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Abstract.  Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified 

couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along 

the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the 

damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory 

in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked 

functionally graded microbeams are presented. 
 

Keywords:  functionally graded materials; microbeam; modified couple stress theory; forced vibration 
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1. Introduction 
 

With the development of technology, micro structures are used in many applications (sensor, 

microscale electromechanical systems). The classical mechanical theories fail to satisfy in the 

solution of the micro elements because it is not effort the size-effect in the micro-scale. So, the 

nonlocal theories (couple stress and gradient theories) must be used in the mechanics of the micro 

structures which effort the size-effect. Functionally graded materials (FGMs) are a type of 

composite which consist different phases of material, where the properties of materials change in a 

direction. FGMs have a lot of applications such as, aircrafts, biomedical products, space vehicles. 

With the development of technology, functionally graded materials are used in micro structural 

structures for example, electrically actuated micro electromechanical devices , atomic force 

microscopes (Witvrouw and Mehta 2005, Fu et al. 2003, Hasanyan et al. 2008, Zhang and Fu 2012, 

Lü et al. 2009). 

The nonlocal theory proposed by Eringen (1972) that analyze nano/micro structures. Many 

researcher have used and developed the nonlocal theory in the analysis nano/micro structures 

(Toupin 1962, Lam et al. 2003, Mindlin 1963). Yang et al. (2002) presented expressions of strain 

energy with a scale factor in the Modified Couple Stress Theory (MCST). Nonlocal theories 

broadly utilized for mechanical analysis of FGM nano/micro and homogeneous beams (Park and 

Gao 2006, Ansari et al. 2011, Wang et al. 2012, Asghari et al. 2010, Liu and Reddy 2011, Salamat-

Talab et al. 2012, Kocatürk and Akbaş 2013a, b, Şimşek and Reddy 2013, Belabed et al. 2014, 
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Mahi et al. 2015, Hamidi et al. 2015, Tagrara et al. 2015, Şimşek et al. 2013, Ansari et al. 2014, 

Zamanzadeh et al. 2014, Akgöz and Civalek 2013, 2014, Akbaş and Kocatürk 2013, Ke et al. 2012, 

Sedighi 2014, Sedighi et al. 2014, Al-Basyouni et al. 2015, Chaht et al. 2015, Belkorissat et al. 

2015, Aissani et al. 2015, Hadji et al. 2016, Akbaş 2013, 2015a, b, 2016a, b, 2017a, b, 2017c, d, e, 

f, 2018, Hadji 2017 , Zouatnia et al. 2017, Ebrahimi and Salari 2015, Ebrahimi and Barati 2016a, b, 

Ebrahimi et al. 2017, Nejad and Hadi 2016a, b, Shafiei et al. 2016, Bousahla et al. 2014, Hebali et 

al. 2014, Meziane et al. 2014, Yahia et al. 2015, Bourada et al. 2015, Bounouara et al. 2016, 

Bennoun et al. 2016, Houari et al. 2016, Boukhari et al. 2016, Abdelaziz et al. 2017, Bouafia et al. 

2017, Khetir et al. 2017, Bellifa et al. 2017, Besseghier et al. 2017, Mouffoki et al. 2017, Karami 

et al. 2017, Ahouel et al. 2016, Demir and Civalek 2017, Attia 2017). During the processing in the 

fabrication of micro structures, it can occur crack in the structure’s material due to technically 

problems. In instance, cracks can occur in the thermal fabrication process of the ZnO micro-rods 

(Fang et al. 2003, Fang and Chang 2003). Cracks cause a local flexibility in the cracked structures 

and structures can lose their structural strength. In the literature, the studies of the cracked 

micro/nano structures are as follows; Loya et al. (2009), Hasheminejad et al. (2011), Torabi and 

Nafar Dastgerdi (2012), Liu et al. (2013), Roostai and Haghpanahi (2014), Aissani et al. (2015), 

Yaylı and Çerçevik (2015), Tadi Beni et al. (2015), Wang and Wang (2015), Akbaş (2016a, b), 

Stamenković et al. (2016) and Peng et al. (2015) analyzed dynamics of cracked nano/micro beams 

with the nonlocal theories. 

