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Abstract.  This article investigates vibration behavior of magneto-electro-elastic functionally graded (MEE-FG) 

nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam 

theory. Material properties of MEE-FG nanobeam are supposed to be variable throughout the thickness based on 

power-law model. Based on Eringen’s nonlocal elasticity theory which captures the small size effects and using the 

Hamilton’s principle, the nonlocal governing equations of motions are derived and then solved analytically. Then the 

influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index 

and slenderness ratio on the frequencies of the embedded MEE-FG nanobeams are studied. 
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1. Introduction 
 

In the last decade, smart materials have gained notable attention amongst researchers due to 

their enormous application potentials. In response to external stimuli such as electric and magnetic 

fields as well as mechanical forces, these materials have characteristics and properties which alter 

in a controlled fashion. Magneto-electro-elastic materials (MEE) have the ability to transform 

magnetic, electric and mechanical energies from one form to the others and this makes them 

beneficial for application in sensing and actuating devices, control of structural vibrations and 

smart structure technology (Milazzo et al. 2009). Free vibration of multiphase and layered MEE 

beam for BaTiO3–CoFe2O4 composite is carried out by Annigeri et al. (2007). Kumaravel et al. 

(2007) researched linear buckling and free vibration behavior of layered and multiphase MEE 

beam under thermal environment. Transient dynamic response of multiphase MEE cantilever beam 

is presented by Daga et al. (2009) using finite element method. Razavi and Shooshtari (2015) 

studied nonlinear free vibration of symmetric MEE laminated rectangular plates with simply 
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supported boundary condition. They used the first order shear deformation theory considering the 

von Karman’s nonlinear strains to obtain the equations of motion, whereas Maxwell equations for 

electrostatics and magneto-statics are used to model the electric and magnetic behavior. Shooshtari 

and Razavi (2015) investigated nonlinear free vibration of symmetrically laminated MEE 

rectangular plate resting on an elastic foundation. 

When the material properties are assumed to be variable in spatial directions, the structure 

material should be referred to as functionally graded materials (FGMs). The positive points of the 

FGMs are interesting enough for the authors to employ them in researches dealing with the 

mechanical behavior of structures (Ebrahimi et al. 2009, 2016b, Ebrahimi and Rastgoo 2009, 2011, 

Ebrahimi and Barati 2016d, j, m, n, o, 2017a, Ebrahimi and Dabbagh 2016, Ebrahimi and Hosseini 

2016a, Ebrahimi 2013). Also functionally graded magneto–electro-elastic materials (MEE-FG) 

provide a novel combination of both MEEMs and FGMs. Hence, this subject gained considerable 

attentions in the last decades. Pan and Han (2005) proposed an exact solution for the multilayered 

rectangular plate made of functionally graded, anisotropic, and linear MEE materials. In this work, 

they supposed that the edges of the plate are under simply supported conditions, general 

mechanical, electric and magnetic boundary conditions can be applied on both the top and bottom 

surfaces of the plate. Huang et al. (2007) researched the plane stress problem of generally 

anisotropic MEE beams with the coefficients of elastic compliance, piezoelectricity, dielectric 

impermeability, piezo-magnetism, magnetoelectricity, and magnetic permeability being arbitrary 

functions of the thickness coordinate. In another study, three-dimensional (3D) static behavior of 

doubly curved MEE-FG shells under the mechanical load, electric displacement and magnetic flux 

using an asymptotic approach is investigated by Wu and Tsai (2007). Also Ebrahimi and Barati 

(Ebrahimi and Barati 2016b, g, h, i, k, 2017b, c, Ebrahimi and Salari 2015a, 2016, Ebrahimi et al. 

2015, Ebrahimi and Mokhtari 2014) investigated mechanical behavior of piezoelectric functionally 

graded beams and plates via nonlocal elasticity theory. Li et al. (2008) investigated the problem of 

a functionally graded, transversely isotropic, MEE circular plate acted on by a uniform load. 

Recently, Wang et al. (2015) investigated the static behavior of a functionally graded circular plate 

made of MEE materials under tension and bending. Kattimani and Ray (2015) analyzed active 

control of geometrically nonlinear vibrations of MEE-FG plates. 

It is noticed from the experimental data that small-size structures such as MEE micro/nano 

structures are different from typical ones due to their size influences. So, classical continuum 

theories are unable to describe the size-dependent behavior of micro/nano structures. To remedy 

the drawbacks of the classical continuum theories for the size-dependency of these structures, 

several higher order continuum theories with new material parameters are suggested. Eringen’s 

nonlocal elasticity theory is one of the nonlocal continuum theories to analysis of nanostructures. 

To this purpose, Ke and Wang (2014) investigated the free vibration of MEE nanobeams based on 

the nonlocal theory and Timoshenko beam theory. They supposed that the MEE nanobeam is 

subjected to the external electric potential, magnetic potential and uniform temperature rise. In 

another study, Ke et al. (2014) investigated the free vibration behavior of MEE nanoplates based 

on the nonlocal theory and Kirchhoff plate theory. Li et al. (2014) analyzed buckling and free 

vibration of MEE nanoplate resting on Pasternak foundation based on nonlocal Mindlin theory. 

