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Abstract.  Present study interests with the longitudinal forced vibration of nanorods. The nonlocal elasticity 
theory of Eringen is used in modeling of nanorods. Uniform, linear and sinusoidal axial loads are considered. 
Dynamic displacements are obtained for nanorods with different geometrical properties, boundary 
conditions and nonlocal parameters. The nonlocal effect increases dynamic displacement and frequency 
when compared with local elasticity theory. Present results can be useful for modeling of the axial 
nanomotors and nanoelectromechanical systems. 
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1. Introduction 
 

Carbon nanotubes (CNTs) have been used in nanoscale engineering applications such as 

oscillator, sensor, nanomotor and fiber in nanocomposites, after the discovery by Iijima (1991). It 

is necessary to understand their mechanical behaviors properly. 

Discrete and continuum models are used in order to understand statics and dynamics of CNTs. 

Discrete models are based on interactions in atomic lattice structure and Molecular Dynamic (MD) 

simulation is one of the discrete model approaches. Very expensive and time consuming computer 

softwares are using for MD simulation process. Modeling of CNTs which have longer or bigger 

radius takes much more time according to smaller CNTs. Because of the disadvantages of MD 

simulations, continuum models can also use in modeling. But, classical continuum mechanic 

approach couldn’t be applied in nanoscale because of the size effect. It is well known from the 

previous studies that mechanics of nano-structures is size dependent and classical continuum 

mechanics does not include the size effect. Due to this fact, the nonlocal elasticity models have 

been considered in order to overcome this drawback. The nonlocal elasticity theory was apparently 

first proposed by Eringen (1983, 2007). He assumed that the stress at a point is a functional of the 

strain field at every point of the continuum. With this assumption, Eringen combined both discrete 

and continuum models into one theory that can be used at nano and macro scales. 

Firstly Peddieson, Buchanan et al. (2003) developed a nonlocal Euler-Bernoulli beam model 

with using nonlocal elasticity theory. Sudak (2003) studied column buckling of multiwalled 

carbon nanotubes (MWCNTs) which were modeled based on nonlocal continuum mechanics. 
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Wang and Wang (2007), Duan, Wang et al. (2007), Ece and Aydogdu (2007), Wang and Liew 

(2007), Demir, Civalek et al. (2010) used the nonlocal elasticity theory with various beam theories 

for static and dynamic analysis of CNTs. Reddy (2007) reconstituted various beam theories 

according to nonlocal differential constitutive relations of Eringen. Aydogdu (2009a) proposed an 

inclusive nonlocal beam theory which includes previous beam theories. Murmu and Pradhan 

(2009) developed an elastic beam model for analyzing the thermal vibration of SWCNT. Free 

vibration of SWCNT and nanobeams embedded in an elastic medium were investigated by Kiani 

(2010), Ansari, Gholami et al. (2011), respectively. Aydogdu and Arda (2014) studied the 

torsional vibration of DWCNTs with assuming the van der Waals interaction in circumferential 

direction. Kiani (2014) proposed nonlocal discrete and continuous models for dynamic analysis of 

SWCNTs. 

Wang and Hu (2005) used continuum mechanics and MD simulation for flexural wave 

propagation in SWCNTs. Wang (2005), Wang and Varadan (2006), Hu, Liew et al. (2008) 

interested with wave propagation in CNTs. Narendar and Gopalakrishnan (2010) studied the 

nonlocal effect on ultrasonic wave characteristics of nanorods. Other studies about wave 

propagation in CNTs were carried out by Wang (2005), Narendar (2011), Aydogdu (2012a, 2014) 

and Arda and Aydogdu (2016). Arash and Wang (2012) reviewed recent studies about the nonlocal 

continuum models. 

Small scale effect on axial vibration of CNTs is investigated by Aydogdu (2009b), Danesh, 

Farajpour et al. (2012). Karaoglu and Aydogdu (2010), Kiani (2014), Şimşek (2010, 2011) 

interested with the forced vibration of the CNTs. A physically-based nonlocal model is formulated 

by Huang (2012) in order to study influences of the nonlocal long-range interactions on the 

longitudinal vibration of nanorod.  The free longitudinal vibration of tapered nanowires is studied 

by using nonlocal continuum theory (Kiani 2010). Vibration of coupled nanorod system is 

investigated by (Murmu and Adhikari 2010). The axial wave propagation properties of a coupled 

nanorod system are investigated by using nonlocal elasticity theory (Narendar and Gopalakrishnan 

2011).  Free vibration of stocky ensembles of vertically aligned single-walled carbon nanotubes is 

investigated via nonlocal discrete and continuous modeling (Kiani 2014). 

