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Abstract.  In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of 

magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various 

boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electro-

elastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via 

modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities 

possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that 

lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration 

behavior of MEE-FG beam in the present study. The governing differential equations and related boundary 

conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton’s principle based on a four-

variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution 

procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which 

satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation 

exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various 

boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters 

play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be 

applied as benchmarks for future design of MEE-FG structures with porosity phases. 
 

Keywords:  magneto-electro-elastic FG material; porous materials; analytical solution; free vibration; 

refined beam theory 

 
 
1. Introduction 
 

Technology development in field of making materials with functional properties introduce 

Functionally graded materials (FGMs) as a new class of smart composite structures which have led 

many researchers to analyze the mechanical specifications of these materials with engineering 

structure like beam, plate and shell. Due to high strength and high temperature resistance of FGMs, 

they are increasingly utilized in the mechanical, civil, nuclear reactors, aerospace engineering and 

etc. as structural components (Ebrahimi and Rastgoo 2009, Ebrahimi et al. 2009, Ebrahimi and 
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Sepiani 2010). Numerous studies have been conducted for investigation the mechanical responses 

of FG structures (Ebrahimi and Rastgoo 2011, Ebrahimi et al. 2010, Ebrahimi 2013, Ebrahimi and 

Jafari 2016a, b, Akbas 2015). Due to immense applications of smart materials in contemporary 

technology, intelligent structures made of magneto electro elastic materials (MEEMs) are 

nowadays widely utilized in engineering fields. In 1990s, in two-phase composites of piezoelectric 

and piezo-magnetic materials, a strong magneto-electrical coupling effect was discovered which 

has potential practical application in many fields (Harshe et al. 1993) and reported that this 

coupling effect cannot be found in a single-phase material. 

Furthermore, MEEMs shows some fascinating properties such as the piezo-electric, piezo-

magnetic and magneto-electric influences in which the elastic deformations may be produced 

directly by mechanical loading or indirectly by an application of electric or magnetic field. Due to 

their superior properties, these materials may exhibit particular specifications that make them 

acting as mechanical sensors, controller and actuators for converting energy (Zhang et al. 2014). 

Owing to these advantages, MEE have received wide applications in modern industries such as 

aircraft structures, vibration control of civil infrastructure; stress monitoring and nondestructive 

testing (Song et al. 2006). Hitherto, many researchers attracted to discover mechanical response of 

structures made of MEEMs. Among them, Pan (2001) provided three dimensional exact solutions 

for simply-supported anisotropic MEE multilayered rectangular plate subjected to surface and 

internal loads. By analytical solution method, Jiang and Ding (2004) analyzed vibration behavior 

of magneto-electro-elastic beams. Vibration responses of non-homogenous isotropic MEE plates is 

reported by Chen et al. (2005). Kumaravel et al. (2007) researched thermal stability and 

vibrational behavior of layered and multiphase magneto‐electro‐elastic beams. By implementation 

of finite element method, transient dynamic response of multiphase magneto-electro-elastic 

cantilever beam is presented by Daga et al. (2009). Razavi and Shooshtari (2015) presented 

nonlinear vibration investigation of a magneto-electro-elastic laminated plate based on first order 

shear deformation theory with SSSS boundary condition, whereas Maxwell equations for 

electrostatics and magneto-statics are used to model the electric and magnetic behavior. Most 

recently, based on three-dimensional elasticity theory and employing the state space approach, Xin 

and Hu (2015) presented semi-analytical evaluation of free vibration of arbitrary layered magneto-

electro-elastic beams. 

For more efficient and expand applications of magneto electro elastic structures, they were 

recently synthesized by using FGMs. Actually, functionally graded model enables the MEEMs to 

have the best properties. Recent investigation about of MEEMs discusses mechanical response of 

structural elements made of functional graded MEEMs. Pan and Han (2005) provided exact 

solution for analysis of the rectangular plates composed of functionally graded, anisotropic, and 

linear magneto-electro-elastic materials. Furthermore, the plane stress problem of a MEE-FG beam 

were inspected by Huang et al. (2007) using an analytical method. In another survey, Wu and Tsai 

(2007) examined static behavior of a doubly curved MEE-FG shell employing an asymptotic 

approach. Based on higher order shear deformation theory, a theoretical study on buckling and 

vibration behavior of FG magneto electro thermo elastic circular cylindrical shell was carried out 

by Lang and Xuewu (2013). Kattimani and Ray (2015) researched large amplitude vibration 

responses of MEE-FG plates. Static behavior of a circular MEE-FG plate under different boundary 

conditions is demonstrated by Sladek et al. (2015) by using a meshless local Petrov–Galerkin 

method. 