Ansari et al. (2015) studied forced vibration behavior of higher order shear deformable magneto–

electro–thermo elastic (METE) nanobeams based on the nonlocal elasticity theory in conjunction 

with the von Kármán geometric nonlinearity. Wu et al. (2015) studied surface effects on anti-plane 

shear waves propagating in MEE nanoplates. As seen, there is no study investigating the small 
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scale influence on free vibration analyses of FG-MEE nanobeams, while it is necessary to be 

familiar with the mechanical behavior of MEE-FG nanoscale structures for nano/micro-

electromechnaical systems (NEMS/MEMS) fabrication. Without the influences of magnetic and 

electric fields only a few works are published. Among them, Şimşek and Yurtcu (2013) presented 

analytical solutions for bending and buckling of functionally graded nanobeams based on the 

nonlocal Timoshenko beam ttheory. Rahmani and Pedram (2014) analyzed the size effect on 

vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Also, 

Ebrahimi and Salari (2015b, c) studied thermo-mechanical behavior of nonlocal temperature-

dependent FG nanobeams. Ebrahimi and Barati (2015) presented a nonlocal higher-order shear 

deformation beam theory for vibration analysis of size-dependent FG nanobeams. Ebrahimi and 

Barati (2016e) carried out dynamic modeling of a thermo–piezo-electrically actuated nanosize 

beam subjected to a magnetic field. Ebrahimi and Barati (2016c) presented buckling analysis of 

nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in 

elastic medium. Ebrahimi and Barati (2016f) examined electromechanical buckling behavior of 

smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal 

environment. Ebrahimi et al. (Ebrahimi et al. 2016k, Ebrahimi and Zia 2015, Ebrahimi et al. 

2016a, Ebrahimi and Barati 2016a, d, l, Ebrahimi and Hosseini 2016a, b, c, Ebrahimi and Habibi 

2016) investigated various effects on hygro-thermo-mechanical vibration and buckling behavior of 

nanostructures. 

The main purpose of this article is to investigate the free vibration behavior of MEE-FG 

nanobeams embedded in elastic foundation using a higher order shear deformation beam theory in 

which shear deformation effect is involved without the need for shear correction factors. To 

include the surrounding elastic medium, the Winkler and Pasternak elastic foundation models are 

utilized, including linear and shear deformation of the elastic medium, respectively. The magneto-

electro-mechanical material properties of the beam are supposed to be graded in the thickness 

direction according to the power law distribution. Based on Eringen’s nonlocal elasticity theory, 

the small size influence is considered. Governing equations for the free vibration responses of a 

MEE-FG nanobeam on elastic foundation are derived via Hamilton’s principle and solved using 

analytical method. Some numerical examples indicate the influences of elastic foundation, 

magnetic potential, external electric voltage, power-law index and nonlocal parameter on vibration 

responses of embedded MEE-FG nanobeams. 
 

 

2. Theoretical formulations 
 

2.1 The material properties of MEE-FG nanobeams 
 

Assume a MEE-FG nanobeam composed of BaTiO3 and CoFe2O4 materials exposed to a 

magnetic potential  (x, z, t) and electric potential Φ (x, z, t), with length L and uniform thickness h, 

as shown in Fig. 1. The effective material properties of the MEE-FG nanobeam are supposed to 

change continuously in the z-axis direction (thickness direction) based on the power-law model. So, 

the effective material properties, P, can be stated in the following form 
 

2 2 1 1V VP P P   (1) 

 

In which P1 and P2 denote the material properties of the bottom and higher surfaces, 

respectively. Also V1 and V2 are the corresponding volume fractions related by 
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Fig. 1 Configuration of a MEE-FG nanobeam 

 

 

2 1 2

1
( ) , 1

2

p V
z

V V
h
    (2) 

 

Therefore according to Eqs. (1) and (2), the effective magneto-electro-elastic material 

properties of the FG beam is defined as 
 

 2 1 1

1
( )

2

p

P P P
z

z
h

P   
 
 
 

 (3) 

 

where p is power-law exponent which is non-negative and estimates the material distribution 

through the thickness of the nanobeam and z is the distance from the mid-plane of the graded 

piezoelectric beam. It must be noted that, the top surface at z = +h/2 of MEE-FG nanobeam is 

assumed CoFe2O4 rich, whereas the bottom surface (z = ‒h/2) is BaTiO3 rich. 
 

