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Abstract.    Knowledge of thin films mechanical properties is strongly associated to the reliability and the 
performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro 
materials characterization. Bulge test is an established nondestructive technique for studying the mechanical 
properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of 
Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) 
by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced 
polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain 
bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and 
then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite 
NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite 
NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply 
BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from 
pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by 
hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was 
analysed. 
 

Keywords:   bulge test technique; mechanical behavior; Micro/Nano Electro-Mechanical Sensors (MEMS/ 
NEMS); basalt fiber reinforced polymer (BFRP) 
 
 
1. Introduction 
 

The micro or Nano-size scale in diaphragm is the most important part in numerous engineering 
and bioengineering sensors applications such as the micro electro-mechanical sensors (MEMS) 
and Nano Electro Mechanical Systems (NEMS), e.g., the pressure sensors normally have a micro 
or Nano diaphragm that deforms in the presence of pressure difference. 

Accurate measurement of materials properties in the fabrication of Micro Electro Mechanical 
Systems (MEMS) and more recently Nano Electro Mechanical Systems (NEMS) is a great 
challenge, especially when these properties depend on the fabrication process. 

In addition, fast growing progress in the structural elements application such as diaphragm with 
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micro or Nano-size scale in MEMS/ NEMS, due to their outstanding chemical, mechanical, and 
electrical properties, led to a challenge in modelling of Micro/Nano scale structures. In such 
applications, it is presented that the size effect has a major influence on Mechanical behavior of 
material. The importance of size effects induced the scientific development for the behaviors of the 
Nano-structures and Nano-materials much accurately (Alizada and Sofiyev 2011a, b, 2012). 

To understand the thermomechanical behavior of nanostructures, the numerous works for 
modeling and measurement of thermomechanical formation and thermal detection of 
nanostructures under vibration and buckling load (Ebrahimi et al. 2015, Ebrahimi and Salari 2015a, 
b, Ebrahimi and Farzamand 2016). The shear stress influence on NEMS subjected to different load 
has been discussed by Ebrahimi and Shafiei (2016), Ebrahimi and Farzamand (2016), Ebrahimi 
and Barati (2017). 

Bulge test is an established non-destructive technique for characterizing the mechanical 
properties of thin film. It has the advantage of being able to characterize the residual stress, elastic 
modulus, Poisson ratio and other important parameters such as strength and fracture toughness. 
While at the same time, the sample preparation is relatively simple compared to others mechanical 
characterization techniques. In the bulge test, a uniform pressure is applied to one side of a free-
standing thin film, causing it to deflect toward the other side. The mechanical properties can be 
obtained from the static pressure ‘P’ vs. the membrane deflection ‘w’ relation. 

However, the accuracy of results is very sensitive to many sources of errors, like the errors 
related to the geometry, sample holder, interferometry measurement, pressure measurement and to 
the analytical model of the load deflection equation. The current work takes into account the above 
mentioned errors sources in order to analyze and to reduce them for new material are not use in 
Micro/Nano sensors before that work. Symmetric cross-ply basalt fiber reinforced polymer (BFRP) 
laminated composite NRTF are tested. This material was chosen because it is a viable and 
promising alternative to metal materials for their high stiffness and strength to weight ratios, 
resistance to corrosion, sustainability, and lightweight and improve fatigue resistance and damage 
tolerance capability, thus it may be useful to investigate this work aims. 
 
 
2. Bulge test principle 
 

The bulge test consists in measuring the thin film deformation under a differential pressure. 
The calculation of the relationship between the pressure and the deflection is a difficult problem. 

Numerous works to predict the behavior and characteristics of materials under bulging have 
been undertaken and reported here, the first application of bulge test technique, conducted by (Hill 
1950, Mellor 1956) on the bulging of circular diaphragms being the earlier contributions in this 
field. Chater and Neale (1983) have examined the large strain behavior of a circular membrane 
under uniform hydrostatic pressure for materials with transversely isotropic plastic properties. 
They are first applied to derive the governing equations for the pressurized membrane. (Ilahi et al. 
1981, Ilahi and Paul 1985, Kular and The 1972) have investigated the hydrostatic bulging of 
anisotropic Aluminum sheets by comparing the experimental results with the theoretical predicted 
values. Comparison is made with theoretical and experimental results obtained also by other 
investigators (Brandon et al. 1979, Tang 1982, Hill 1990). On the other way of the bulge test 
research goals in this research decade to obtain the influence of material parameters on the 
hydrostatic bulging, Zeghloul et al. (1991) examined the plastic bulging of pressurized circular 
membranes with particular attention to the effect of material parameters on the inherent in 
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homogeneity of the test. Also, Wang and Shammamy (1969) analyzed the hydrostatic bulging of a 
circular sheet clamped on the basis of both an incremental theory and the corresponding total strain 
theory of plasticity to show the effects of material types. The material of the sheet is assumed to 
have strain-hardening capacity and to be anisotropic in the thickness direction. They found that the 
incremental theory predicts that as the polar strain increases the pressure reaches a maximum and 
then decreases, whereas the total strain theory gives unsatisfactory results. Altabey (2017) studied 
the thermo-mechanical behavior of Micro circular diaphragm (MCD) by using bulge test technique. 
He derived the partial deferential equation of MCD according to diaphragm conditions to establish 
the analytical solution of bulged MCD for thermo-mechanical characterization with taking in-to 
account effect of the residual strength from pre-stressed loading. The results show that, the good 
convergence between the finite element model and analytical model which confirm the successes 
of he presented technique. 