With the rapid development in technology of structural elements, structures with graded 

porosity can be introduced as one of the latest development in FGMs. The structures consider 
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pores into microstructures by taking the local density into account. Researches focus on 

development in preparation methods of FGMs such as powder metallurgy, vapor deposition, self-

propagation, centrifugal casting, and magnetic separation. These methods have their own 

ineffectiveness such as complexity of the technique and high costs. An efficient way to 

manufacture FGMs is sintering process in which due to difference in solidification of the material 

constituents, porosities or micro-voids through material can create (Zhu et al. 2001). An 

investigation has been carried out on porosities existing in FGMs fabricated by a multi-step 

sequential infiltration technique (Wattanasakulpong et al. 2012). According to this information, for 

building more secure and accurate structures it is important to consider the porosity impact on 

designing FGM structures. Porous FG structures have many interesting combinations of 

mechanical properties, such as high stiffness in conjunction with very law specific weight (Rezaei 

and Saidi 2016). Since porous FG structures have reached remarkable attention by many engineers, 

recent paper in field of FG structures consider mechanical response of structural ingredients made 

of functional graded materials with porosities. Wattanasakulpong and Ungbhakorn (2014) 

examined the linear and non-linear vibration of porous FGM beams with elastically restrained 

ends. Ebrahimi and Mokhtari (2014) provided differential transform method to examine vibration 

behavior of rotating Timoshenko porous FG beams. They reported that porosity volume fraction 

has a key role on the vibrational response of the FG beams. In order to predict flexural vibration of 

porous FGM Timoshenko beams, Wattanasakulpong and Chaikittiratana (2015) employed 

Chebyshev collocation method. Ebrahimi and Zia (2015) utilized the Galerkin and multiple scales 

methods to study nonlinear vibration of porous FGM beams. Static analysis of porous FG plate is 

examined by Benferhat et al. (2016). Ebrahimi et al. (2016a) presented thermo-mechanical 

vibration response of temperature-dependent porous FG beams exposed to various temperature 

risings based on classic beam theory (CBT) which disregards the influence of shear deformation. 

In other words, CBT is unable to model thick beams and higher modes of vibration. Hereupon, 

first order shear deformation theory (FSDT) is suggested to overcome the defects of CPT with 

supposition a shear correction factor in the thickness direction of beam (Ebrahimi and Barati 

2016c). As respects FSDT isn’t able to evaluate the zero-shear stress on the top and bottom 

surfaces of the beam, there appeared a need to develop new theory. In order to bypass these defects, 

higher order shear deformation theory (HSDT) was introduced. This theory predicts transverse 

shear stresses without need of any shear correction factors. Many papers are published with the 

framework of HSDT to investigate mechanical response of FG structures (Ebrahimi and Barati 

2016c). Moreover, Yahia et al. (2015) study the porosity effect on the wave propagation of FG 

plates by using various higher-order shear deformation theories. Recently, Mechab et al. (2016) 

developed nonlocal two-variable refined plate theory for free vibration of FG porous nanoplates 

resting on elastic foundations. It is worth mentioning although various inclusion-related study 

about of vibration of porous FG beam have been perused in recent years, no published work 

considering magneto-electrical field on vibration response of smart FG beams with different 

porosity distributions and boundary conditions based on four-variable refined shear deformation 

theory. Analysis of nano-structure’s mechanical behaviors is one of recent interesting research 

topics (Ebrahimi and Barati 2016a-i, Ebrahimi and Barati 2017). For instance, thermal buckling, 

wave propagation and free vibration analysis of FG nanobeams subjected to temperature 

distribution have been exactly investigated by Ebrahimi and Salari (2016, 2015a-d) and Ebrahimi 

and Barati (2016j, k) and Ebrahimi et al. (2015a, b). Ebrahimi and Barati (2016l-n) and Ebrahimi 

and Salari (2016b-d) investigated buckling behavior of smart piezoelectrically actuated higher-

order size-dependent graded nanoscale beams and plates in thermal environment. The thermo-
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mechanical nonlinear vibration behaviors of size-dependent nanoplates are investigated by 

Ebrahimi and Hosseini (2016b). Ebrahimi and Shafiei (2016) showed the effects of existing initial 

shear stress in the vibration analysis of orthotropic single layered graphene sheets based on the 

nonlocal elasticity. The mentioned positive points are interesting enough for the authors to employ 

FGMs in researches dealing with the mechanical behavior of structures (Ebrahimi et al. 2016a-e); 

Ebrahimi and Barati 2016o-s, Ebrahimi and Hosseini 2016b, Ebrahimi and Boreiry 2015). 

Thermo-electro-mechanical static and dynamic responses of circular FG plates are discussed and 

presented by Ebrahimi. Ebrahimi et al. showed the influences of thermal loading parallel with 

porosity effects on vibration properties of FG temperature-dependent beams. 