Kiani (2014) proposed nonlocal discrete and continuous models to explain free vibration of 

two- dimensional (2D) ensembles of single-walled carbon nanotubes (SWCNTs) in bending. 

Using a novel nonlocal integro-differential model accounting for the surface energy effect, free 

longitudinal vibration of functionally graded tapered nanorods embedded in an elastic matrix is 

investigated by Kiani (2016).  Frequency analysis of elastically supported nanorods is performed 

via a novel nonlocal integro-differential surface energy-based model (Kiani 2016). 

It should be stresses that the carbon nanotubes are used as atomic force microscope (AFM) 

probe tip. During scanning material samples may act as attached spring to probe and this may 

change dynamic characteristics of the AFM. Also similar behavior can be observed in biosensor 

applications. Some other possible applications of CNTs in such industries like 

nanoelectromechanical, pharmaceutical, nano-bearing or nano-gearbox and resonators are 

investigated by researchers. Axially tunable carbon nanotube resonators using co-integrated micro 

actuators are investigated by Truax, Lee et al. (2014). In this application axial dynamics of 

nanotubes due to external excitations is important. 

 According to author’s limited knowledge, the axial vibration of nanorod under different 

external loads has not been considered, yet. The main goal of the present study is to fill the 

literature gap. In the present work, forced axial vibration of nanorods is studied using the nonlocal 

elasticity theory. The effect of various parameters like external force type, length of nanorod and 
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nonlocal parameter are investigated in detail. 

 

 

2. Analysis 
 

A nanorod with diameter d and length L is considered. According to Hamilton’s Principle 

(Reddy 2007, Aydogdu 2012b), the equation of motion in the axial direction can be found as 

   
   

   
     

   

   
                 (1) 

Where E is the Young modulus, A is the cross sectional area of nanotube, u is the axial 

displacement, fx is the axial force  is the mass density per unit length and t is the time. If the 

nanotube is inserted in an elastic matrix its effect can be considered as a part of fx. For an 

embedded nanotube in axial vibration we get fx=ku. In this relation k is the stiffness of the elastic 

medium. 

 

2.1 Equations of motion of nanorod using nonlocal elasticity 
  

In order to account size dependence in the elastic behavior of continuum, the nonlocal 

constitute relation can be defined as 

 (     )                                 (2) 

where τkl and εkl are the nonlocal stress and strain tensor, λ and G are the Lame constants, μ=(e0a)
2
 

is called the nonlocal parameter, a is an internal characteristic length and e0 is Eringen constant. 

Eringen determined this parameter as 0.39 for longitudinal wave results according to atomic lattice 

model (Eringen 1983, Eringen 2007). Aydogdu (2012a) has showed that e0 is material and length 

dependent for axial wave propagation. For one dimensional case, Eq. (2) can be written as 

 (   
  

   
)                           (3) 

If Eq. (3) is integrated respect to cross sectional area A of the nanorod (   ∫     
  ), Eq. 

(4) will be obtained 

     
    

   
   

                        (4) 

where    and   
  denote axial force per unit length according to nonlocal and local elasticity 

respectively. Using Eqs. (1), (3) and (4) the following equation of motion for the forced 

longitudinal vibration of nanorod can be obtained 

   
   

   
  (   )   

   (   )

   
 (   

  

   
) 

   

   
               (5) 

Eq. (8) is the nonlocal rod model for the forced longitudinal vibration of nanorods. If the 

nonlocal parameter is assumed as equal to zero (=0), Eq. (5) is turned into the classical elasticity 

equation. 

 

2.2 Free vibration case 
 
In order to use results of the free vibration, this case is briefly explained below (Aydogdu 
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2009b, Karaoglu and Aydogdu 2010, Aydogdu 2012b). Free vibration case occurs when the 

external axial force is assumed zero (f(x,t)=0). 