The objective of the theoretical and numerical work to date has been to predict the behavior and 
characteristics of the metal under the hydrostatic bulging process and to determine the 
relationships among pressure, strain, and geometrical changes as accurately as possible. Storakers 
(1966) was being the earlier work used the numerical solution to study the bulge test. He presented 
an analysis of the plastic deformation including instability phenomena of a circular membrane 
subject to one-sided hydrostatic pressure. Equations determining stresses and strains are given for 
the deformation process of materials with a parabolic stress-strain curve. Numerical solutions have 
been carried out for some special cases. Then several researchers used the numerical solution to 
save time effort in experimental work and to check validity the results that are come from 
experimental and theoretical works. Ahmed and Hashmi (1998) studied the effect of combined 
pressure and in-plane compressive load on the sheet-plate by the finite-element method. The 
contact condition between the die and the sheet-plate is also taken into consideration in the 
analysis. Further, the analysis is undertaken also for the pressure-only loading case and the results 
are compared. Wan et al. (2003) measured a tensile residual stress in a plate or membrane clamped 
at the perimeter by either applying a uniform hydrostatic pressure or a central load via a cylindrical 
punch (with several different loading configurations). Analytical constitutive relations are derived 
here based on an average membrane stress approximation and are compared to finite element 
analysis results. Also in the last decades the numerical solution is playing important side in bulge 
test technique to determine of the mechanical characteristics of metals. 
Since this time, the bulge test technique research was taken the way of investigating the accuracy 
and reliability to study the mechanical properties of thin film materials, and effects parameters on 
it to proof the bulge test performance and capabilities as the research work by Itozaki (1982) 
showed that failure to include the initial height of the membrane in the analysis leads to an 
apparent nonlinear elastic behavior of the film, then also Small et al. (1992) analyzed the influence 
of initial film conditions such as film wrinkling, residual stress, and initial height of the membrane 
using finite element analysis. The accuracy and reliability of the bulge test has been analyzed by 
many investigators (Vlassak 1994, Grolleau et al. 2008, Jung et al. 2012, 2013, Yang et al. 2014, 
Zhang et al. 2015, Huang et al. 2016, Suttner and Merklein 2016). These authors point out that the, 
although the determination of the plane-strain modulus in the light of the plane-strain bulge 
equation is fairly accurate, the calculation of the residual stress is not satisfied as expected, 
especially for low residual stress. Finally, some of these work proposed an approach for analyzing 
bulge test data, which will improve the accuracy and reliability of this bulge test technique. 

The plane-strain bulge test is a powerful new technique for measuring the mechanical 
properties of thin films. In this technique, the stress–strain curve of a thin film is determined from 
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Fig. 1 The geometrical model of bulge test for BFRP composite NRTF subjected to in-plane (pre-stressed) 

load XN  and YN with clamped edges (CCCC) 
 
 

the pressure-deflection behavior of the laminated NRTF, as presented in Fig. 1. For a thin film in a 
state of plane strain, film stress and stain are distributed uniformly across the membrane width, 
and simple analytical formulae for stress and strain can be established (Xiang et al. 2005). 
 
 

3. The bulge test of NRTF model 
 

3.1 Geometrical model 
 

Fig. 1 represents the geometrical model of BFRP laminated composite NRTF before and after 
displacement at left half and right half side respectively. As shown in the figure the NRTF has a 
length at x-direction (a) and a length at y-direction (b) and the thickness (ho). The NRTF is first 
pre-stress under radial stress σ0 to ensure the initial deflection before applied the load equal zero 
and then clamped between two plates. The lower side of the film is subjected to a differential 
pressure (P) to a deformation of the laminated composite NRTF. 