The present research makes the first achievement to develop a four-variable refined shear 

deformation theory for transverse vibration of magneto-electro-porous FG beams with various 

boundary conditions. Refined beam theory considers a constant transverse displacement and 

higher-order variation of axial displacement through the depth of the beam so that there is no need 

for any shear correction factors. Two kinds of porosity distribution namely even and uneven 

through the thickness directions are considered. The modified power-law model is exploited to 

describe gradual variation of material properties of the porous MEE-FG beam. Applying 

Hamilton’s principle, governing equations of higher order MEE-FG beam are obtained together 

based on four-variable refined shear deformation theory and they are solved applying an analytical 

solution method. Several numerical exercises indicate that various parameters such as magnetic 

potential, external electric voltage, porosity volume fraction, types of porosity distribution, 

material graduation index and various boundary conditions have remarkable influence on 

fundamental frequencies of porous MEE-FG beam. 
 

 

2. Theory and formulation 
 

2.1 Power-low functionally graded beams with porosities 
 

Consider a magneto-electro-elastic functionally graded beam with two different porosity 

distribution and rectangular cross-section of length (L), width (b) and thickness (h) according to 

Fig. 1(a). MEE-FG beam is composed of Barium titanate (BaTio3) and Cobalt Ferrite (CoFe2O4) 

with the material properties presented in Table 1 and exposed to a magnetic potential γ(x, z, t) and 

electric potential Φ(x, z, t). The effective material properties of MEE-FG beam change 

continuously in the thickness direction according to modified power-law distribution. The 

effective material properties (Pf) of porous FGM beam by using the modified rule of mixture can 

be written as (Wattanasakulpong and Ungbhakorn 2014) 
 

( ) ( )
2 2

u u l lfP P V P V
 

    (1) 

 

Which α defines the volume fraction of porosities, for a perfect FGM α is equal to zero, Pu and 

Pl are the material properties of top and bottom directions, Vu and Vl are the volume fraction of top 

and bottom sides, respectively, which can be linked according to 
 

1u lV V   (2) 

 

Then the volume fraction of upper side (Vu) is given by 

284



 

 

 

 

 

 

Investigating vibration behavior of smart imperfect functionally graded beam... 

 
 

(a) (b) 

Fig. 1 Geometry and cross section of porous FGM beam under magneto-electrical field 
 

 

Table 1 Magneto-electro-elastic coefficients of material properties 

Properties BaTiO3 CoFe2O4 Properties BaTiO3 CoFe2O4 

c11 = c22 (GPa) 166 286 e15 11.6 0 

c33 162 269.5 q31 (N/Am) 0 580.3 

C13 = c23 78 170.5 q33 0 699.7 

c12 77 173 q15 0 550 

c55 43 45.3 s11 (10-9C2m-2N-1) 11.2 0.08 

c66 44.5 56.5 s13 12.6 0.093 

e31 (Cm-2) -4.4 0 χ11 (10-6Ns2C-2/2) 5 -590 

e33 18.6 0 χ33 10 157 

ρ (kgm-3) 5800 5300 d11 = d22 = d33 0 0 

 

 

1
( )

2
u

Pz
V

h
   (3) 

 

Where (p ≥ 0) is a non-negative parameter (power-law exponent or the volume fraction index) 

which determines the material distribution across the beam thickness. 

According to Eqs. (1)- (2), the effective material properties of porous MEE-FG (I) beam with 

even porosities are variable across the thickness direction with the following form 
 

   
1

( )
2 2

p

u l l u l

z
z

h
P P P PP P


   

 
 


 


 (4) 

 

It must be noted that, the top surface at z = +h/2 of porous MEE-FG beam is fully CoFe2O4, 

whereas the bottom surface (z = ‒h/2) is fully BaTio3. Moreover, the MEE-FG (II) beam has 

porosity phases spreading frequently nearby the middle zone of the cross-section and the amount 

of porosity seems to be linearly decrease to zero at the top and bottom of the cross-section. Fig. 

1(b) demonstrates cross-section areas of FGM-I and-II with porosities phases. For uneven 

distribution of porosities, the effective material properties are replaced by following form. 
 

   
1

( )
2

2
(1 )

2

p

u l l u l

z
z P P P P

h
P P

h

z
   

 
    
 

 (5) 
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2.2 Kinematic relations 
 

Based on new tangential-exponential refined shear deformation beam theory, the displacement 

field at any point of the beam can be expressed as 
 

   1 (, , ), b su x z t u x t
w

z
w

f z
x x

 






  (6) 

 

3( , , ) ( , ) ( , )b su x z t w x t w x t   (7) 

 

Which u is displacement of mid-plane along x and wb, ws are the bending and shear components 

of transverse displacement of a point on the mid-plane of the beam and t is the time. f(z) denotes a 

shape function estimating the distribution of shear stress across the beam thickness. f(z) is 

considered to satisfy the stress-free boundary conditions on the top and bottom sides of the beam. 