In the open literature, forced vibration of cracked FGM microbeams has not been broadly 

studied. The main aim of presented paper is to fill this absence for cracked FGM microbeams. The 

work deals with forced vibration responses of cracked FGM a microbeam by using Timoshenko 

beam theory with MCST. In the solution of the dynamic problem, finite element and Newmark 

methods are used in the time domain with the damping effect. The influences of crack, geometry 

and distributions on forced vibration responses of cracked microbeams are examined and 

discussed. 
 

 

2. Theory and formulation 
 

A cantilever functionally graded cracked microbeam under a external dynamic load P(t) at the 

free end is displayed in Fig. 1 according to X, Y, Z coordinate system. L is length, b is width, h is 

thickness, a indicates the crack depth and L1 indicates the crack location from the left end in Fig. 1. 

The mechanical properties of the microbeam vary along the Y direction based on an exponential 

distribution 
 

 

 

Fig. 1 A cantilever FGM cracked microbeam under a external dynamic point load P(t) 
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Forced vibration analysis of cracked functionally graded microbeams 

𝐸 𝑌 = 𝐸0𝑒
𝛽𝑌 ,      𝜌 𝑌 = 𝜌0𝑒

𝛽𝑌  (1) 

 

In Eq. (1), 𝜌0 and 𝐸0 indicate mass density and Young’s modulus at Y = 0, respectively. 𝛽 is 

material distribution parameter which defines the material distribution through Y direction. The 

microbeam becomes a fully top surface material as 𝛽 = 0. 

In the MCST, the influences of the deviatoric stretch gradient and the dilatation gradient are 

ignored, so a single material length scale parameter is required, which relates the couple stress to 

the symmetric part of the rotational gradient. For MCST, the strain energy (U) is defined as (Yang 

et al. 2002) 

𝑈 =   𝝈; 𝜺 + 𝒎; 𝝌 

𝑉

𝑑𝑉 (2) 

 

where σ, m, χ, ε, and are stress, couple stress, curvature and strain tensors respectively, and their 

details are expressed as follows 

 

𝝈 =
𝐸(𝑌)  𝜈(𝑌)

 1 + 𝜈(𝑌)  1 − 2𝜈(𝑌) 
 𝑡𝑟 𝜺 𝐼 + 2

𝐸(𝑌)

2 1 + 𝜈 
𝜺 (3a) 

 

𝜺 =
1

2
 ∇𝒖 +  ∇𝒖 𝑇  (3b) 

 

𝒎 = 𝑙2
𝐸(𝑌)

 1 + 𝜈(𝑌) 
 𝝌 (3c) 

 

𝝌 =
1

2
 ∇𝜽 +  ∇𝜽 𝑇  (3d) 

 

where l indicates length scale parameter that characterize the couple stress influences. ν is the 

Poisson’s ratio. θ and u and indicate rotation and displacement vectors respectively, expressed as 

follows 

𝜽 =
1

2
curl 𝒖 (4) 

 

Strain and curvature tensor expressions are given in any time t according to Timoshenko beam 

theory as follows 

 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑋
=

𝜕𝑢 𝑋, 𝑡 

𝜕𝑋
− 𝑌

𝜕∅(𝑥, 𝑡)

𝜕𝑋
 (5a) 

 

𝛾𝑥𝑦 =
∂𝑣

∂x
− ∅(𝑥, 𝑡) (5b) 

 

𝜒𝑥𝑧 =
1

4
  

𝜕2𝑣 𝑋, 𝑡 

𝜕𝑋2
+

𝜕∅ 𝑋, 𝑡 

𝜕𝑋
 ,     𝜒𝑥𝑥 = 𝜒𝑥𝑦 = 𝜒𝑦𝑦 = 𝜒𝑦𝑧 = 𝜒𝑧𝑧 = 0 (5c) 
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where u and v are horizontal and vertical deflections, respectively. ∅  indicates the rotation. 