2.2 Nonlocal elasticity theory for the MEE-FG materials 
 

Contrary to the constitutive equation of classical elasticity theory, Eringen’s nonlocal theory 

(Eringen 1983) notes that the stress state at a point inside a body is regarded to be function of 

strains of all points in the neighbor regions. For a nonlocal magneto-electro-elastic solid the basic 

equations with zero body force may be defined as Ke and Wang (2014) 
 

  , ( ) ( ) ( ) ( )ij ijkl kl mij m nij n
V

x x C x e E x q H x dV x            (4a) 

 

  , ( ) ( ) ( ) ( )i ikl kl im m in n
V

D x x e x s E x d H x dV x           (4b) 

 

  , ( ) ( ) ( ) ( )i ikl kl im m in n
V

B x x q x d E x H x dV x            (4c) 

 

where ζij, εij, Di, Ei, Bi and Hi denote the stress, strain, electric displacement, electric field 

components, magnetic induction and magnetic field and displacement components, respectively; 
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Cijkl, emij, sim, qnij, dij and χij are the elastic, piezoelectric, dielectric constants, piezomagnetic, 

magnetoelectric, magnetic constants, respectively; α (|x′ ‒ x|, η) is the nonlocal kernel function and 

|x′ ‒ x| is the Euclidean distance. η = e0a/l is defined as scale coefficient, where e0 is a material 

constant which is determined experimentally or approximated by matching the dispersion curves 

of plane waves with those of atomic lattice dynamics; and a and l are the internal and external 

characteristic length of the nanostructures, respectively. Finally it is possible to represent the 

integral constitutive relations given by Eq. (4) in an equivalent differential form as 
 

2 2
0( )ij ij ijkl kl mij m nij ne a C e E q H        (5a) 

 
2 2

0( )i i ikl kl im m in nD e a D e s E d H      (5b) 

 
2 2

0( )i i ikl kl im m in nB e a B q d E H       (5c) 

 

where 2 is the Laplacian operator and e0a is the nonlocal parameter revealing the size influence 

on the response of nanostructures Ebrahimi and Barati (2015). 
 

2.3 Nonlocal MEE-FG nanobeam model 
 

Based on parabolic third order beam theory, the displacement field at any point of the beam is 

supposed to be in the form Wu and Tsai (2007) 
 

    3, ( ) ( )x

w
u x z u x z x

x
z 





   (6a) 

 

( , ) ( )zu x z w x  (6b) 

 

in which α = 4/3h2 and u and  w are displacement components in the mid-plane along the 

coordinates x and z, respectively, while ψ denotes the total bending rotation of the cross-section 

about y axis. To satisfy Maxwell’s equation in the quasi-static approximation, the distribution of 

electric and magnetic potential along the thickness direction is supposed to change as a 

combination of a cosine and linear variation as follows Ke and Wang (2014) 
 

2
( , , ) cos( ) ( , )

z
x z t z x t V

h
      (7a) 

 

2
( , , ) cos( ) ( , )

z
x z t z x t

h
       (7b) 

 

where ξ = π / h. Also, V and Ω are the initial external electric voltage and magnetic potential 

applied to the MEE-FG nanobeam. Considering strain–displacement relationships on the basis of 

parabolic beam theory, the non-zero strains can be stated as 
 

xx xx x

(0) (1) 3 (3

x

)

xxzz      (8) 
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(0) 2 (2)

xz xz xzz     (9) 
 

where 
 

2
(0) (1) (3

xx xx xx

)

2
, , ( )

u w

x x x x

 
  

   
   

  



 (10) 

 

(0) (2), ( )xz xz

w w

x x
    

 
    
 

 (11) 

 

And .
4
2h

  According to the Eq. (7), the non-zero components of electric and magnetic field 

(Ex, Ez, Hx, Hz) can be obtained as 
 

, ,

2
cos( ) , sin ( )x x z z

V
E z E z

x h


   


       


 (12a) 

 

, ,

2
cos( ) , sin ( )x x z zH z H z

x h


   

 
       


 (12b) 

 

The Hamilton’s principle can be stated in the following form to obtain the governing equations 

of motion 

0
( ) 0

t

S K W dt      
(13) 

 

where ∏S is strain energy, ∏K is kinetic energy and ∏W is work done by external applied forces. 

The first variation of strain energy ∏S can be calculated as 
 

 
0

L

S xx xx xz xz x x z z x x z z
A

D E D E B H B H dAdx                  (14) 

 

Substituting Eqs. (8) and (9) into Eq. (14) yields 
 

0

(0) (1) (3) (0
xx x

) (
x xx

2)

0

cos( ) sin( ) cos( ) sin( )

( )S

L

x z x z
A

L

xz xz

D z D z B z B z dAdx
x x

N M P Q R dx

 
           

        

     
        

     

    

 


 (15) 

 

in which N, M and Q are the axial force, bending moment and shear force resultants, respectively. 

Relations between the stress resultants and stress component used in Eq. (15) are defined as 
 

/2 /2 /2
3

/2 /2 /2

/2 /2
2

/2 /2

, ,

,

h h h

xx xx xx
h h h

h h

xz xz
h h

N dz M zdz P z dz

Q dz R z dz

  

 

  

  

 

 

  

 

  

 
 (16) 

 

The kinetic energy ∏K for graded piezoelectric nanobeam is formulated as 
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2 2

0

1
( ) ( )

2

L
x z

K
A

u u
dAdx

t t


  
   

  
   (17) 

 

where ρ is the mass density. The first variation of the kinetic energy is presented as 
 

 

(18) 

 

In which I0, I1, I2, I3, I4 and I6 are mass inertia and defined as 
 

2 3 4 6

0 1 2 3 4 6( , , , , , ) (1, , , , , )
A

I I I I I I z z z z z dA   (19) 

 

It is noticed from Eq. (19), for homogeneous nanobeams, I1 = I3 = 0. 

