9.16585 8.87103 8.65112 8.42322 8.24788 

+0.25 8.87759 8.27079 7.75887 7.33713 6.99030 6.63547 6.40244 

30 

-0.25 12.0270 11.7666 11.6009 11.5252 11.5245 11.5158 11.4400 

0 10.0344 9.55468 9.16959 8.87461 8.65457 8.42654 8.25106 

+0.25 8.04177 7.34274 6.73833 6.22403 5.78467 5.33731 5.06215 

104



 

 

 

 

 

 

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on... 

Table 5 Influence of external electric voltage and material composition on the non-dimensional 

buckling load of a S-S FGP nanobeam (𝜇 = 2 (mn)2). 

𝐿/ℎ 
Voltage 

(𝑉) 

Gradient index (𝑝) 

0 0.2 0.5 1 2 5 10 

20 

-0.25 9.78823 9.41259 9.12446 8.91918 8.7826 8.63869 8.50757 

0 9.19782 8.7572 8.40409 8.13382 7.93226 7.72336 7.56270 

+0.25 8.60742 8.10181 7.68371 7.34847 7.08192 6.80803 6.61784 

25 

-0.25 10.3571 10.0437 9.81733 9.67373 9.59887 9.51667 9.41348 

0 9.20394 8.76362 8.41035 8.13983 7.93805 7.72893 7.56804 

+0.25 8.05080 7.48356 7.00337 6.60593 6.27722 5.94118 5.72260 

30 

-0.25 11.1999 10.9791 10.8450 10.7937 10.8111 10.8212 10.7599 

0 9.20730 8.76713 8.41378 8.14311 7.94121 7.73197 7.57096 

+0.25 7.21468 6.55519 5.98252 5.49253 5.07131 4.64275 4.38204 

 

 

Table 6 Influence of external electric voltage and material composition on the non-dimensional 

buckling load of a S-S FGP nanobeam (𝜇 = 2 (mn)2) 

𝐿/ℎ 
Voltage 

(𝑉) 

Gradient index (𝑝) 

0 0.2 0.5 1 2 5 10 

20 

-0.25 9.08782 8.74574 8.48450 8.29980 8.17856 8.05056 7.93167 

0 8.49742 8.09035 7.76412 7.51444 7.32822 7.13523 6.98681 

+0.25 7.90701 7.43496 7.04375 6.72908 6.47788 6.21991 6.04195 

25 

-0.25 9.65620 9.37633 9.17689 9.05389 8.99439 8.92812 8.83718 

0 8.50307 8.09627 7.76991 7.51999 7.33357 7.14038 6.99174 

+0.25 7.34993 6.81621 6.36293 5.98608 5.67275 5.35263 5.14630 

30 

-0.25 10.4988 10.3115 10.2043 10.1736 10.2064 10.2324 10.1834 

0 8.50617 8.09952 7.77308 7.52302 7.33650 7.14319 6.99444 

+0.25 6.51355 5.88758 5.34182 4.87244 4.46659 4.05396 3.80552 

 

 

voltage (𝑉), gradient index (𝑝) and slenderness ratio on the non-dimensional buckling load of the 

S-S FGP nanobeams are tabulated. The results of these tables indicate that nonlocal parameter has 

a considerable reducing influence on the non-dimensional buckling loads and weakens the 

nanobeam structure. Also, it must be mentioned that when the gradient index rises the non-

dimensional buckling loads of FGP nanobeams reduce at a constant electric voltage and nonlocal 

parameter. Another conclusion is that external voltage values with positive sign yields lower 

buckling loads than electric voltages with negative sign. 

Also, Table 7 present the buckling loads of a piezoelectric nanobeam for classical and Reddy 

beam theories and different nonlocal parameters when p = 1 and V = 0. One can see that buckling 

results according to Reddy beam model are smaller than that of classical beam model. This shows 

the importance of size-dependent shear deformation effect on piezoelectric nanostructures. 

Fig. 2 shows the variations of the non-dimensional buckling load of FG piezoelectric 

nanobeams with the gradient index for various external voltages (𝑉 = −0.5, −0.25, 0, +0.25, 
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Table 7 Dimensionless buckling load according to classical and 

Reddy beam theories 

𝝁 
L/h = 5 L/h = 10 

RBT CBT RBT CBT 

1 8.49316 8.7512 8.77446 8.9541 

2 7.7931 8.0334 8.05121 8.2212 

3 7.19966 7.3872 7.43812 7.6018 

 

 
 

  

(a) 𝜇 = 0 (b) 𝜇 = 1  mn 2 
 

 

 

 

(c) 𝜇 = 2  mn 2 (d) 𝜇 = 3 (mn)2 

Fig. 2 Effect of external electric voltage on the dimensionless buckling load of the S-S FGP nanobeam 

with respect to gradient index for different values of nonlocal parameters (𝐿/ℎ = 20) 

 
 

+0.5) and nonlocal parameters at 𝐿/ℎ = 20. It can be seen from the figure that the non-

dimensional buckling load reduce significantly for lower values of gradient indexes, but the higher 

values of gradient index will not affect the buckling load notably. Also, it should be cited that the 

dimensionless buckling load for positive voltages reduces with a higher slope compared to 

negative voltages which indicate importance of the sign of external electric voltage. 