Constitutive relation of the problem is given with using the Kelvin–Voigt viscoelastic model as 

follows 
 

𝜎𝑥𝑥 = 𝐸(𝑌)   
𝜕u 𝑋, 𝑡 

𝜕𝑋
− 𝑌

𝜕∅(𝑥, 𝑡)

𝜕𝑋
 + 𝜂1(Y)

𝜕

𝜕𝑡
 
𝜕u 𝑋, 𝑡 

𝜕𝑋
− 𝑌

𝜕∅(𝑥, 𝑡)

𝜕𝑋
   (6a) 

 

𝜎𝑥𝑦 = 𝑘𝑠  
𝐸(𝑌)

2 1 + 𝜈 
  

∂𝑣

∂x
− ∅(𝑥, 𝑡) + 𝜂2(Y)

𝜕

𝜕𝑡
 
∂𝑣

∂x
− ∅(𝑥, 𝑡)   (6b) 

 

𝑚𝑥𝑧 =
1

2
𝑙2

𝐸(𝑌)

2 1 + 𝜈 
   

𝜕2𝑣 𝑋, 𝑡 

𝜕𝑋2
+

𝜕∅ 𝑋, 𝑡 

𝜕𝑋
 + 𝜂3(Y)

𝜕

𝜕𝑡
 
𝜕2𝑣 𝑋, 𝑡 

𝜕𝑋2
+

𝜕∅ 𝑋, 𝑡 

𝜕𝑋
   (6c) 

 

𝑚𝑥𝑥 = 𝑚𝑥𝑦 = 𝑚𝑦𝑦 = 𝑚𝑦𝑧 = 𝑚𝑧𝑧 = 0 (6d) 

 

where 𝑘𝑠 indicates the shear correction factor, η1, η2 and η3 are the damping ratios in bending, 

shearing and couple stress, respectively, as follows 

 

𝜂1 =
𝑐(𝑌)

𝐸(𝑌)
,     𝜂2 =

𝑐(𝑌) 2 1 + 𝜈(𝑌) 

𝐸(𝑌)
,     𝜂3 =

𝑐(𝑌)   1 + 𝜈(𝑌) 

2𝑙2𝐸(𝑌)
 (7) 

 

where c indicates the damping coefficient. Substituting Eqs. (5) and (6) into Eq. (2), strain energy 

is presented as follows 

 

𝑈𝑖 =
1

2
  𝐴11  

𝜕𝑢 𝑋, 𝑡 

𝜕𝑋
 

2

− 2𝐵11  
𝜕u 𝑋, 𝑡 

𝜕𝑋
  

𝜕∅ 𝑥, 𝑡 

𝜕𝑋
 + 𝐷11  

𝜕∅ 𝑥, 𝑡 

𝜕𝑋
 

2

 
𝐿

0

 

+  𝑘𝑠𝐴55  
∂𝑣

∂x
− ∅(𝑥, 𝑡) +

1

8
𝑙2𝐴55  

𝜕2𝑣 𝑋, 𝑡 

𝜕𝑋2
+

𝜕∅ 𝑋, 𝑡 

𝜕𝑋
 

2

 𝑑𝑋 

(8) 

 

where 
 

 𝐴11 , 𝐵11 , 𝐷11 =  𝐸 𝑌 (1, 𝑌, 𝑌2)𝑑𝐴
𝐴

,     𝐴55 =  𝜇 𝑌 𝑑𝐴
𝐴

 (9) 

 

The kinetic energy of the problem (T) is 

 

𝑇 =
1

2
  𝐼1  

𝜕𝑢0

𝜕𝑡
 

2

− 2𝐼2  
𝜕𝑢0

𝜕𝑡
  

𝜕∅

𝜕𝑡
 + 𝐼1  

𝜕𝑣0

𝜕𝑡
 

2

+ 𝐼3  
𝜕∅

𝜕𝑡
 

2

 𝑑𝑋

𝐿

0

 (10) 