The work done due to external electric voltage, ∏W, can be written in the form: 
 

(0)

0

2 2
(0)

2

x

2

x
ˆ( )

ˆ )

L

W H E

xz w p

w w
N N q w f u N M

x x x

w w
P Q k w k dx

x x

 
  

 
 



 

  
      

  

 
   

 


 (20) 

 

where RQQPMM   ˆ  ,ˆ and q(x) and f(x) are the transverse and axial distributed loads 

and kw and kp are foundation parameters and also NH and NE are the normal forces induced by 

magnetic potential and external electric voltage, respectively which are defined as 
 

31 31

2 2
,E H

A A

V
N e dA N q dA

h h


      (21) 

 

For a MEE-FG nanobeam in the one dimensional case, the nonlocal constitutive relations (5a)-

(5c) may be rewritten as 
2

2

0 11 31 312
( ) xx

xx xx z ze a c e E q H
x


 


   


 (22) 

 
2

2

0 55 15 152
( ) xz

xz xz x xe a c e E q H
x


 


   


 (23) 

 
2

2

0 15 11 112
( ) x

x xz x x

D
D e a e s E d H

x



   


 (24) 

 

0 1 2
0

2 2 2

3 3 4

2 2 2

4 6

( ) ( )

[ ( ) ( ) ( )

( ) ( )( )]

L

K

u u w w u u
I I I

t t t t t t t t t t

u w u w w
I I I

t x t t t x t t t t x t

w w w
I I dAdx

t t x t t x t t x t

      

      


    


         
     

         

        
      

           

      
    

         


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2
2

0 31 33 332
( ) z

z xx z z

D
D e a e s E d H

x



   


 (25) 

 
2

2

0 15 11 112
( ) x

x xz x x

B
B e a q d E H

x
 


   


 (26) 

 
2

2

0 31 33 332
( ) z

z xx z z

B
B e a q d E H

x
 


   


 (27) 

 

Inserting Eqs. (15), (18) and (20) in Eq. (13) and integrating by parts, and gathering the 

coefficients of δu, δw, δψ, δϕ and δγ the following governing equations are obtained 
 

2 2 3

10 32 2 2
0

N u w
f I I I

x t t x t




   
    

    
 (28) 

 
2 2 2 3

1 2 4
2 2 2 2

ˆ
ˆ ( ) 0

M u w
Q I I I

x t t t x t

 


    
     

     
 (29) 

 
2 2 2 3 3

0 3 42 2 2 2 2

3 4 2
2

6 2 2 2 2

( )

( ) 0

H E

w p

Q w P w u
q N N I I I

x x x t x t x t

w w
I k w k

x t x t x


  




     
      

       

  
    

    

 (30) 

 

cos( ) sin( ) 0x
z

A

D
z z D dA

x
  

 
  

 
  (31) 

 

cos( ) sin( ) 0x
z

A

B
z z B dA

x
  

 
  

 
  (32) 

 

where .ˆ  ,ˆ  ,ˆ
614441223111 IcIIIcIIIcII  Furthermore, the corresponding natural and 

essential boundary conditions are defined at x = 0 and x = L as follows 
 

0N     or   0u     at   0x     and   x L  (33a) 
 

1
ˆ 0

w P
N c Q

x x

 
  

     

or   0w     at   0x     and   x L
 

(33b) 

 

0P 
   

or
   

0
w

x




    
at

   
0x 

   
and

   
x L

 
(33c) 

 

ˆ 0M     or   0     at   0x     and   x L  (33d) 
 

320



 

 

 

 

 

 

A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of... 

cos( ) 0x
A

D z dA     
or

   
0 

   
at

   
0x 

   
and

   
x L

 
(33e) 

 

cos( ) 0x
A

B z dA     
or

   
0 

   
at

   
0x 

   
and

   
x L

 
(33f) 

 

By integrating Eqs. (22)-(27), over the beam’s cross-section area, the force-strain and the 

moment-strain of the nonlocal third order Reddy FG beam theory can be obtained as presented in 

Appendix. Now we use M̂  and Q̂  from Eqs. (A20) and (A22) and the identity 
 

 
(34) 

 

It must be cited that inserting Eqs. (31) and (32) into Eqs. (A6)-(A9), does not provide an 

explicit expressions for Dx and Dz. To overcome this problem, by using Eqs. (A6)-(A9), Eqs. (31) 

and (32) can be re-expressed in terms of u, w, ψ and ϕ. Finally, based on third-order beam theory, 

the nonlocal equations of motion for a FG-MEE nanobeam can be obtained by substituting for N, 
M̂  and Q̂  from Eqs. (A19), (A20) and (A22) into Eqs. (A1)-(A5) as follows 
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3. Solution procedure 
 