So, it is not required to use any shear correction factor. The present theory has a function in the 

form Mantari et al. (2014) 

sec ( )
2( , 0.03) tan ( )

2

z

h r
z

f z r
h




 
 
  

 
  

 
 (8) 

 

The electric potential and magnetic potential distributions across the thickness are 

approximated via a combination of a cosine and linear variation to satisfy Maxwell’s equation in 

the quasi-static approximation as follows (Ke and Wang 2014) 
 

2
( , , ) cos( ( ) ( )) ,

z
x z t z x t V

h
      (9) 

 

2
( , , ) cos( ( ) ( )) ,

z
x z t z x t

h
       (10) 

 

where ξ = π / h. Also, V and Ω are the external electric voltage and magnetic potential applied to 

the MEE-FG beam. Nonzero strains of the four-variable beam model are expressed by 
 

2

2

2

2

b
x

s
x

u w
z

x

w
f

xx


 



 




  

  (11) 

 

(1 ) s s
xz

f w w
g

x x x


  
  

  
 (12) 

 

where εXX, γxz are the normal and shear strains and 









dz

df
zg 1)(  is the shape function of the 

transverse shear strains. According to Eq. (9), the relation between electric field (Ex, Ey, Ez) and 

electric potential (Φ) can be obtained as (Wu and Tsai 2010) 
 

, cos( ( )) ,x xE z
x





  


 (13) 
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,

2
sin ( ))(z z

V
E z

h
        (14) 

 

Also, the relation between magnetic field (Hx, Hy, Hz) and magnetic potential () can be 

expressed from Eq. (10) as (Wu and Tsai 2010) 
 

, cos( ( )) ,x xH z
x





  


 (15) 

 

,

2
sin ( ( ))z zH z

h
  


      (16) 

 

Through extended Hamilton’s principle, the equation of motion can be derived by 
 

2

1

( ) 0
t

t
U T V dt     (17) 

 

Here U is strain energy, V is work done by external forces and T is kinetic energy. The 

following Euler–Lagrange equations are obtained by utilizing the virtual work principle and 

setting the coefficients of δu, δwb, δws, δϕ and ϕγ to zero 
 

2 3 3

0 1 12 2 2
( : 0), b sN u w w

u I I J
x t t x t x


   

  
     

 (18) 

 

 
2 2 2 2 3 4 4

0 1 2 22 2 2 2 2 2 2 2 2

( )
: 0 , ( )b s b s b b s

b

M w w w w u w w
w N I I I J

x x t t t x t x t x


       
     

          

 
2 2 2 2 3 4 4

0 1 2 22 2 2 2 2 2 2 2 2

( )
: 0 , ( )b s b s b b s

b

M w w w w u w w
w N I I I J

x x t t t x t x t x


       
     

         
 

(19) 

 

 
2 2 2 2 4 3 4

0 2 1 22 2 2 2 2 2 2 2 2

( )
: 0 , ( )

s

x xz s b s b b b
s

M Q w w w w w u w
w N I k J J

x x x t t t x t x t x

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      

           

 
2 2 2 2 4 3 4

0 2 1 22 2 2 2 2 2 2 2 2

( )
: 0 , ( )

s

x xz s b s b b b
s

M Q w w w w w u w
w N I k J J

x x x t t t x t x t x

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      

          
 

(20) 

 

2

2

( 0), cos( ) sin( ) 0
h

x
h z

D
z z D dz

x
   



 
   

 
  (21) 

 

2

2

( 0), cos( ) sin( ) 0
h

x
h z

B
z z B dz

x
   

 
   

 
  (22) 

 

In which the variables introduced (N, Mb, Ms, Q), mass moment of inertias (I0, I1, I2, J1, J2, K2) 

are defined as 
 

, , ,xx b xx s xx xz
A A A A

N dA M zdA M fdA Q gdA           (23) 
 

287



 

 

 

 

 

 

Farzad Ebrahimi and Ali Jafari 

2

0 1 2 1

2

2 2

( , ) , ( , ) , ( , ) , ( , ) ,

( , ) , ( , )

A A A A

A A

I z T dA I z T zdA I z T z dA J z T fdA

J z T fzdA K z T f dA

   

 
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 

   

 
 (24) 

 

In this study it assumed that the porous MEE-FG beam is under external electric voltage and 

magnetic potential. So, N  is the normal forces induced by external electric voltage V (NE) and 

external magnetic potential Ω (NH), respectively and are defined as 
 

E HN N N  ,
   

/2

31 31
/2

2
{ , } { , }

h
E H

h
N N e V q dz

h
  

 
(25) 

 

For a linear MEE porous FG beam exposed to magneto-electro mechanical loading, the coupled 

constitutive relations may be rewritten as (Wu et al. 2010) 
 

ij ijkl kl mij m nij nC e E q H     (26) 

 

i ikl kl im m in nD e k E d H    (27) 
 

i ikl kl im m in nB q d E H     (28) 
 

which ζij, Di, Bi denotes the components of stress, electric displacement and magnetic induction, εkl, 