 

where 
 

 𝐼1 , 𝐼2 , 𝐼3 =  𝜌 𝑌 (1, 𝑌, 𝑌2)𝑑𝐴

𝐴

 (11) 
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where 𝜌 indicates the mass density. The dissipation function of the problem (R) is given as 

follows 
 

𝑅 =
1

2
  𝐶1  

𝜕

𝜕𝑋
 
𝜕𝑢

𝜕𝑡
  

2

− 2𝐶2  
𝜕

𝜕𝑋
 
𝜕𝑢

𝜕𝑡
   

𝜕

𝜕𝑋
 
𝜕∅

𝜕𝑡
  + 𝐶3  

𝜕

𝜕𝑋
 
𝜕𝑢

𝜕𝑡
  

2

 
𝐿

0

 

+  𝐶4  
𝜕

𝜕𝑋
 
𝜕𝑣

𝜕𝑡
 −  

𝜕∅

𝜕𝑡
  

2

+
1

8
𝑙2𝐶4  

𝜕2

𝜕𝑋2
 
𝜕𝑣

𝜕𝑡
 +

𝜕

𝜕𝑋
 
𝜕∅

𝜕𝑡
  

2

 𝑑𝑥 

(12) 

 

where 
 

 𝐶1 , 𝐶2 , 𝐶3 =  𝐸 𝑌 𝜂1 𝑌 (1, 𝑌, 𝑌2)𝑑𝐴

𝐴

,        𝐶4 =  𝜇  𝑌 𝜂2 𝑌 𝑑𝐴

𝐴

 (13) 

 

The potential energy of the external loads (𝑈𝑒) is given as follows 
 

𝑈𝑒 = −  𝑃 𝑥, 𝑡  𝑣 𝑥, 𝑡  𝑑𝑋

𝐿

0

 (14) 

 

The Lagrangian functional is given as follows 
 

𝐼 = 𝑇 − (𝑈i + 𝑈e) (15) 
 

In the finite element solution, two-node beam element with three freedom degrees is used as 

shown in Fig. 2. 

The displacement vector in terms of node displacements and rotation are expressed as 
 

 𝑞 𝑡  e =  𝑢𝑖
 𝑒  𝑡 , 𝑣𝑖

 𝑒  𝑡 ,  ∅𝑖
 𝑒  𝑡 , 𝑢𝑗

 𝑒  𝑡 , 𝑣𝑗
 𝑒  𝑡 ,  ∅𝑗

 𝑒  𝑡    
𝑇

 (16) 

 

The displacement functions with nodal displacements are given as follows 
 

𝑢 e  𝑋, t =  φ 𝑈   
 𝑢i

 𝑢j
 =  φ 𝑈   q 𝑈  (17a) 

 

𝑣 e  𝑋, t =  φ 𝑉  

 
 

 
 𝑣i

 ∅i

 𝑣j 
 ∅j 

 

 

=  φ 𝑉   𝑞 𝑉  (17b) 

 

 

 

Fig. 2 Two-node finite element 
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∅ e  𝑋, t =  φ ∅  

 
 

 
 𝑣i

 ∅i

 𝑣j 
 ∅j 

 

 

=  φ ∅   𝑞 ∅ (17c) 

 

where ui, vi and ∅i are the node displacement components, 𝜑𝑖
(𝑈)

, 𝜑𝑖
(𝑉)

 and 𝜑𝑖
(∅)

 indicate the shape 

functions. Interested reader can find the shape functions in Chakraborty et al. (2002). Substituting 

Eqs. (17a)-(17c) into energy Eqs. (8)-(14), the energy equations are obtained with shape functions 

and nodal displacements. Then, substituting the energy equations into equation (15), Lagrange’s 

equations are obtained as follows 
 

𝜕𝐼

𝜕𝑞𝑘
(𝑒)