Here, on the basis the Navier method, an analytical solution of the governing equations for free 

vibration of a simply supported MEE-FG nanobeam is presented. To satisfy governing equations 

of motion, the displacement variables are adopted to be of the form 
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where Un, Wn, Ψn, Φn and n are the unknown Fourier coefficients to be determined for each n 

value. Using Eqs. (40)-(44) the analytical solution can be obtained from the following equations 
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4. Results and discussion 
 

This section provides some numerical examples for the magneto-electro-elastic free vibration 

characteristics of MEE-FG nanobeams. To achieve this end, the nonlocal FG beam made of 

BaTiO3 and CoFe2O4, with magneto-electro-elastic material properties listed in Table 1, is 

supposed. The beam geometry has the following dimensions: L (length) = 10 nm and h (thickness) 

= varied. Also, the following relation is described to calculate the non-dimensional natural 

frequencies 
 

2 4

2 4 2 4

4 2
2

CoFe

11 11 CoFe 11 CoFe

( ) , ,
( ) ( )

O w w p p

O O

A L L
L K k K k

c I c I c I


     (46) 

 

In which I = h3/12 is the moment of inertia of the cross section of the beam. To verify present 

model the frequency results are compared with those of nonlocal FGM Timoshenko beams 

presented by Rahmani and Pedram (2014), due to the fact that any numerical results for the free 
 

 

Table 1 Magneto-electro-elastic coefficients of material properties 

(Pan and Han 2005) 

Properties BaTiO3 CoFe2O4 

c11 (GPa) 166 286 

c55 43 45.3 

e31 (Cm-2) -4.4 0 

e15 11.6 0 

q31 (N/Am) 0 580.3 

q15 0 550 

s11 (10-9C2m-2N-1) 11.2 0.08 

s33 12.6 0.093 

χ11 (10-6Ns2C-2/2) 5 -590 

χ33 10 157 

d11 = d33 0 0 

ρ (kgm-3) 5800 5300 
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Table 2 Comparison of the non-dimensional fundamental frequency for a S-S FG nanobeam with various 

power-law index (L/h = 20) 

2(nm)  

p = 0 p = 0.5 p = 1 p = 5 

TBT 

(Rahmani and 

Pedram 2014) 

Present 

RBT 

TBT 

(Rahmani and 

Pedram 2014) 

Present 

RBT 

TBT 

(Rahmani and 

Pedram 2014) 

Present 

RBT 

TBT 

(Rahmani and 

Pedram 2014) 

Present 

RBT 

0 9.8296 9.829570 7.7149 7.71546 6.9676 6.967613 5.9172 5.916152 

1 9.3777 9.377686 7.3602 7.36078 6.6473 6.647300 5.6452 5.644175 

2 8.9829 8.982894 7.0504 7.05090 6.3674 6.367454 5.4075 5.406561 

3 8.6341 8.634103 6.7766 6.77714 6.1202 6.120217 5.1975 5.196632 

4 8.3230 8.323021 6.5325 6.53296 5.8997 5.899708 5.0103 5.009400 

 
 

Table 3 Comparison of the non-dimensional fundamental frequency for a MEE nano-

beam with various nonlocal parameters 

 µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 

Ke and Wang (2014) 3.7388 3.5670 3.1658 2.7209 2.3281 

Present 3.6448 3.4773 3.0863 2.6372 2.2451 

 
 

Table 4 Variation of the first dimensionless frequency of embedded S-S FG nanobeam for various nonlocal 

parameter, magnetic potentials and electric voltages (L/h = 20) 

(𝐾𝑤 , 𝐾𝑝) µ  
Ω = -0.05 Ω = 0 Ω = +0.05 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

(0,0) 

0 

V = -5 8.55703 8.31260 8.37748 9.43205 8.84645 8.55259 10.2325 9.34987 8.72418 

V = 0 8.41640 7.88376 7.67745 9.30465 8.44476 7.86815 10.1152 8.97075 8.05433 

V = +5 8.27337 7.43021 6.90683 9.17548 8.02299 7.11820 9.99651 8.57489 7.32348 

1 

V = -5 8.08984 7.91790 8.03872 9.01035 8.47664 8.22104 9.84516 9.00077 8.39941 

V = 0 7.94094 7.46642 7.30630 8.87690 8.05654 7.50644 9.72317 8.60629 7.70137 

V = +5 7.78919 6.98583 6.49177 8.74141 7.61329 6.71622 9.59964 8.19284 6.93341 

2 

V = -5 7.67792 7.57252 7.74446 8.64241 8.15496 7.93354 9.50958 8.69849 8.11823 

V = 0 7.52087 7.09911 6.98123 8.50319 7.71737 7.19042 9.38323 8.28964 7.39369 

V = +5 7.36046 6.59180 6.12362 8.36165 7.25342 6.36107 9.25516 7.85955 6.58997 

(25,5) 