Em and Hn are the components of linear strain, electric field and magnetic field. Additionally, Cijkl, 

kim and χin are the components of elastic stiffness, dielectric permittivity and magnetic permittivity 

coefficients; Finally, emij, qnij, and din are the piezoelectric, piezo-magnetic, and magneto-electric-

elastic coefficients, respectively. By integrating Eq. (26)-(28) over the area of MEE porous FG 

beam cross-section, the following relations for the force-strain and the moment-strain and other 

necessary relation of the refined FG beam can be obtained 
 

2 2

11 11 11 31 312 2
,S e m E Hb s

x x

w wu
N A B B A A N N

x x x
 

 
      
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x x x
 

 
      
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 (31) 
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And the last form of Euler-Lagrange equations for MEE porous FG based on four-variable 

refined shear deformation beam theory in terms of displacement u, wb, ws, ϕ and γ can be derived 

as 
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3. Solution method 
 

3.1 Analytical solution 
 

In this section, an exact solution of the Euler-Lagrange equations for free vibration of MEE 

porous FG beam with simply-supported (S), clamped (C) edges or combinations of these boundary 

conditions is presented which they are given as (Sobhy 2013): 
 

• Simply-supported (S) 
 

0b s x xw w N M         at     x = 0, L (42) 
 

• Clamped (C) 
 

0b s
b s

w w
u w w

x x

 
    

       at     x = 0, L 
(43) 
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To satisfy above-mentioned boundary conditions, the displacement quantities are presented in 

the following form 

1

( )
miw tm
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Where (Um, Wbm, Wsm, Φm, Ym) are the unknown coefficients and the function Xm are expressed 

in detail in Table 2 for different boundary conditions (α = mπ / a). Inserting Eqs. (44)-(45) into Eqs. 

(37)-(41) respectively, and multiplying each equation by the corresponding displacement function 

then integrating over the domain of solution, leads to 
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Table 2 The admissible functions Xm(x) (Sobhy 2013) 

Boundary conditions The functions Xm 

 At x = 0, a Xm(x) 

SS (0) (0) ( ) ( ) 0m m m mx x x a x a    
 Sin(αx) 

CS (0) (0) ( ) ( ) 0m m m mx x x a x a    
 Sin(αx)[Cos(αx) ‒ 1] 

CC (0) (0) ( ) ( ) 0m m m mx x x a x a    
 Sin2(αx) 
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By finding determinant of the coefficient matrix of the following Eqs. (46)-(50) and setting this 

multinomial to zero, we can find natural frequencies ωn. 
 

 

4. Numerical results and discussions 
 

In this section, numerical and graphical examples are presented to explain vibration 

specifications of smart MEE-FG beam with porosities based on four-variable refined beam theory. 

Thus, through comparisons of numerical results the impact of porosity volume fraction, FG 

material graduation, magnetic and electric fields, different types of porosity distributions and 

slenderness ratio on the natural frequency of the MEE porous FG beam will be examined. The 

correctness of the presented model results is compared with those of Vo et al. (2014) in Table 3. 

Hereupon f(z) is considered based on higher order beam theories as f(z) = 4z3/3h2, respectively. It is 

indicated that the current refined beam theory and solution procedure can accurately provide non-

dimensional frequency of smart porous FG beam. The non-dimensional frequency (λ) can be 

calculated by the relation in Eq. (53) as 
 

2

11

u

u

L

h c


   (53) 

 

In Table 4, the natural frequencies of MEE-FG-(I&II) beam are elaborated to show the effect of 

magnetic potential for various boundary conditions (S-S, C-S and C-C) according to different 

values of porosity volume fractions (α = 0, 0.1, 0.2) and power-law indexes (p = 0.2, 1, 5) without 

electric voltage (V = 0) at (L/h = 100). Also, influence of electric voltage, porosity parameter and 

material graduation exponent on the natural frequency of the MEE-FG-(I&II)) beam has been 

detected in Table 5 for various boundary conditions (S-S, C-S and C-C). By comparing the results 

of these tables, it is found that negative values of magnetic potential provide lower non-

dimensional frequencies of the smart FG porous beam than positive ones for all boundary 

conditions. But, lower values of electric voltage provide larger frequencies. This means that 

negative and positive values of electric voltage are cause of increment and reduction of non-

dimensional frequency, respectively. Comparing the non-dimensional frequency of smart FG beam 

for different boundary conditions expresses that beam with stiffer edges, the stiffness of the system 

increases and the stiffer system produces the larger values of frequencies. Therefore, the greatest 

non-dimensional frequency is obtained for MEE-porous FG beam with C-C boundary condition, 

while the frequencies of simply supported ends (S-S) FG beam have the lowest values. Another 

outstanding observation is that increasing the material graduation exponents leads to reduction in 

the non-dimensional frequency for every type of porosity distribution. In fact, when p= 0 beam is 

made from fully Cobalt Ferrite (CoFe2O4) and has the greatest frequency. Increasing the material 

graduation exponent from 0 to 10 changes the composition of the MEE-FG beam from a fully 