−
𝜕

𝜕𝑡

𝜕𝐼

𝜕𝑞 𝑘
(𝑒)

+ 𝑄𝐷𝑘
= 0,        𝑄𝐷𝑘

= −
∂R

𝜕𝑞 𝑘
(𝑒)

,        𝑘 = 1, 2, 3, 4, 5, 6 (18) 

 

where 𝑄𝐷𝑘
 indicates generalized damping load. By using the Lagrange procedure, the equation of 

motion is given as follows 
 

 𝐾  𝑞 𝑡  +  𝐷  𝑞  𝑡  +  𝑀  𝑞  𝑡  =  𝐹 𝑡   (19) 
 

where  𝐹  is the load vector,  𝐾 ,  𝐷  and  𝑀  are element stiffness, damping and mass 

matrixes, respectively. Details of components of the finite element equation are given as follows 
 

 𝐾 =  

 𝐾𝑈 0  𝐾𝑈∅ 

0  𝐾V  𝐾𝑉∅ 

 𝐾∅𝑈  𝐾∅𝑉  𝐾∅ 

  (20) 

 

where 
 

 𝐾𝑈 =  𝐴11

𝐿e

0

 
𝜕𝜑(𝑈)

𝜕𝑋
 

𝑇

  
𝜕𝜑(𝑈)

𝜕𝑋
 𝑑𝑋, (21a) 

 

 𝐾𝑈∅ =   𝐾∅𝑈 
T

= − 𝐵11

𝐿e

0

 
𝜕𝜑(𝑈)

𝜕𝑋
 

𝑇

  
𝜕𝜑(∅)

𝜕𝑋
 𝑑𝑋, (21b) 

 

 𝐾𝑉 =   𝑘𝑠𝐴55  
𝜕𝜑 𝑉 

𝜕𝑋
 

𝑇

  
𝜕𝜑 𝑉 

𝜕𝑋
 +  

1

8
𝑙2𝐴55  

𝜕2𝜑 𝑉 

𝜕𝑋2
 

𝑇

 
𝜕2𝜑 𝑉 

𝜕𝑋2
  

𝐿e

0

𝑑𝑋, (21c) 

 

 𝐾𝑉∅ =   𝐾∅𝑉 
T

=   −𝑘𝑠𝐴55  
𝜕𝜑 𝑉 

𝜕𝑋
 

𝑇

  𝜑 ∅  +
1

8
𝑙2𝐴55  

𝜕2𝜑 𝑉 

𝜕𝑋2
 

𝑇

 
𝜕𝜑(∅)

𝜕𝑋
  

𝐿e

0

𝑑𝑋, (21d) 

 

 𝐾∅ =   (𝐷11 +
1

8
𝑙2𝐴55)  

𝜕𝜑 ∅ 

𝜕𝑋
 

𝑇

  
𝜕𝜑 ∅ 

𝜕𝑋
 + 𝑘𝑠𝐴55 𝜑

 ∅  
𝑇
 𝜑 ∅   

𝐿e

0

𝑑𝑋, (21e) 
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 𝑀 =  

 𝑀𝑈 0  𝑀𝑈∅ 

0  𝑀V 0

 𝑀𝑈∅ 0  𝑀∅ 

  (22) 

 

where 
 

 𝑀𝑈 =  𝐼1

𝐿e

0

 𝜑(𝑈) 
𝑇

  𝜑(𝑈) 𝑑𝑋 (23a) 

 

 𝑀𝑉 =  𝐼1

𝐿e

0

 𝜑(𝑉) 
𝑇

  𝜑(𝑉) 𝑑𝑋 (23b) 

 

 𝑀𝜃  =  𝐼3

𝐿e

0

 𝜑(∅) 
𝑇

  𝜑(∅) 𝑑𝑋 (23c) 

 