The BFRP laminate composite pipe was manufactured using five layers of basalt fibre with 

340



 
 
 
 
 
 

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS 

orientation [0°/90°/0°/90°/0°]s and a polymer resin matrix with a length at x-direction a = 100 nm 
and a length at y-direction b = 50 nm. The thickness of all plies were 1 nm. The corresponding 
elastic modulus values were E1 = 96.74 GPa, E2 = E3 = 22.55 GPa, and the Shear modulus values 
were G1 = G3 = 10.64 Gpa, G2 = 8.73 GPa. Poisson coefficients were υ1 = υ3 = 0.3, υ2 = 0.6 and the 
density was 2700 kg/m3. 

 
3.2 Theory and formulation 
 
3.2.1 The governing partial differential equations 
A standard x, y, z coordinate system, as shown in Fig. 1, is used in deriving the equations. The 

displacements in the x, y, z directions are denoted uo, vo, wo, respectively. The displacements in the 
x and y directions i.e., uo and vo are very small so we can be neglected and the effective equation 
that is the equation at the direction of the deflection wo. The governing Partial differential 
equations of Anisotropic laminated rectangular plates with thickness h subjected to uniform 
pressure load P on the terms of the plate deflection wo and in-plane force ,XN YN  and XYN  
acting in the plane of symmetric cross-ply laminates pre-stressed NRTF are become 
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OR in contraction form 
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PWNWNWNWDWDDWD yyYxyXYxxXyyyyxxyyxxxx  2)2(2 22661211  (3)
 
For pre-stressed rectangular thin plate in the hydraulic bulge system the in-plane Load are in x 

and y direction only i.e., .0XYN  Thus, the governing Partial differential Eq. (3) are become 
 

PWNWNWDWDDWD yyYxxXyyyyxxyyxxxx  22661211 )2(2  (4)
 
By divided the Eq. (4) by D22 and introducing the following constants 
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Eq. (4) will take the form 

 

PWWWWW yyxxyyyyxxyyxxxx  2121 2   (5)
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By transfer the right hand side in Eq. (5) to left hand side will take the form 
 

02 2121  PWWWWW yyxxyyyyxxyyxxxx   (6)
 
3.2.2 Levy’s Method for solution of the governing partial differential equations 
Levy suggested the solution of Eq. (6) be expressed in terms of complementary, wh; and 

particular, wp, parts, each of which consists of a single Fourier series where unknown functions are 
determined from the prescribed boundary conditions. Thus, the solution is expressed as follows 
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The complementary solution is taken to be 
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Where fm(y) is a function of y only; wh also satisfies the clamped edges boundary conditions Eq. 
(8). Substituting Eq. (9) into Eq. (6) and according to the obtained values of the characteristic 
exponents, the solution of the homogeneous equation can be expressed in terms of either 
exponential function 

 

   aym
m

aym
m

aym
m

aym
mm eDeC

a

ym
eBeAyf      (10)

 

Or in hyperbolic functions 
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The second form, Eq. (11), is more convenient for calculations. The complementary solution 
given by Eq. (9) becomes 
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Where the constants Am, Bm, Cm and Dm are obtained from the boundary conditions on the edges 
y = b/2. 
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The particular solution, wP, in Eq. (7), can also be expressed in a single Fourier series as 
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The pressure (lateral distributed) load P(x, y) is taken to be the following 
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Where Pm(y) represent coefficients to be determined. It can be easily verified that the 
expression for particular deflections Eq. (13) automatically satisfies the prescribed boundary 
conditions Eq. (8). 

By Substituting Eqs. (13) and (14) into Eq. (6), and after some derivatives the particular 
solution is of the following form 
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Combining Eqs. (15) and (12), we obtain 
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Due to the symmetry of the boundary conditions and applied loading, we can conclude that the 

plate deflection will be also symmetrical about the x axis, i.e., wo(x, y) = wo(x, ‒ y). This condition 
is satisfied by Eq. (12) if we let Am = Dm = 0. Then, combining Eqs. (12) and (15), we obtain 
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Where the constants Bm and Cm are obtained from the boundary conditions on the edges at y = 

b/2. 
Eq. (17) exactly satisfy Eq. (6) and the boundary conditions (8) at x = 0 and x = a. The 

remaining boundary conditions are, as follows 
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We can obtain the constants Am, Bm, Cm and Dm exactly satisfy Eq. (17) and the boundary 
conditions of clamped edges are 
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The deflection of the plate surface, Eq. (17), may thus be expressed 
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The maximum deflection is obtained at the film center (x= a/2 and y = 0), where 
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3.2.3 laminated NRTF moments and shear force 
Considering an elemental parallelepiped cut out of the film, as shown in Fig. 2, we assign 

positive internal forces and moments to the near faces of the film element. To satisfy the 
equilibrium of the element, negative internal forces and moments must act on its far sides. The 
first subscript of the internal forces refers to the direction of the surface normal pertinent to the 
section on which the force acts. The subscripts of the internal bending and of the twisting moments 
refer to the stresses of which they are produced. 