CoFe2O4 beam to a beam with a combination of Cobalt Ferrite and barium titanate (BaTiO3). So, 

by increasing the metal percentage and having the smaller value of Young’s modulus of BaTiO3 

with respect to CoFe2O4, the stiffness of system decreases. Thus, natural frequencies reduce as the 

stiffness of a structure decreases. In addition, it is seen that the existence of porosities has a key 

role on the vibration behavior of the MEE-porous FG beam, it is concluded that influence of the 

porosity on the vibration of MEE-FG (I) beam rely on the material graduation index (p), when the 

material graduation index is in the range of [0, 1], higher values of porosity volume fraction 
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Table 3 Comparison of non-dimensional frequency of FGM beam for different boundary condition, 

slenderness ratio and power-law exponents 

Simply-Simply 

L/h  p = 0 p = 0.2 p = 1 p = 2 p = 5 p = 10 

5 
Vo et al. (2013) 5.15275 4.80590 3.97160 3.59791 3.37429 3.26534 

Present 5.15275 4.80583 3.97123 3.59852 3.37981 3.26541 

20 
Vo et al. (2013) 5.46032 5.08139 4.20387 3.83428 3.64663 3.53787 

Present 5.46032 5.08129 4.20395 3.83547 3.64892 3.53691 

Clamped-Clamped 

L/h  p = 0 p = 0.2 p = 1 p = 2 p = 5 p = 10 

5 
Vo et al. (2013) 10.06780 9.46237 7.95221 7.18011 6.49614 6.16623 

Present 10.06780 9.46259 7.95571 7.18942 6.49867 6.16541 

20 
Vo et al. (2013) 12.22280 11.38380 9.43282 8.59942 8.14595 7.88616 

Present 12.22280 11.38561 9.43653 8.59831 8.14713 7.88722 

 

 

Table 4 Effect of porosity volume fraction and magnetic potential on the non-dimensional frequency of 

MEE-FG beam under different boundary conditions (L/h = 100, V = 0) 

Even porosity 

B.C Ω 
α = 0 α = 0.2 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

S-S 

-500 0.71065 1.18126 1.66022 0.620912 1.22405 1.82798 

0 2.16524 2.02602 1.92318 2.19704 2.02006 1.89108 

500 2.97581 2.61039 2.15428 3.04441 2.58127 1.95214 

C-S 

-500 3.48039 3.48987 3.66327 3.49732 3.50292 3.74895 

0 4.33659 4.06374 3.86357 4.39741 4.04393 3.79865 

500 5.04695 4.56605 4.05398 5.14229 4.53138 3.84779 

C-C 

-500 4.41544 4.28853 4.31745 4.45636 4.29005 4.34958 

0 5.00736 4.69083 4.46057 5.0775 4.67413 4.38540 

500 5.53635 5.06125 4.59925 5.63052 5.02896 4.42092 

Uneven porosity 

B.C Ω 
α = 0 α = 0.2 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

S-S 

-500 0.71065 1.18126 1.66022 0.830708 1.28622 1.80067 

0 2.16524 2.02602 1.92318 2.23345 2.08008 1.96711 

500 2.97581 2.61039 2.15428 3.04738 2.64558 2.12053 

C-S 

-500 3.48039 3.48987 3.66327 3.62313 3.62324 3.82263 

0 4.33659 4.06374 3.86357 4.47258 4.171174 3.95169 

500 5.04695 4.56605 4.05398 5.18466 4.65607 4.07666 

C-C 

-500 4.41544 4.28853 4.31745 4.57601 4.42984 4.46966 

0 5.00736 4.69083 4.46057 5.16436 4.81524 4.56223 

500 5.53635 5.06125 4.59925 5.69222 5.17200 4.65297 
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Table 5 Effect of porosity volume fraction and electric voltage on the non-dimensional frequency of 

MEE-FG beam under different boundary conditions (L/h = 100, Ω = 0) 