 𝑀𝑈𝜃  = − 𝐼2

𝐿e

0

 𝜑(∅) 
𝑇

  𝜑(𝑈) 𝑑𝑋 (23d) 

 

 𝐷 =  

 𝐷𝑈 0  𝐷𝑈∅ 

0  𝐷V  𝐷𝑉∅ 

 𝐷∅𝑈  𝐷∅𝑉  𝐷∅ 

  (23) 

 

where 
 

 𝐷𝑈 =  𝐶1

𝐿e

0

 
𝜕𝜑(𝑈)

𝜕𝑋
 

𝑇

  
𝜕𝜑(𝑈)

𝜕𝑋
 𝑑𝑋 (25a) 

 

 𝐷𝑈∅ =   𝐷∅𝑈 
T

= − 𝐶2

𝐿e

0

 
𝜕𝜑(𝑈)

𝜕𝑋
 

𝑇

  
𝜕𝜑(∅)

𝜕𝑋
 𝑑𝑋 (25b) 

 

 𝐷𝑉 =  (𝑘𝑠𝐶4  
𝜕𝜑(𝑉)

𝜕𝑋
 

𝑇

  
𝜕𝜑(𝑉)

𝜕𝑋
 

𝐿e

0

+  
1

8
𝑙2𝐶4  

𝜕2𝜑(𝑉)

𝜕𝑋2
 

𝑇

 
𝜕2𝜑(𝑉)

𝜕𝑋2
 )𝑑𝑋 (25c) 

 

 𝐷𝑉∅ =  𝐾∅𝑉 
T

=   −𝑘𝑠𝐶4  
𝜕𝜑 𝑉 

𝜕𝑋
 

𝑇

  𝜑 ∅  +
1

8
𝑙2𝐶4  

𝜕2𝜑 𝑉 

𝜕𝑋2
 

𝑇

 
𝜕𝜑 ∅ 

𝜕𝑋
  

𝐿e

0

𝑑𝑋 (25d) 

 

 𝐷∅ =  ((𝐶3 +
1

8
𝑙2𝐶4)  

𝜕𝜑(∅)

𝜕𝑋
 
𝑇

  
𝜕𝜑 (∅)

𝜕𝑋
 

𝐿e

0
 +𝑘𝑠𝐶4 𝜑

(∅) 
𝑇
 𝜑(∅) ) )d (25e) 
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Fig. 3 Elastic rotational spring model in cracked microbeam 
 

 

 𝐹 𝑡  =   𝜑(X) T  𝐹 X, 𝑡  

𝐿e

x=0

𝑑𝑋, (26) 

 

where Le is the finite element length. In the crack model, an elastic rotational spring which 

connects the right and left sub-elements is used at the cracked cross-section, as shown Fig. 3. 

According to elastic rotational spring model, compatibility conditions of the cracked location 

are 

𝑢1 = 𝑢,         𝑣1 = 𝑣2 ,        Δ∅ =  ∅1 − ∅2 = 𝑘𝑀

𝜕2𝑣

𝜕𝑋2
        𝑎𝑡        𝑋 = 𝐿1 (27) 

 

where kM and Δ∅ are the flexibility constant and the slope increment respectively, at the cracked 

section. ∅1 and ∅2 indicate the angles on the two sides of the crack. Stiffness matrix, damping 

matrix and displacement vector of the cracked section for the spring model is given as follows 
 

 𝐾 (𝐶𝑟) =  
𝑘𝑀 −𝑘𝑀

−𝑘𝑀 𝑘𝑀
 ,    𝐷 (𝐶𝑟) = 𝜂1  

𝑘𝑀 −𝑘𝑀

−𝑘𝑀 𝑘𝑀
 ,     𝑞 (𝐶𝑟) =  ∅1 ,  ∅2 

𝑇  (28) 

 

Substituting Eq. (28) into Eq. (19), the motion equation with crack is expressed as follows 
 

  𝐾 +  𝐾 (𝐶𝑟)  𝑞 𝑡  +   𝐷 +  𝐷 (𝐶𝑟)  𝑞  𝑡  +  𝑀  𝑞  𝑡  =  𝐹 𝑡   (29) 

 

In the solution of the motion equation (Eq. (29)), Newmark average acceleration method 

(Newmark 1959) is implemented in the time domain. The dimensionless quantities are expressed 

as 

𝜂 =
𝐿1 

𝐿
,   𝐾𝑇 =

𝐾𝑀  

𝐿
 (30) 

 

where, 𝜂 is the crack location ratio and 𝐾𝑇  is the crack severity parameter. 
 