After equilibrium of the film element for internal forces and moments and after some deriving 
on this equilibrium, we can obtain the total equivalent shear forces and moments applied to the 
middle surface in terms of displacements, which are known as the stress resultants and stress 
couples. The stress resultants and stress couples are referred to as the shear forces, Qx and Qy, as 
well as the bending and twisting moments Mx, My, and Mxy, respectively. 

The bending moments and the shear force in terms of displacements for symmetric cross-ply 
laminate NRTF are given by 

 






































yx

w
DM

y

w
D

x

w
DM

y

w
D

x

w
DM

o
XY

oo
Y

oo
X

2

66

2

2

222

2

12

2

2

122

2

11

2

 (20)

 

344



 
 
 
 
 
 

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS 

Fig. 2 The shear forces and moments on a laminate 
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Referring to Fig. 2, we can express the bending and twisting moments, as well as the shear 
forces, in terms of the stress components, i.e. 
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3.2.4 laminated NRTF stress-strain relations 
Similarly, the formulas for the plane stress components, from Eq. (22) are written in the 

following form 
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Where MX, MY and MXY are determined by Eqs. (20), clearly the maximum stresses take place 
on the surfaces Z = h/2 of the thin film. 

The stress-strain relations for symmetric cross-ply laminate NRTF are given by 
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For the bending moment Mx, My and Mxy substituting Eqs. (18) and (20) may thus be expressed 
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For shear force Qx and Qy substituting Eqs. (18) and (21) may thus be expressed 
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Substituting the Eqs. (27), (28) and (29) into Eq. (24), we obtain the following expressions for 
the plane stress components similarly, the formulas for the plane stress components, from Eq. (24) 
are written in the following form 
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Where Mx, My and Mxy are determined by Eqs. (20). Clearly the maximum stresses take place 
on the surfaces Z = h/2, the stress σx, σy and τxy may thus be expressed 
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For the strain εx, εy and γxy substituting Eqs. (18) and (26) may thus be expressed 
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3.2.5 The laminate NRTF thickness distribution 
The membrane theory is commonly used to determine the flow stress curve with the bulge test 

(Panknin 1959, Gologranc 1975), Fig. 3. The membrane theory neglects bending stresses across 
the film thickness. Thus, it is only applicable for thin film and gives for the bulge test the 
following relationship between stresses, strain and film geometry. Let as consider free forming of a 
laminated thin film. The current half arc length of any meridian passing through the dome apex is 
equal to Rα where R is the dome radius and α is half the angle subtended by the dome surface at 
the center of curvature, see Fig. 3. Since the initial half arc length of the meridian under 
consideration equals to the length a, it is stretched 2Rα/α = α/sinα times. Proceeding from 
symmetry, it follows that the principal positive strains are equal to each other and thickness at the 
dome apex equals. 
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Since the clamp does not deform during forming, the circumferential deformation along the 

periphery is negligible. On the other hand, meridian approaching the periphery is stretched by 
α/sinα times, and from this it follows that dome thickness at the periphery equals to 
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At some moment of deformation the point M transfer to point M′, and point O to O′ as shown in 

Fig. 3. Let Ψ be the angle between the symmetry axis and the dome radius to the point M′ under 
consideration. The latitude passing the point M′ is stretched by x/x0 times and the dome thickness 
at the point M′ may be found as follow 
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Fig. 3 Schematic of deformation modeling 
 
 
Taking into account that x = R sinΨ, x0 = ca/2 and Ψ = cα the dome thickness at any point could 

be calculated from the following Eq. (39) 
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The radius of curvature, see Fig. 3, is 
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The dome thickness at any point could be calculated from the following Eq. (41) as a function 
of (a, wmax, h0, x) 
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4. Results and discussion 
 

The results of the Nano rectangular thin film (NRTF) were used to calculate the mechanical 
behavior of the NEMS material. In Figs. 4-7 a typical Nano-deformation (deflection and strain) of 
a NRTF is depicted. The characterized sample is a NRTF made of basalt fiber reinforced polymer 
(BFRP) laminate composite materials with [0°/90°/0°/90°/0°]s laminate layer angle, longitudinal 
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distance is 100 nm, and lateral distance is 50 nm and 5 nm thick. 
 
4.1 Convergence study and accuracy 

 
In this subsection, a convergence investigation is carried out for the proposed method, the 

residual stress σ0 and Young’s modulus are calculated using presented technique and compared 
with available results in literatures. Table 1 presents a convergence and comparison study for Si3N4 
thin films. Silicon nitride (Si3N4) is a widely used functional material in MEMS devices due to its 
superior chemical and mechanical properties. 

The computational results which are compared with values available from literatures (Tabata et 
al. 1989, Vlassak and Nix 1992, Edwards et al. 2004). A very close agreement is observed. 