   
   

   
 (   

  

   
) 

   

   
                (6) 

If Eq. (6) is rearranged with assumption of dimensionless nanotube length ( ̅  
 

 
)  and 

harmonic vibration ( ( ̅  )   ( ̅)      ) 

 
   

  ̅ 
                       (7) 

where 

    
  

  
 

  
  
          

     

  
                (8) 

Here,  is the non-dimensional frequency parameter (NDFP). Clamped and free boundary 

cases are taking into account in this study with following conditions 

 Clamped (C):                    (9) 

 Free (F):     
  

  
   

   

     
  

  

  
               (10) 

Free vibration results for Clamped-Clamped (C-C) and Clamped-Free (C-F) boundary cases 

can be seen at Table 1. It is important to note that, classical theory (=0) frequency results increase 

with increasing mode number, but nonlocal theory (=1) results approach a constant value in both 

boundary conditions. Small-scale effect can be seen with this example, clearly. 

 
2.3 Forced vibration case 
 
It is assumed that a harmonic force is applied to the nanorod as given below 

  ( ̅  )   ( ̅)                    (11) 

 

 
Table 1 Free vibration frequencies of nanorod in C-C and C-F boundary conditions (L=5 nm) 

 Clamped-Clamped Clamped-Free 

Mode Number =0 =1 =0 =1 

1 3.14 2.66 1.57 1.49 

2 6.28 3.91 4.71 3.42 

3 9.42 4.41 7.85 4.21 

4 12.56 4.64 10.99 4.55 

5 15.70 4.76 14.13 4.71 

6 18.84 4.83 17.27 4.80 

7 21.99 4.87 20.42 4.85 

8 25.13 4.90 23.56 4.89 

9 28.27 4.92 26.70 4.91 

10 31.41 4.93 29.84 4.93 
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where  ( ̅) gives variation of the axial force in the space. Inserting Eqs. (7) and (11) in Eq. (5) 

gives 

 
   

  ̅ 
      

 

 
  

 

  
 

 

   

  ̅ 
              (12) 

where 

   
   

 

  
           

 

  
                          (13) 

where F0 is the amplitude of the axial external force. In the present study three different axial loads 

are investigated. Namely: uniform, linear and sinusoidal loads. 

 

2.3.1  ( ̅)     uniform distributed load 
The general solution of Eq. (12) for uniform axial load F0 can be defined in the following form. 

  ( ̅)        ̅        ̅  
 

   
                (14) 

where A and B are the undermined coefficients. For C-C boundary case following equation is 

obtained 

  ( ̅)  
 

   
*(
(      )

    
     ̅)       ̅   +                (15) 

and for C-F boundary case following dynamic displacement equation is obtained 

  ( ̅)  
 

   
[(         ̅)       ̅   ]             (16) 

 

 

 

Fig. 1 Uniform, linear and sinusoidal loading in the axial direction 
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2.3.2.  ( ̅)     ̅ linear varying load 
In the linearly varying load case the general solution of Eq. (12) can be written as 

  ( ̅)        ̅        ̅  
 

   
 ̅               (17) 

where A and B are undetermined coefficients. For the C-C and C-F boundary conditions dynamic 

displacement are obtained in the following forms 

  ( ̅)  
 

   
*
     ̅

    
  ̅+           (   )                        (18) 

  ( ̅)  
 

   
*((  

 

  
  )

     ̅

     
)   ̅+           (   )              (19) 

 

2.3.3  ( ̅)       (   ̅) sinusoidal varying load 
In the sinusoidal varying load case the general solution of Eq. (12) can be written as 

  ( ̅)        ̅        ̅       (   ̅)               (20) 

where A and B are undetermined coefficients, m is the mode number of wave and K1 is defined as 

    
 

 (       )
*    

 

  
    +             (21) 

For the C-C and C-F boundary conditions dynamic displacement are obtained in the following 

form 

  ( ̅)    *
     

    
     ̅     (   ̅)+           (   )              (22) 

  ( ̅)         ̅       (   ̅)           (   )              (23) 

where 

      
     

     
*
 

 

 

  
   +              (24) 

 

 

3. Numerical results and discussion 
 

The dimensionless dynamic displacements of axially vibrating nanorods are given for different 

geometrical, material and nonlocal parameter, in this section. All dynamic displacements are 

obtained at the midpoint of the nanorods ( ̅     ). The dimensionless dynamic displacements are 

defined as 

    
  

   
                           (25) 