 

3. Numerical results 
 

Forced vibration responses of a cracked cantilever FGM microbeam are calculated and 

presented in figures in the MCST and the CBT for different the crack severity, material and 

geometry parameters. The material of the microbeam at middle surface (Y = 0) is chosen as 

Aluminum (E0 = 70 GPa, ρ0 = 2780 kg/m3, ν0 = 0.33) and the material properties change 

exponentially according to Eq. (1). The length scale parameter taken as l = 15 μm (Akgöz and 

Civalek 2014). The finite element number is choosing as 100. In numerical process, five-point 

Gauss rule is used for calculation of the integration. ). 𝑘𝑠 is taken as 0.8922. The damping ratio 

𝜂1 is taken as  𝜂1 = 0.000001 and 𝜂2 and 𝜂3 are taken as proportional to 𝜂1 according to Eq. 
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Fig. 4 The excitation of the force 

 

 
Table 1 Validation study: the dimensionless frequencies for different values of l and KT 

Frequency (THz) KT = 0 KT = 1 KT = 2 

l = 10 μm 
Tadi Beni et al. (2015) 0.02007 0.01651 0.01428 

Present study 0.02005 0.01648 0.01427 

l = 20 μm 
Tadi Beni et al. (2015) 0.04015 0.03303 0.02856 

Present study 0.04013 0.03300 0.02851 

l = 30 μm 
Tadi Beni et al. (2015) 0.06023 0.04953 0.04284 

Present study 0.06019 0.04949 0.04281 

 

 

(7). For the forced vibration problem, a triangular impulse force (F(t)) e with a harmonic property 

at the free end is implemented as shown Fig. 4 in the time domain. The peak value of the impulse 

force is 1 μN. 

In order to confirm the accuracy of presented method, a validation study is presented. In the 

validation study, the dimensionless fundamental frequencies with different values of 𝒍 and KT are 

obtained and compared with Tadi Beni et al. (2015) for 𝜂 = 0.5 for MCST in Table 1. Material 

and geometry parameters used in Tadi Beni et al. (2015) are; epoxy, h = 300 nm, L= 1 μm, b = 100 

nm. The results of present study agree with Tadi Beni et al. (2015)’s as shown Table 1. 

In Fig. 5, the accelerations of the FGM microbeam are presented with different aspect ratios 

 

 

  

(a) For kT = 0, L/h = 10 (b) For kT = 0.5, L/h = 10 

Fig. 5 The relationship between kT and L/h on the accelerations of the FGM microbeam 
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(c) For kT = 0, L/h = 100 (d) For kT = 0.5, L/h = 100 
 

  

(e) For kT = 0, L/h = 1000 (f) For kT = 0.5, L/h = 1000 

Fig. 5 Continued 
 

 

  

(a) For kT = 0, h/l = 1 (b) For kT = 0.5, h/l = 1 
 

  

(c) For kT = 0, h/l = 8 (d) For kT = 0.5, h/l = 8 

Fig. 6 The relationship between kT and h/l on the accelerations of the FGM microbeam 
 

 

(L/h) and the crack severity parameter for 𝜂 = 0.5, h/l = 4 and 𝛽 = 0 kT in both MCST and CBT. 