 
4.2 BFRP Nano rectangular thin film (NRTF) 

 
As shown in the Fig. 4 the transverse Nano-deflection wo is increased with increased of the 

NRTF longitudinal distance (a); along x-direction and decreased with increased of the NRTF 
lateral distance (b) along y-direction and the maximum Nano-deflection (wmax = 7.0527 nm) was 
occured at pressure 10 Pa at the center of the NRTF at a = a/2 and b = 0. 

 
 

Table 1 Convergence study of the residual stress σ0 and Young’s modulus of the Si3N4 thin films 

 
Tabata et al. 

(1989) 
Present 

Vlassak and Nix
(1992) 

Present 
Edwards et al. 

(2004) 
Present 

Residual 
stress σ0 

1 GPa 0.965 GPa 150 MPa 147.82 MPa 130 MPa 127.78 MPa 

Young’s 
modulus 

290 GPa 287.8 GPa 222 GPa 221 GPa 258 GPa 255.6 GPa 
 

 
 

Fig. 4 The 3D Nano-deflection distribution along NRTF for BFRP composite material with 
[0°/90°/0°/ 90°/0°]s laminate layer angle 
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As shown in the Figs. 5-7 the Nano-strain of εx, εy and γxy (nm/nm) distributions are symmetric 
along longitudinal and lateral directions, so the strain distribution behaviour in quarter of NRTF is 
the symmetric with corresponding quarter along NRTF axis with the maximum Nano-strain of εx, 
εy and γxy are 0.43504, 0.53257 and 0.38729 (nm/nm) respectively, were occured at pressure 10 Pa. 
In Fig. 5, the Nano-strain εx is increased with increased  of the NRTF longitudinal distance (a) 
along x-direction and decreased with increased  of the NRTF lateral distance (b) along y-direction 
and the maximum Nano-strain εx is occured at the center of the NRTF at a = a/2 and b = 0. 

But in Fig. 6, the Nano-strain εy is equal zero (nm/nm) for all the NRTF surface except the film 
ends, where, the Nano-strain εy is increased with increased of the NRTF longitudinal distance (a) 
along x-direction at both ends and the maximum Nano-strain εy is occured at the center of the 

 
 

 
 

Fig. 5 Nano-strain εx (nm/nm) distribution along NRTF for BFRP composite material with 
[0°/90°/0°/90°/0°]s laminate layer angle, contour profile at right and 3D profile at left 

 
 

Fig. 6 Nano- strain εy (nm/nm) distribution along NRTF for BFRP composite material with 
[0°/90°/0°/90°/0°]s laminate layer angle, contour profile at right and 3D profile at left 
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NRTF edge at a = a/2 and b = b/2. But the Nano-strain εy is equal zero (nm/nm) at other edges of 
NRTF along y-direction. 

In Fig. 7, the Nano-strain γxy is equal zero (nm/nm) at the center of the NRTF at a=a/2 and b = 0, 
the Nano-strain γxy is decreased from maximum to zero (nm/nm) with increased of the NRTF 
longitudinal distance (a) along x-direction at a = a/2, then increased to maximum, but the Nano-
strain γxy is increased from zero (nm/nm) to maximum with increased of the NRTF lateral distance 
(b) along y-direction, then decreased to zero. The maximum Nano-strain γxy is occured almost at 
four edges of the NRTF at a = 0, a and b = b/4. 
The stress distribution across NRTF thickness in contour profile is illustrated in Fig. 8. As shown 
in the figure, the stress distribution across NRTF thickness is symmetric above and below the 
midplane, above midplane is subjected to tension stress and below midplane is subjected to 
compression stress with the same value of maximum stress ±3.637 pa was occured at pressure 10 
Pa and the stress equal zero on the midplane. 

 
 

Fig. 7 Nano-strain δxy (nm/nm) distribution along NRTF for BFRP composite material with 
[0°/90°/0°/90°/0°]s laminate layer angle, contour profile at right and 3D profile at left 

 
 

Fig. 8 The stress distribution across NRTF thickness in contour profile 
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(a) Longitudinal distance (b) Lateral distance 

Fig. 9 Nano-Deflection profile with differential pressure of NRTF for BFRP composite material with 
[0°/90°/0°/90°/0°]s laminate layer angle 

 
 

In Fig. 9, differential pressure has been varied between 10 and 25 Pa with a regular step of 5 Pa. 
This corresponds to measuring transverse Nano-deflection wo. As shown in the figure, the 
transverse Nano-deflection wo is increased with increased of the pressure (P) and maximume 
Nano-deflection wmax varied between 7.0527 and 28.21 nm respectively. 