Figs. 2-3 show the variation of dynamic displacement of nanorod under uniform axial harmonic 

load for C-C and C-F boundary condition. Results are obtained for different nanotube lengths and 

nonlocal parameters. Dynamic displacements increase with increasing nanotube length (L). The 

difference between the local and nonlocal dynamic displacement are greater for shorter nanotube 

length values for both C-C and C-F boundary conditions. Moreover the difference is more 

pronounced for C-C boundary conditions. This is due to higher natural frequency for C-C  
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Fig. 2 Dynamic displacement of the nanorod under uniform axial load at C-C boundary condition 

 

 

Fig. 3 Dynamic displacement of the nanorod under uniform axial load at C-F boundary condition 

 

 

boundary conditions. Resonance frequencies are smaller for the nonlocal elasticity especially for 

shorter nanotube length values. Long range interactions are more pronounced for shorter 

nanotubes. This effect is vanished in longer nanotubes. The nonlocal effects are again more  
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Fig. 4 Dynamic displacement of the nanorod under linear axial load at C-C boundary condition 

 

 

Fig. 5 Dynamic displacement of the nanorod under linear axial load at C-F boundary condition 

 

 

pronounced for C-C boundary condition then C-F boundary condition. 

Figs. 4-5 depict the variation of dynamic displacement of nanorod under linearly varying load. 

Dynamic displacements are smaller for linear load when compared with uniform load. The effect  
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Fig. 6 Dynamic displacement of the nanorod under sinusoidal axial load at C-C boundary condition 

 

 

Fig. 7 Dynamic displacement of the nanorod under sinusoidal axial load at C-F boundary condition 

 

 

of the nonlocal elasticity is greater for higher modes. This is due to increasing long range 

interactions with decreasing wave length in the continuum. 

Change of dynamic displacement with sinusoidal load can be seen on Figs. 6-7. Nonlocal effect 
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is more obvious in C-C boundary condition rather than the C-F boundary condition case. Also 

nonlocal effect decreases with increasing nanotube length, but in higher modes, it may become 

more pronounced. Nonlocal effect can decrease the NDFP for higher modes, but not the dynamic  

 

 

 

Fig. 8 Mode shapes uniform axial load at C-C boundary condition (a) =2.5 (b) =5 (c) =7.5 

 

 

Fig. 9 Mode shapes uniform axial load at C-F boundary condition (a) =2.5 (b) =5 (c) =7.5 
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Fig. 10 Mode shapes linear axial load at C-C boundary condition (a) =2.5 (b) =5 (c) =7.5 

 

 

Fig. 11 Mode shapes linear axial load at C-F boundary condition (a) =2.5 (b) =5 (c) =7.5 

 

 

displacement. In all loading cases, dynamic displacements are always highest at fundamental 

frequencies. 
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Fig. 12 Mode shapes of sinusoidal axial load at C-C boundary condition (a) =2.5 (b) =5 (c) =7.5 

 

 

Fig. 13 Mode shapes of sinusoidal axial load at C-F boundary condition (a) =2.5 (b) =5 (c) =7.5 

 

 

Mode shapes are depicted as a dimensionless amplitude value that is a ratio between the local 

and nonlocal theory amplitude results. In Figs. 8-13, mode shapes of CNT at different NDFP 

values can be seen. The frequency of external load is chosen as =2.5, 5 and 7.5. It can be seen 
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form Table 1 that these external excitation frequencies are near to different frequencies in the local 

and nonlocal theories. In C-C boundary case, nonlocal and local theory results show similar mode 

shapes. Especially sinusoidal load case, mode shapes are identically similar for all mode numbers. 

Nonlocal effect can be seen in C-F boundary cases, more evidently. 

 

 

4. Conclusions 
 

In present study, nonlocal elastic nanorod model were developed with Eringen’s Nonlocal 

Elasticity Theory. Small scale effect on the forced axial vibrations of nanorods is investigated with 

using the local and nonlocal rod models. Evident expressions are derived for dynamic 

displacements at clamped and free boundary conditions. Effects of parameters on forced vibration 

characteristics of nanorod are investigated. General results can be concluded as:  

• Nonlocal effect is more pronounced in shorter nanotube lengths, 

• Natural frequencies increase with increasing nonlocal parameter especially for shorter 

nanotube lengths. 

• Nonlocal effect can change the mode shapes of CNT, particularly in C-F boundary case. 

• Different mode shapes for nanorod are obtained with local and nonlocal theories 
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