Even porosity 

B.C V 
α = 0 α = 0.2 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

S-S 

-500 2.18554 2.08431 2.01591 2.20692 2.07716 1.98979 

0 2.16524 2.02602 1.92318 2.19704 2.02206 1.89108 

500 2.14476 1.96601 1.82575 2.18712 1.96130 1.78962 

C-S 

-500 4.35285 4.11063 3.93847 4.40532 4.09588 3.87852 

0 4.33659 4.06374 3.86357 4.39741 4.04393 3.79865 

500 4.32027 4.0163 3.78718 4.38949 4.00345 3.71714 

C-C 

-500 5.01910 4.72475 4.51484 5.0832 4.70738 4.44325 

0 5.00736 4.69083 4.46057 5.0775 4.67413 4.38540 

500 4.99559 4.65665 4.40565 5.07178 4.64064 4.32677 

Uneven porosity 

B.C V 
α = 0 α = 0.2 

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 

S-S 

-500 2.18554 2.08431 2.01591 2.21873 2.13651 2.0598 

0 2.16524 2.02602 1.92318 2.23345 2.08008 1.96711 

500 2.14476 1.96601 1.82575 2.21806 2.02207 1.86984 

C-S 

-500 4.35285 4.11063 3.93847 4.48481 4.21712 4.02654 

0 4.33659 4.06374 3.86357 4.47258 4.17117 3.95169 

500 4.32027 4.0163 3.78718 4.4603 4.12586 3.8754 

C-C 

-500 5.01910 4.72475 4.51484 5.1732 4.84807 4.61645 

0 5.00736 4.69083 4.46057 5.16436 4.81524 4.56223 

500 4.99559 4.65665 4.40565 5.15551 4.78218 4.50736 
 

 

provide larger values of the frequency results while this trend is vice versa by increasing of power-

law index. But for MEE-FG (II) beam, higher values of porosity volume fraction provide larger 

values of the frequency results for all material graduation index. Comparing results of even and 

uneven porosity distributions reveals that the porosity has more significant impact on natural 

frequencies of the MEE-FG (I) than MEE-FG (II) at every magnetic potentials and electric 

voltages. 

To indicate the effect of porosity on the vibration response of MEE-FG beam, Fig. 2 depicts 

variations of the first non-dimensional natural frequency of S-S MEE-FGM-I &-II beam with 

material graduation and porosity parameter at a constant value of slenderness ratio (L/h = 100), 

magnetic potential (Ω = 0) and electric voltage (V = 0). It is clear from the curve that porosity 

effect according to the even distribution relies on the value of power-law index. For example, by 

increasing the porosity parameter the natural frequency first increases at lower gradient indexes, 

however, an opposite behavior is observed from a certain value of the power index. In other words, 

from a certain value of power-law index, increasing porosity volume fraction leads to lower non-

dimensional frequencies. It means that, for MEE-FGM model with even porosity distribution when 

the power-law exponent is approximately lower than 2, the frequency increases due to increasing 
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(a) Even porosity (b) Uneven porosity 

Fig. 2 The variation of the first dimensionless frequency of S-S MEE-FGM porous beam with material 

graduation and porosity parameter (L/h = 20, Ω = 0, V = 0) 
 

 

  

Ω = 0 𝛼 = 0.2, Ω = 0 

Fig. 3 Effect of porosity volume index on the dimensionless frequency of the S-S MEE-FGM (I) 

beam with respect to applied magnetics potential and electric voltage (L/h = 100, p = 5) 
 

 

of the porosity parameter, while for higher values of gradient indexes the frequencies decrease by 

increasing the porosities. Moreover, it is observed that non-dimensional frequency of MEE-FG 

plates with uneven porosity distribution increases as the porosity parameter increases for every 

value of power-law exponent. In other words, the decreasing nature of the curve shows the 

moderate values of non-dimensional frequency taken by 0.1 porosity parameter, highest value 

taken by 0.2 porosity volume fraction and lowest values taken by perfect FGM (𝛼 = 0). Hence, it 

can be concluded that vibration behavior of MEE-porous FG beam is affected by the type of 

porosity distribution. Beside this, it is seen that increasing the material graduation index is cause of 

reduction in non-dimensional frequency results of the MEE-FG porous beam. This is due to this 

fact that, increasing the power-law exponent leads to decrease in the bending rigidity and elasticity 

modulus and as also known from the theory of vibrations, the natural frequencies are directly 

proportional with the rigidity and elasticity modulus. 
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The variations of natural frequency of the simply-supported smart MEE-FG (I) beam subjected 

to external magnetic potential and electric voltage for different values of porosity volume fractions 

at (L/h = 100, p = 5) are presented in Fig. 3, respectively. It is found that external electric voltage 

and magnetic potential respectively indicates reducing and increasing impacts on the frequency of 

MEE porous beam when their values varies from negative to positive one at a fixed value of 

porosity volume fraction which highlights the notability of the sign of magnetic potential and 

electric voltage. Furthermore, according to these tables the non-dimensional frequency decreases 

as the porosity value increases for all values of electric voltage but it depends on the sign and 

magnitude of magnetic potential. 