0 

V = -5 12.0943 11.8301 11.7886 12.7285 12.2111 11.9137 13.3325 12.5806 12.0375 

V = 0 11.9952 11.5328 11.3019 12.6343 11.9234 11.4323 13.2426 11.8140 11.5612 

V = +5 11.8953 11.2277 10.7932 12.5395 11.6284 10.9297 13.1522 11.5163 11.0645 

1 

V = -5 11.7684 11.5562 11.5503 12.4192 11.9460 11.6780 13.0375 12.3234 11.8042 

V = 0 11.6666 11.2517 11.0531 12.3227 11.6516 11.1864 12.9457 12.0383 11.3181 

V = +5 11.5638 10.9387 10.5324 12.2255 11.3496 10.6722 12.8531 11.7463 10.8102 

2 

V = -5 11.4891 11.3223 11.3475 12.1549 11.7199 11.4774 12.786 12.1044 11.6058 

V = 0 11.3848 11.0113 10.8410 12.0563 11.4197 10.9768 12.6923 11.8140 11.1111 

V = +5 11.2795 10.6913 10.3096 11.9569 11.1115 10.4524 12.5979 11.5163 10.5932 
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Table 5 Variation of the second dimensionless frequency of embedded S-S FG nanobeam for various 

nonlocal parameter, magnetic potentials and electric voltages (L/h = 20) 

(𝐾𝑤 , 𝐾𝑝) µ  
Ω = -0.05 Ω = 0 Ω = +0.05 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

(0,0) 

0 

V = -5 35.6083 32.9563 31.4249 36.4770 33.5046 31.6119 37.3256 34.0440 31.7979 

V = 0 35.4747 32.5345 30.7053 36.3466 33.0897 30.8967 37.1982 33.6358 31.0870 

V = +5 35.3406 32.1071 29.9685 36.2158 32.6696 30.1646 37.0703 33.2226 30.3594 

1 

V = -5 29.9003 27.8605 26.7829 30.9298 28.5069 27.0022 31.9261 29.1390 27.2197 

V = 0 29.7411 27.3602 25.9349 30.7759 28.0182 26.1613 31.7771 28.6610 26.3857 

V = +5 29.5810 26.8506 25.0582 30.6212 27.5207 25.2924 31.6273 28.1749 25.5245 

2 

V = -5 26.1741 24.5567 23.7980 27.3442 25.2877 24.0444 28.4663 25.9981 24.2884 

V = 0 25.9920 23.9876 22.8394 27.1700 24.7354 23.0961 28.2990 25.4613 23.3500 

V = +5 25.8087 23.4046 21.8388 26.9947 24.1705 22.1071 28.1307 24.9128 22.3722 

(25,5) 

0 

V = -5 38.5394 36.0121 34.5274 39.3435 36.5145 34.6977 40.1315 37.0100 34.8672 

V = 0 38.4160 35.6264 33.8738 39.2226 36.1342 34.0474 40.0130 36.6349 34.2201 

V = +5 38.2922 35.2366 33.2074 39.1014 35.7498 33.3844 39.8942 36.2559 33.5606 

1 

V = -5 33.3371 31.4159 30.3635 34.2635 31.9905 30.5571 35.1655 32.5550 30.7494 

V = 0 33.1944 30.9730 29.6182 34.1247 31.5558 29.8166 35.0302 32.1279 30.0137 

V = +5 33.0510 30.5238 28.8537 33.9852 31.1149 29.0573 34.8944 31.6950 29.2595 

2 

V = -5 30.0403 28.5268 27.7662 31.0652 29.1585 27.9777 32.0573 29.7767 28.1877 

V = 0 29.8818 28.0384 26.9491 30.9119 28.6808 27.1670 31.9088 29.3091 27.3832 

V = +5 29.7225 27.5413 26.1065 30.7579 28.1951 26.3314 31.7597 28.8340 26.5544 

 

 
vibration of magneto-electro-elastic FG nanobeams based on the nonlocal elasticity theory do not 

exist yet. In this work, the material selection is performed as follows: Em = 210 GPa, vm = 0.3, ρm = 

7800 kgm-3 for Steel and Ec = 390 GPa, vc = 0.24, ρc = 3960 kgm-3 for Alumina. Therefore, Table 2 

presents the fundamental frequency of S-S FG nanobeams in comparison to those of Rahmani and 

Pedram (2014). Also, the results of homogeneous MEE nanobeam are validated with those of Ke 

and Wang (2014). They used Euler-Bernoulli beam model their paper and according to Table 3, a 

good agreement is observed between our model and results of Ke and Wang (2014). 

Tables 4-6 present influences of various parameters such as elastic foundation parameters (kw, 

kp), magnetic potential (Ω), external electric voltage (V), power-law index (p) and nonlocal 

parameter (μ) on the first three non-dimensional frequencies of the simply supported MEE-FG 

nanobeams at L/h = 20. As a result, when the nonlocal parameter increases the natural frequencies 

of FG nanobeam reduces due to the reason that existence of nonlocality provides a more flexible 

beam structure. 