Fig. 3 demonstrates the variations of the non-dimensional buckling load with respect to external 

electric voltage for different nonlocal parameters and gradient indices at slenderness ratio 

106



 

 

 

 

 

 

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on... 

  

(a) 𝜇 = 0 (b) 𝜇 = 1  mn 2 
 

 

 

 

(c) 𝜇 = 2  mn 2 (d) 𝜇 = 3 (mn)2 

Fig. 3 The variation of dimensionless buckling load of the S-S FGP nanobeam with respect to external 

voltage for different values of nonlocal parameters and gradient indexes (𝐿/ℎ = 20) 

 

 

𝐿/ℎ = 20 . It is observable that when the voltage changes from 𝑉 = −1  to 𝑉 = +1  the 

dimensionless buckling load of FGP nanobeams approximately decreases linearly. Another 

observation is that at the negative voltages the obtained buckling loads for various gradient 

indexes are closer than those obtained for positive electric voltages. Therefore, as the positive 

voltage raises the difference between buckling loads for various values of gradient index at a 

constant nonlocal parameter increases. 

The influences of electric voltage and nonlocal parameter on the dimensionless buckling loads 

of FGM piezoelectric nanobeams at 𝐿/ℎ = 20 and various gradient indexes are plotted in Fig. 4. 

As a consequence, when the electric voltage rises from 𝑉 = −1 to 𝑉 = +1 the dimensionless 

buckling load reduce for all values of nonlocal parameter with a same manner. It is also seen from 

the figure that, as the external electric voltage increases the difference between the results of 

various nonlocal parameter remains invariant, so it can be concluded that nonlocal scale parameter 

influence is not dependent on the values of electric voltage. 

The effect of slenderness ratio (𝐿/ℎ) on the dimensionless buckling load of FGP nanobeams 

with changing of gradient index at 𝜇 = 1 (nm)2 is presented in Fig. 5. It is found that for 

negative electric voltages as the slenderness ratio increases the dimensionless buckling load 
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(a) 𝑝 = 0 (b) 𝑝 = 0.2 
 

 

 

 

(c) 𝑝 = 1 (d) 𝑝 = 5 

Fig. 4 The variation of dimensionless buckling load of the S-S FGP nanobeam with respect to external 

voltage for different values of nonlocal parameters and gradient indexes (𝐿/ℎ = 20) 

 

 

 

  

(a) V = ‒0.25 (b) V = +0.25 

Fig. 5 Effect of slenderness ratio on the dimensionless buckling load of the S-S FGP nanobeam with 

respect to gradient index for different values of nonlocal parameters (𝜇 = 1 (mn)2) 
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Fig. 6 The variation of dimensionless buckling load of the S-S FGP nanobeam with respect to 

slenderness ratio for different values of External 

 

 

 

increases, whereas a reverse trend is observed for positive voltages. Also, it is deduced that for all 

values of slenderness ratio with an increase in gradient index the buckling load reduces. More 

specifically, for a positive voltage the buckling load changes is more sensible at the higher values 

of slenderness ratio. Fig. 6 illustrates the variations of the dimensionless buckling load of nonlocal 

piezoelectric FG beams versus slenderness ratio at gradient index 𝑝 = 0.5  and nonlocal 

parameter 𝜇 = 2. It must be mentioned that electric voltage has a significant effect on the non-

dimensional buckling load especially for higher values of slenderness ratio. Therefore negative 

external voltages provide larger values of buckling loads while positive voltages provide smaller 

values for buckling loads. Another finding is that, when the external electric voltage is equal to 

zero (𝑉 = 0 ) the dimensionless buckling load variation is approximately independent of 

slenderness ratio. 

 

 

5. Conclusions 
 

The purpose of this article is to develop a nonlocal higher-order parabolic beam model for 

buckling analysis of piezoelectric FG nanobeams using nonlocal elasticity theory which captures 

the small size effects. Nonlocal governing equations are solved using Navier solution method. 

Electro-mechanical properties of the FGP nanobeams are supposed to be position dependent 

according to power-law model. The validity of the present model is investigated with comparison 

to some of the present in literature. The influences of various parameters such as external electric 

voltage, gradient index, nonlocal parameter and slenderness ratio on the buckling loads of nonlocal 

FGP beams are discussed. It is indicated that nonlocal parameter shows a reducing influence on 

stiffness of the nanobeam and buckling loads. Another important observation is that according to 

the sign of the electric voltage the buckling loads of FGP nanobeams experience both decreasing 

and increasing trends. Also, it is found that nonlocal scale parameter is not dependent on the values 

of electric voltage. 
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