Figs. 10 and 11 show the relationship between stress and Namo-strain of NRTF with 
differential pressure has been varied between 10 and 25 Pa with a regular step of 5 Pa. 

From Figs. 10 and 11 we can see, the Nano-strain is increased with stress and increased of the 
pressure (P) and maximume Nano-strain varied between 0.43504 and 1.74 (nm/nm) and between  
0.06177 and 0.2465 (nm/nm) for εx and εy respectively. This relation is very important in 

 
 

Fig. 10 Stress and Namo-strain relationship at x-direction with differential pressure of NRTF for BFRP 
composite material with [0°/90°/0°/90°/0°]s laminate layer angle 
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Fig. 11 Stress and Namo-strain relationship at y-direction with differential pressure of NRTF for BFRP 
composite material with [0°/90°/0°/90°/0°]s laminate layer angle 

 
 

(a) P vs. h at x-direction (b) P vs. h at y-direction 
 

 

(c) P vs. εh at x-direction (d) P vs. εh at y-direction 

Fig. 12 The relation between differential pressure (P) and Thickness Nano-deformation of NRTF for 
BFRP composite material with [0°/90°/0°/90°/0°]s laminate layer angle 
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engineering analysis where the Young’s modulus E of the NRTF material from the slop of this 
liner relation. As a result, the Young’s modulus E can be expressed by E = ΔE = Δσ/Δε, and 
Young’s modulus Ex and Ey were calculated 42.01 and 58.63 Gpa respectively. 

The Nano-thickness deformation behavior across the NRTF is very important to improve the 
mechanical behaviour of NRTF, in order to satisfy the film durability for bulging load, therefore, 
the NEMS reliability. 

Fig. 12 shows the Nano-thickness deformation behavior under pressure variations, as shown in 
the figure the the Nano-thickness (h) is decreased from 5 to 4.883 nm with increased of the applied 
pressure (P) from 0 to 10 Pa at both directions. While, the thickness Nano-strain (εh) is increased 
with increased of the applied pressure (P) at both directions. 
 
 
5. Conclusions 
 

In this work the bulging tests is used to study the mechanical properties of Nano rectangular 
thin film (NRTF) embedded in Nano Electro Mechanical Systems (NEMS), made of basalt fiber 
reinforced polymer (BFRP) laminate composite materials. These Nano-film are already employed 
as mechanical actuator for coplanar wave guides up to nanometer wave range. The next step is to 
take advantage of the elastic behavior of this film by moving this film by electrostatic forces. The 
exact solution of the governing equations for laminated NRTF were stablished. The mechanical 
properties relations of the NRTF material were plotted and discussed. The thickness distribution 
across the Nano-film thickness is discussed to describe the durability under deformation with 
differential pressure (P). As a results, these technique is now well developed and are so mature that 
they become useful and rapid tools for mechanical characteristics which have been determined 
include a Young’s modulus Ex and Ey were calculated to be 42.01 and 58.63 Gpa respectively for 
Nano-film material with thickness (h) 5 nm. The maximum Nano-deflection wmax was estimated to 
be 7.0527 nm was occured at the center of the NRTF. The strain in the center of NRTF was found 
equal 0.43504 (nm/nm) for bulging tests with applied pressure (P) 10 pa. The stress across NRTF 
thickness was estimated to be ±3.637 pa in tension above midplane and compression below 
midplane of NRTF thickness. The NRTF thickness was decreased from 5 to 4.883 nm with 
increased of the applied pressure (P) from 0 to 10 Pa. 

 
 

References 
 
Ahmed, M. and Hashmi, M.S.J. (1998), “Finite-element analysis of bulge forming applying pressure and in-

plane compressive load”, Mater. Process. Technol., 77(1), 95-102. 
Alizada, A.N. and Sofiyev, A.H. (2011a), “Modified Young’s moduli of nano-materials taking into account 

the scale effects and vacancies”, Meccanica, 46(5), 915-920. 
Alizada, A.N. and Sofiyev, A.H. (2011b), “On the mechanics of deformation and stability of the beam with 

a nanocoating”, Reinf. Plastic. Compos., 30(18), 1583-1595. 
Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), “Stress analysis of a substrate coated by 

nanomaterials with vacancies subjected to uniform extension load”, Acta. Mech., 223(7), 1371-1383. 
Altabey, W. (2017), “A study on thermo-mechanical Behavior of MCD through bulge test analysis”, Adv. 

Computat. Des., Int. J., 2(2), 107-119. 
Brandon, J.F., Lecoanet, H. and Oytana, C. (1979), “A new formulation for the bulging of viscous sheet 

metals”, Int. J. Mech. Sci., 21(7), 379-386. 
Chater, E. and Neale, K.W. (1983), “Finite plastic deformation of a circular membrane under hydrostatic 

355



 
 
 
 
 
 

Wael A. Altabey 

pressure – I: Rate-independent behaviour”, Mech. Sci., 25(4), 219-233. 
Ebrahimi, F. and Barati, M.R. (2016b-a), “Analytical solution for nonlocal buckling characteristics of 

higher-order inhomogeneous nanosize beams embedded in elastic medium”, Adv. Nano Res., Int. J., 4(3), 
229-249. 