Moreover, it is found that the reduction in higher modes due to nonlocality influence is more 

significant than lower modes. Another important observation is that elastic foundation shows an 

increasing influence on the stiffness of the beam. So, when the Winkler and Pasternak foundation 

parameter increases the dimensionless frequencies of the MEE-FG nanobeam rise. Also, it is seen 

that for all values of Winkler and Pasternak foundation parameters, negative electric voltages 
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Table 6 Variation of the third dimensionless frequency of embedded S-S MEE-FG nanobeam for various 

nonlocal parameter, magnetic potentials and electric voltages (L/h = 20) 

(𝐾𝑤 , 𝐾𝑝) µ  
Ω = -0.05 Ω = 0 Ω = +0.05 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

(0,0) 

0 

V = -5 78.0770 71.9628 68.0821 78.9678 72.5258 68.2752 79.8487 73.0845 68.4677 

V = 0 77.9410 71.5329 67.3452 78.8334 72.0993 67.5404 79.7158 72.6613 67.7350 

V = +5 77.8048 71.1005 66.6001 78.6987 71.6703 66.7974 79.5826 72.2356 66.9942 

1 

V = -5 56.3253 52.2809 49.8928 57.5538 53.0532 50.156 58.7566 53.8144 50.4177 

V = 0 56.1367 51.6876 48.8824 57.3692 52.4686 49.151 58.5758 53.2382 49.4180 

V = +5 55.9474 51.0874 47.8507 57.1840 51.8775 48.125 58.3944 52.6557 48.3977 

2 

V = -5 46.0393 43.0414 41.4298 47.5344 43.9763 41.7463 48.9838 44.8917 42.0604 

V = 0 45.8083 42.3188 40.2073 47.3107 43.2693 40.5333 48.7668 44.1994 40.8568 

V = +5 45.5761 41.5837 38.9464 47.0859 42.5506 39.2829 48.5488 43.4960 39.6166 

(25,5) 

0 

V = -5 80.9396 74.9652 71.1579 81.7992 75.5059 71.3427 82.6499 76.0427 71.5269 

V = 0 80.8084 74.5527 70.4532 81.6694 75.0963 70.6397 82.5215 75.6360 70.8258 

V = +5 80.6770 74.1379 69.7413 81.5394 74.6845 69.9297 82.3928 75.2272 70.1177 

1 

V = -5 60.2307 56.3421 54.0145 61.3810 57.0595 54.2576 62.5102 57.7679 54.4997 

V = 0 60.0543 55.7920 53.0826 61.2080 56.5164 53.3300 62.3403 57.2315 53.5762 

V = +5 59.8774 55.2365 52.1341 61.0344 55.9680 52.3859 62.1699 56.6901 52.6366 

2 

V = -5 50.7425 47.8927 46.3109 52.1028 48.7346 46.5942 53.4285 49.5621 46.8759 

V = 0 50.5331 47.2443 45.2205 51.8988 48.0976 45.5107 53.2296 48.9359 45.7990 

V = +5 50.3227 46.5870 44.1032 51.6940 47.4520 44.4007 53.0299 48.3016 44.6961 

 

 
provide higher frequencies than positive voltages. Unlike the electric voltage, negative magnetic 

potentials provide lower natural frequencies than positive magnetic potentials. This is because 

tensile and compressive axial forces are generated in the nanobeam by applying negative and 

positive electric potentials, respectively. 

The effects of magnetic potential and electric voltage on the variations of the first non-

dimensional frequency of the simply supported MEE-FG nanobeams versus power-law exponent 

with and without elastic foundation at L/h = 20 are presented in Figs. 2 and 3, respectively. It is 

observed that the non-dimensional frequency reduces with the increase of gradient index, 

especially for lower values of gradient index. Increasing gradient index leads to reduction in 

portion of ceramic phase and increment of metallic phase. So, increasing the portion of metallic 

phase reduces the stiffness of nanobeams and vibration frequencies decrease. But, this reduction is 

more considerable according to the positive values of magnetic potential and external electric 

voltage. Also, it is found that effect of higher values of gradient index on the magnetic potential is 

less than lower gradient indexes. Contrary to magnetic potential, the influence of higher gradient 

indexes on electric voltage is more than lower ones. In fact, by increasing gradient index the 

differences between frequency results of various electric voltages rise. 

The effect of nonlocal parameter on the first frequency of the MEE-FG nanobeams versus 

power-law index is depicted in Fig. 4 (L/h = 20, V = +5, Ω = +0.1, Kw = 25, Kp = 5). It is 
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(a) Kw = Kp = 0 (b) Kw = 25, Kp = 5 

Fig. 2 Effect of external magnetic potential on the dimensionless frequency of the S-S nanobeam with 

respect to gradient index (L/h = 20, V = +5, μ = 2) 
 

 

  

(a) Kw = Kp = 0 (b) Kw = 25, Kp = 5 

Fig. 3 Effect of external electric voltage on the dimensionless frequency of the S-S nanobeam with 

respect to gradient index (L/h = 20, Ω = +0.05, μ = 2) 
 

 

 

Fig. 4 Effect of nonlocal parameter on the dimensionless frequency of the S-S nanobeam with respect to 

gradient index (L/h = 20, V = +5, Ω = +0.1, Kw = 25, Kp = 5) 
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observable that both gradient index and nonlocal parameter have a softening influence on the beam 

structure and reduces the natural frequencies. Hence, nonlocal beam model provides lower 

frequencies compared to local beam model. So, with the rise of gradient index the non-

dimensional frequency diminishes for all values of nonlocal parameter. The variations of the first 

fundamental frequency of MEE-FG nanobeams versus the Winkler and Pasternak parameters for 

various magnetic potentials and electric voltages at L/h = 20 are plotted in Figs. 5 and 6, 

respectively. According to these figures, regardless of the sign and magnitude of magnetic 

potential and electric voltage, the non-dimensional natural frequency increases with the rise of 

Winkler and Pasternak parameters, due to the increment in rigidity of the FGMEE nanobeam. 