It is noted that the accelerations are calculated at the free end. Fig. 5 shows that increase in the L/h, 

the difference between MCST and CBT diminishes. In high values of the L/h, the waves in both 
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CBT and MCST interfere with each other. Another result of Fig. 6 that the number of waves for 

both of CBT and MCST decrease as L/h increases. As seen from Fig. 5 that MCST must be used 

instead of CBT in the smaller value of aspect ratio. Increase in the L/h, the effect of the kT, namely 

the crack effect, on the accelerations decrease. In higher L/h values, the effects of the kT diminish 

significantly. 

Fig. 6 displays the relationship between ratio of h/l and the accelerations for different the crack 

severity parameters kT for 𝜂 = 0.5, 𝛽 = 13000 and for L/h = 25 in both CBT and MCST. It is 

noted that in the selection of the values of h/l, the height of the microbeam (h) is varied as l is keep 

constant as 15 μm. It is seen from Fig. 6 that the number of acceleration waves and the difference 

between the results of CBT and MCST decrease with increase in the D/l. Increase in the h/l, the 

effect of crack on the forced vibration responses decrease significantly. The accelerations in the 

CBT is larger than those of MCST without crack. However, the accelerations in the MCST is 

larger than those of CBT with crack. It shows that the crack is very effective for the forced 

vibration results of the microbeam and the difference between CBT and MCST. 

In Fig. 7, the relationship between the material distribution parameter 𝛽 and the accelerations 
 

 

  

(a) For kT = 0,  𝛽 = 0 (b) For kT = 0.5,  𝛽 = 0 
 

  

(c) For kT = 0,  𝛽 = 6000 (d) For kT = 0.5,  𝛽 = 6000 
 

  

(e) For kT = 0,  𝛽 = 19000 (f) For kT = 0.5,  𝛽 = 19000 

Fig. 7 The relationship between kT and 𝛽 on the accelerations of the FGM microbeam 
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is plotted for different the crack severity parameters kT for L/h = 10, h/l = 5 and 𝜂 = 0.5 in both 

CBT and MCST. It is obvious from this figure that increasing the material distribution parameter 

𝛽 yields decreasing of the accelerations in both CBT and MCST. With increase in 𝛽, the Young’s 

modulus and strength of FGM microbeam decrease according to Eq. (1). Hence, the strength of 

material decreases and accelerations increases naturally. Another result of Fig. 7 that increase in 

the material 𝛽, the difference between the CBT and MCST increases significantly. With decrease 

the 𝛽, the waves in both CBT and MCST interfere with each other. Increasing the 𝛽 yields 

increasing of the number of waves. In addition, effects of the crack on the accelerations decrease 

considerably with increasing 𝛽. It shows that the material distribution parameter (𝛽) is very 

effective to change in forced vibration responses of the cracked FGM microbeams. 
 

 

4. Conclusions 
 

Forced vibration of a cantilever FGM microbeam with crack and damping effects are studied 

for modified couple stress theory under a impulse force. In solution modeling of the problem, 

Timoshenko beam theory and finite element method are used within the Newmark method. Effects 

of crack, geometry and material properties on forced vibration results of the cracked microbeam 

are examined. The shortcomings of this study, the experimental investigation and accuracy are not 

included. It would be interesting to demonstrate the ability of the procedure through a wider 

campaign of investigations concerning experimental study of cracked micro/nano structures in the 

future. It is obtained from the result, the main conclusions are as follows: 
 

 The L/h and h/l play determining role on the forced vibration of the cracked FGM 

microbeams. 

 The crack parameters are very effective for the forced vibration results of the FGM 

microbeams and the difference between CBT and MCST. 

 With increase in the L/h and h/l, number of acceleration waves and the difference between 

the CBT and MCST decrease considerably. 

 In high values of the L/h and h/l, the acceleration waves of CBT and MCST interfere with 

each other. 

 The crack parameters are very effective to change in the difference between the results of 

CBT and MCST. 

 With decrease in the material distribution parameter 𝛽 , the number waves and the 

difference between the CBT and MCST increase. 

 The material distribution plays determining role in dynamic responses of the FGM 

microbeams. 
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