Ebrahimi, F. and Barati, M.R. (2016a-b), “An exact solution for buckling analysis of embedded piezo- 
electro-magnetically actuated nanoscale beams”, Adv. Nano Res., Int. J., 4(2), 65-84. 

Ebrahimi, F. and Barati, M.R. (2016c), “Buckling analysis of nonlocal third-order shear deformable 
functionally graded piezoelectric nanobeams embedded in elastic medium”, J. Brazil. Soc. Mech. Sci. 
Eng., 39(3), 937-952. DOI: 10.1007/s40430-016-0551-5 

Ebrahimi, F. and Barati, M.R. (2016d), “Dynamic modeling of a thermo–piezo-electrically actuated 
nanosize beam subjected to a magnetic field”, J. Appl. Phys. A, 122(4), 451. 

Ebrahimi, F. and Barati, M.R. (2016e), “Electromechanical buckling behavior of smart piezoelectrically 
actuated higher-order size-dependent graded nanoscale beams in thermal environment”, Int. J. Smart 
Nano Mater., 7(2), 69-90. 

Ebrahimi, F. and Barati, M.R. (2016f), “Small scale effects on hygro-thermo-mechanical vibration of 
temperature dependent nonhomogeneous nanoscale beams”, J. Mech. Adv. Mater. Struct., 24(11), 924-
936. DOI: http://dx.doi.org/10.1080/15376494.2016.1196795 

Ebrahimi, F. and Barati, M.R. (2016g), “Vibration analysis of smart piezoelectrically actuated nanobeams 
subjected to magneto-electrical field in thermal environment”, J. Vib. Control, 1077546316646239. 
DOI: http://dx.doi.org/10.1177/1077546316646239 

Ebrahimi, F. and Barati, M.R. (2017), “Buckling analysis of smart size-dependent higher order magneto-
electro-thermo-elastic functionally graded nanosize beams”, J. Mech., 33(1), 23-33. 

Ebrahimi, F. and Farzamand, N. (2016), “Thermo-mechanical vibration analysis of sandwich beams with 
functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear 
deformation beam theory”, J. Mech. Adv. Mater. Struct., 24(10), 820-829. 
DOI: http://dx.doi.org/10.1080/15376494.2016.1196786 

Ebrahimi, F. and Salari, E. (2015a), “Effect of various thermal loadings on buckling and vibrational 
characteristics of nonlocal temperature-dependent FG nanobeams”, J. Mech. Adv. Mater. Struct., 23(12), 
1-58. 

Ebrahimi, F. and Salari, E. (2015b), “Size-dependent thermo-electrical buckling analysis of functionally 
graded piezoelectric nanobeams”, J. Smart Mater. Struct., 24(12), 125007. 

Ebrahimi, F. and Shafiei, N. (2016), “Influence of initial shear stress on the vibration behavior of single-
layered graphene sheets embedded in an elastic medium based on Reddy’s higher-order shear deformation 
plate theory”, J. Mech. Adv. Mater. Struct., 24(9), 761-772. 
DOI: http://dx.doi.org/10.1080/15376494.2016.1196781 

Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), “Thermomechanical vibration behavior of FG 
nanobeams subjected to linear and non-linear temperature distributions”, J. Thermal Stresses, 38(12), 
1360-1386. 

Edwards, R.L., Coles, G. and Sharpe, W.N. (2004), “Comparison of tensile and bulge tests for thin-film 
silicon nitride”, Soc. Experim. Mech., 44(1), 49-54. 

Gologranc, F. (1975), “Beitrag zur Ermittlung von Fließkurven im kontinuierlichen hydraulischen 
Tiefungsversuch (Evaluation of the flow stress curve with the continuous hydraulic bulge test)”, 
Dissertation; Institute for Metal Forming Technology, University of Stuttgart, Germany. 

Grolleau, V., Gary, G. and Mohr, D. (2008), “Biaxial testing of sheet materials at high strain rates using 
viscoelastic bars”, Experim. Mech., 48(3), 293-306. 

Hill, R. (1950), “A theory of plastic bulging of a metal diaphragm by lateral pressure”, The London, 
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(322), 1133-1142. 

Hill, R. (1990), “Constitutive modelling of orthotropic plasticity in sheet metals”, Mech. Phys. Solids., 38(3), 
405-417. 