In order to peruse the effect of magnetic field and electric voltage on the natural frequencies of 

the smart S-S MEE-FGM beam, the natural frequency variation, versus the slenderness ratio for 

perfect FGM and imperfect FGM (𝛼 = 0.2) at constant value of material graduation (p = 5), is 

plotted in Fig. 4. One may deduce that when external electric voltage and magnetic potential are 

zero, dimensionless frequency is not dependent on the slenderness ratio. Also, it is observable that 

higher values of a/h have more significant influence on frequency response. Moreover, it can be 
 

 

  

𝛼 = 0, Ω = 0 𝛼 = 0.2, Ω = 0 
 

 

 

 

𝛼 = 0, V = 0 𝛼 = 0.2, V = 0 

Fig. 4 Effect of slenderness ratio on the dimensionless frequency of S-S MEE-FGM(I) beam for 

various magnetic potentials and electric voltages (p = 5) 
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seen that exerting negative voltages lead to higher frequencies, but exerting negative magnetic 

potentials lead to lower frequencies. Consequently, the difference between frequency results 

according to negative and positive values of electric and magnetic fields increases with the rise of 

side-to-thickness ratio. So, it is concluded that influence of electric voltage and magnetic potential 

is more obvious in higher values of L/h. 

Fig. 5 demonstrates the influence of different boundary conditions on the non-dimensional 

frequency of MEE-FG beam with respect to even and uneven porosity distributions, respectively at 

L/h = 100, V = 200, Ω = 100 and p = 5. It is clear that natural frequency recorded for Simply-

Simply boundary condition takes the lowest value, while it is medium for Clamped-Simply 

boundary condition. However, the value of natural frequency shoots up for the Clamped-Clamped 

boundary condition. It can also be noted that, influence of porosity parameter on the natural 

frequency of MEE-FG beam with even and uneven porosity distributions is similar previous 
 

 

  

(a) Even porosity (b) Uneven porosity 

Fig. 5 Effect of porosity volume index on the dimensionless frequency of MEE-FGM (I&II) beam 

with different boundary condition (L/h = 100, V = 200, Ω = 100, p = 5) 
 

 

  

Ω = 100 V = 100
 

Fig. 6 Effect of electric voltage and magnetic potential on the dimensionless frequency of different 

boundary FGM (I) beam (L/h = 100, p = 5, 𝛼 = 0.2) 
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conclusions for all boundary conditions. Hence, even and uneven porosity respectively provide 

lower and higher natural frequencies for MEE-FG beam at p = 5. 

The natural frequency of smart porous FG beam associated with electric voltage and magnetic 

potential for different boundary conditions at L/h = 100, p = 5 and 𝛼 = 0.2 are shown respectively 

in Fig. 6. It is pointed out that for all types of boundary conditions increasing the external voltage 

causes reduction of the natural frequency while increasing the magnetic potential results in 

increasing non-dimensional frequency. Thus, magnitude and sign of electric and magnetic fields 

have significant role on vibration behavior of porous MEE-FG beam. 

 

 

5. Conclusions 
 

In the proposed investigation, vibration characteristics of smart functionally graded (MEE-FG) 

beam with porosities subjected to magnet electro fields under different boundary conditions is 

implemented within the framework of a four-variable higher order shear deformation theory in 

which verify shear deformation effect regardless of any shear correction factor. The influence of 

different types of porosity distributions namely even and uneven distributions and various 

boundary conditions on vibrational responses of MEE-porous FG beams are considered. 

Mechanical properties of the smart porous MEE-FG beam vary in the thickness direction based on 

modified power-law model for approximation of material properties with even and uneven 

distributions of porosities. The governing differential equations of motion and boundary conditions 

are derived by using Hamilton principle and then solved by applying an analytical solution method 

for various boundary conditions. Accuracy of the results is examined using available date in the 

literature. It is indicated that the vibration characteristics of MEE- porous FGM beam are 

significantly affected by various parameters such as slenderness ratio, magnetic field, external 

electric voltage, volume fraction of porosity, material graduation, various boundary conditions and 

porosity distribution. Numerical results show that: 

 

 As growing the power-law exponent, natural frequencies of porous MEE-FG beam are 

found to diminish. 

 For MEE-porous FGM beam with even porosity distribution, increasing the volume fraction 

of porosity first is cause of increment in non-dimensional frequency, then this trend becomes 

opposite for higher values of material graduation index. 

 Non-dimensional frequency of MEE-porous FG beam with uneven porosity distribution 

increases with increment in porosity parameters for all values of material graduation index. 

 Increasing magnetic potential yields increment of non-dimensional frequency of porous 

MEE-FGM beam. However, for the external electric voltage this behavior is opposite. 

 Effect of porosity volume fraction on natural frequency rely on porosity distribution and 

power-law index. 

 The non-dimensional frequency of MEE- porous FGM beam with C-C boundary condition 

is greatest, followed by C-S and S-S respectively. 

 Effect of slenderness ratio (L/h) on frequencies with respect to magnetic potentials and 

electric voltages is more prominent at its higher values. As slenderness ratio increases, the 

difference between frequency results according to negative and positive values of magnetic 

fields and electric voltage increases and this difference is more noticeable for perfect MEE-

FG beam. 
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