Another observation is that effect of Pasternak elastic parameter on the non-dimensional frequency 

is more than Winkler parameter. 

Hence, the shear layer of elastic foundation or Pasternak foundation has a significant influence 

on the frequency results. Figs. 7-8 illustrate the variations the dimensionless frequency of nonlocal 
 

 

  

(a) (b) 

Fig. 5 Effect of external magnetic potential and electric voltage on the dimensionless frequency of the S-S 

nanobeam with respect to Winkler parameter; (a) V = +5; (b) Ω = +0.05 (L/h = 20, μ = 2, p = 0.2) 

 

 

  

(a) (b) 

Fig. 6 Effect of external magnetic potential and electric voltage on the dimensionless frequency of the S-S 

nanobeam with respect to Pasternak parameter; (a) V = +5, (b) Ω = +0.05 (L/h = 20, μ = 2, p = 0.2) 
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(a) Kp = 5, p = 0.5 (b) Kw = 25, p = 0.5 

Fig. 7 Effect of elastic foundation on the dimensionless frequency of the S-S nanobeam with respect to 

electric voltage (L/h = 20, Ω = +0.05, μ = 2) 

 
 

  

(a) Kp = 5, p = 0.5 (b) Kw = 25, p = 0.5 

Fig. 8 Effect of elastic foundation on the dimensionless frequency of the S-S nanobeam with respect 

to magnetic potential (L/h = 20, V = +5, μ = 2) 
 

 

MEE-FG beams with respect to external voltage and magnetic potential at L/h = 20 for various 

Winkler and Pasternak constants. It is seen that external electric voltage has a reducing influence 

on the natural frequencies of MEE-FG nanobeams when it varies from negative values to positive 

one. But, it is found that the effect of magnetic potential is contrary to the electric voltage. So, 

when the magnetic potentials values changes from negative values to positive one, the non-

dimensional frequency increases. Also, it is clearly observable that the influence of magnetic field 

on the frequency results is more than electric field. 

Fig. 9 presents the variations of the non-dimensional natural frequency of embedded MEE-FG 

nanobeam with respect to slenderness ratio for different magnetic potentials and power-law index 

p = 0.2 and nonlocal parameter μ = 2 (mn)2. It is found that slenderness ratio has a significant 

influence on the frequency results of MEE-FG nanobeams. Thus, the dimensionless frequency is 

more affected according to the higher values of slenderness ratio. Also, it is seen that, positive 

values of magnetic potential has an increasing influence on natural frequencies of MEE-FG 

329



 

 

 

 

 

 

Farzad Ebrahimi and Mohammad Reza Barati 

  

(a) Kw = Kp = 0 (b) Kw = 25, p = 0.5 

Fig. 9 Effect of slenderness ratio on the dimensionless frequency of the S-S nanobeam for various 

magnetic potentials (L/h = 20, V = +5, μ = 2, p = 0.2) 

 

 

nanobeams, while the negative values of magnetic potential show a reducing effect. In addition, it 

is clearly observable that the dimensionless frequency is approximately independent of slenderness 

ratio for zero magnetic potential (Ω = 0). 
 

 

5. Conclusions 
 

This paper studies free vibration of MEE-FG nanobeams embedded in elastic foundation based 

on nonlocal higher order beam theory. Adopting Eringen’s nonlocal elasticity theory to capture the 

small size effects, the nonlocal governing equations are derived and solved using analytical 

method. Magneto-electro-mechanical properties of the FG nanobeams are supposed to be position 

dependent based on power-law model. Provided numerical examples show the influences of elastic 

foundation parameters, magnetic potential, external electric voltage, gradient index, nonlocal 

parameter and slenderness ratio on the natural frequencies of MEE-FG nanobeams. It is observed 

that the nonlocal parameter and gradient index yields in reduction in both rigidity of the beam and 

natural frequencies. Also, the rigidity of the nonlocal MEE-FG beams and the frequency results 

increase with the rise of Winkler or Pasternak foundation parameters. Also, the fundamental 

frequencies depend on the sign and magnitude of the magnetic potential and electric voltage. 
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where μ = (e0a)2 and quantities used in above equations are defined as 
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The explicit relation of the nonlocal normal force can be derived by substituting for the second 

derivative of N from Eq. (A1) into Eq. (28) as follows 
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 

second derivative of M̂ from Eq. (A2) into Eq. (29) as follows 
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where 
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By substituting for the second derivative of Q̂  from Eq. (A4) into Eq. (30) the following 

expression for the nonlocal shear force is derived 
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