Huang, A.W., Lu, C.H., Wu, S.C., Chen, T.C., Vinci, R.P., Brown, W.L. and Lin, M.T. (2016), 
“Viscoelastic mechanical properties measurement of thin Al and Al-Mg films using bulge testing ”, Thin 

356



 
 
 
 
 
 

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS 

Solid Films, 618, 2-7. DOI: 10.1016/j.tsf.2016.03.064 
Ilahi, M.F. and Paul, T.K. (1985), “Hydrostatic bulging of a circular soft brass diaphragm”, Int. J. Mech. Sci. 

27(5), 275-280. 
Ilahi, M.F., Parmar, A. and Mellor, P.B. (1981), “Hydrostatic bulging of a circular aluminum diaphragm”, 

Mech. Sci., 23(4), 221-227. 
Itozaki, H. (1982), “Mechanical properties of composition modulated copper-palladium foils”, Ph.D. 

Dissertation; Northwestern University, Evanston, IL, USA. 
Jung, B., Lee, H., Hwang, K. and Park, H. (2012), “Measurement of mechanical properties of thin films 

using a combination of the bulge test and nanoindentation”, Transact. Kor. Soc. Mech. Engr. B, 36(2), 
117-123. 

Jung, B., Lee, H., Hwang, K. and Park, H. (2013), “Observation of size effect and measurement of 
mechanical properties of Ti thin film by bulge test”, Transact. Kor. Soc. Mech. Engr. B, 37(1), 19-25. 

Kular, G.S. and The, J.H.L. (1972), “The bulging of anisotropic aluminum sheets – A comparison of theory 
and experiments”, Int. J. Mach. Tool Des. Res., 12(4), 281-296. 

Mellor, P.B. (1956), “Stretch forming under fluid pressure”, Mech. Phys. Solid., 5(1), 41-56. 
Panknin, W. (1959), “Der hydraulische Tiefungsversuch und die Ermittlung von Fließkurven (The hydraulic 

bulge test and the determination of the flow stress curves)”, Dissertation; Institute for Metal Forming 
Technology, University of Stuttgart, Germany. 

Small, M.K. and Nix, W.D. (1992), “Analysis of the accuracy of the bulge test in determining the 
mechanical properties of thin-films”, Mater. Res., 7(6), 1553-1563. 

Storakers, B. (1966), “Finite plastic deformation of a circular membrane under hydrostatic pressure”, Mech. 
Sci., 8(10), 619-628. 

Suttner, S. and Merklein, M. (2016), “Experimental and numerical investigation of a strain rate controlled 
hydraulic bulge test of sheet metal”, Mater. Process. Technol., 235, 121-133. 

Tabata, O., Kawahata, K., Sugiyama, S. and Igarashi, I. (1989), “Mechanical property measurements of thin 
films using load-deflection of composite rectangular membranes”, J. Sensors Actuat., 20(1-2), 135-141. 

Tang, S.C. (1982), “Large strain analysis of an inflating membrane”, Comput. Struct., 15(1), 71-78. 
Wan, K., Guo, S. and Dillard, D.A. (2003), “A theoretical and numerical study of a thin clamped circular 

film under an external load in the presence of a tensile residual stress”, Thin Solid Films, 425(1), 150-162. 
Vlassak, J.J. (1994), “New experimental techniques and analysis methods for the study of mechanical 

properties of materials in small volumes”, Ph.D. Dissertation; Stanford University, Stanford, CA, USA. 
Vlassak, J.J. and Nix, W.D. (1992), “A new bulge test technique for the determination of Young’s modulus 

and Poisson’s ratio of thin films”, J. Mater. Res., 7(12), 3242-3249. 
Wang, N.M. and Shammamy, M.R. (1969), “On the plastic bulging of a circular diaphragm by hydrostatic 

pressure”, Mech. Phys. Solids, 17(1), 43-64. 
Xiang, Y., Chen, X. and Vlassak, J.J. (2005), “Plane-strain bulge test for thin films”, Mater. Res. Soc., 20(9), 

2360-2370. 
Yang, L., Long, S., Ma, Z. and Wang, Z. (2014), “Accuracy analysis of plane-strain bulge test for 

determining mechanical properties of thin films”, Transact. Nonferrous Metals Soc. China, 24(10), 3265-
3273. 

Zeghloul, A., Mesrar, R. and Ferron, G. (1991), “Influence of material parameters on the hydrostatic bulging 
of a circular diaphragm”, Mech. Sci., 33(3), 229-243. 

Zhang, J., Sun, Y., Li, D., Cao, Y., Wang, Z., Ma, J. and Zhao, G. (2015), “Modeling the mechanics of 
graphene-based polymer composite film measured by the bulge test”, Phys. D: Appl. Phys., 48(42), 
425302. 

 
JL 
 
 

357




