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Abstract.  In this paper, a simple and refined nonlocal hyperbolic higher-order beam theory is proposed for 
bending and vibration response of nanoscale beams. The present formulation incorporates the nonlocal scale 
parameter which can capture the small scale effect, and it considers both shear deformation and thickness 
stretching effects by a hyperbolic variation of all displacements across the thickness without employing 
shear correction factor. The highlight of this formulation is that, in addition to modeling the displacement 
field with only two unknowns, the thickness stretching effect (εz≠0) is also included in the present model. 
By utilizing the Hamilton’s principle and the nonlocal differential constitutive relations of Eringen, the 
equations of motion of the nanoscale beam are reformulated. Verification studies demonstrate that the 
developed theory is not only more accurate than the refined nonlocal beam theory, but also comparable with 
the higher-order shear deformation theories which contain more number of unknowns. The theoretical 
formulation proposed herein may serve as a reference for nonlocal theories as applied to the static and 
dynamic responses of complex-nanobeam-system such as complex carbon nanotube system. 
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1. Introduction 
 

Recent experimental results have demonstrated a significant size influence in mechanical 

characteristics when the dimensions of the structure become small. The local continuum models 

lack the capability of capturing such effects since they do not incorporate any internal length scale. 

Thus, these models are expected to fail when the structure size becomes comparable with the 

internal length scale(s) of the material. This motivated many authors to propose beam/plate 

theories based on size-dependent continuum models which consider the small scale influences. 

The nonlocal elasticity theory developed by Eringen (1972, 1983) is one of the promising size-

dependent continuum models. Contrary to the local continuum models which suppose that the 

stress at a point is a function of strain at that point, the non-classical elasticity theory considers that 
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the stress at a point is a function of strains at all points in the continuum. Thus, the small scale 

parameter is introduced through the employment of constitutive equations.  

Based on the nonlocal elasticity model, a number of article have been published in the recent 

last years, attempting to propose nonlocal beam/plate models and use them to investigate the 

bending (Duan and Wang 2007, Lu, Zhang et al. 2007, Reddy and Pang 2008, Aghababaei and 

Reddy 2009, Reddy 2010, Berrabah, Tounsi et al. 2013, Tounsi, Benguediab et al. 2013a, Larbi 

Chaht, Kaci et al. 2015), buckling (Pradhan 2009, Murmu and Pradhan 2009a, Pradhan and 

Murmu 2009, Pradhan and Phadikar 2010, Amara, Tounsi et al. 2010, Tounsi, Semmah et al. 

2013b, Tounsi, Benguediab et al. 2013c, Benguediab, Tounsi et al. 2014, Larbi Chaht, Kaci et al. 

2015, Semmah, Tounsi et al. 2015), and vibration (Pradhan and Phadikar 2009ab; Murmu and 

Pradhan 2009b,c,d, Wang, Murmu et al. 2011, Pradhan and Kumar 2011, Pradhan and Sahu 2010, 

Zemri, Houari et al. 2015, Belkorissat, Houari et al. 2015, Chemi, Heireche et al. 2015) behaviors 

of nanoplates/nanobeams. 

In recent years, researchers proposed some shear deformation theories to study bending, 

buckling and vibration behaviors of structures (Bellifa, Benrahou et al. 2016, Tounsi, Houari et al. 

2016, Bourada, Amara et al. 2016, Houari, Tounsi et al. 2016, Ait Yahia, Ait Atmane et al. 2015, 

Ait Amar Meziane, Abdelaziz et al. 2014, Zidi, Tounsi et al. 2014, Bouderba, Houari et al. 2013, 

Tounsi, Houari et al. 2013d). In addition, the stretching thickness effect was studied by several 

authors to show its importance on mechanical behavior of structures (Bennoun, Houari et al. 2016, 

Bourada, Kaci et al. 2015, Hamidi, Houari et al. 2015, Belabed, Houari et al. 2014, Hebali, Tounsi 

et al. 2014). Recently, many papers have been published concerning with analysis of 

nanostructures. Among them, Ahouel, Houari et al. (2016) examined size-dependent mechanical 

response of functionally graded trigonometric shear deformable nanobeams including neutral 

surface position concept. Ebrahimi and Barati (2016) presented an exact solution for buckling 

analysis of embedded piezoelectromagnetically actuated nanoscale beams. Bounouara, Benrahou 

et al. (2016) developed a nonlocal zeroth-order shear deformation theory for free vibration of 

functionally graded nanoscale plates resting on elastic foundation. Eltaher, Khater et al. (2016) 

investigated the static stability of nonlocal nanobeams using higher-order beam theories. 

In the present work, an analytical solution to the bending and vibration analyses of nanoscale 

beams is presented by proposing a novel nonlocal shear and normal deformation beam theory, 

which is compared with the predictions of other theories available in the literature. Just two 

unknown displacement functions are employed in the present model against four or more unknown 

displacement functions utilized in the corresponding ones. The effects due to small scale, 

transverse shear and thickness stretching are all included. The small scale influence is considered 

by utilizing the nonlocal constitutive relations of Eringen, while the shear and normal 

deformations effects are captured using the hyperbolic shear deformation theory (Zenkour 2013, 

Bourada et al. 2015). Based on the nonlocal constitutive relations of Eringen, equations of motion 

of nanoscale beams are obtained by employing Hamilton’s principle. Analytical solutions for 

deflection and natural frequency are presented for simply supported nanoscale beams, and the 

obtained results are compared with the existing solutions to check the accuracy of the present 

formulation. 

 

 

2. Nonlocal beam model with thickness stretching effect 
 

2.1 Kinematics 
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The displacement field of the hyperbolic shear deformation theory is proposed based on the 

supposition that the transverse shear stress vanishes on the top and bottom surfaces of the beam 

and is nonzero elsewhere. The displacement field is considered as (Bourada, Kaci et al. 2015) 
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where, w0 is the displacement of the middle surface along the axis z; and the additional 

displacement φ accounts for the effect of normal stress (thickness stretching effect). In this work, 

the shape functions f(z) and g(z) are taken based on the hyperbolic function proposed by Zenkour 

(2013) 
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The linear strain relations associated with the displacement field in Eq. (1) are 
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2.2 Equations of motion 
 

Hamilton’s principle is employed to determine the equations of motion 
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where U, K and V represent the strain energy, kinetic energy and the work done by external forces, 

respectively. 

The variation of the strain energy can be expressed as 
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where M, P, Nz and Q are the stress resultants defined as 

253



 

 

 

 

 

 

Boumediene Kheroubi, Abdelnour Benzair, Abdelouahed Tounsi and Abdelwahed Semmah 

 






2/

2/

 ))(,,1(),(

h

h

x dzzfzPM  ,  




2/

2/

)('

h

h

zz dzzgN  , and   




2/

2/

)()('

h

h

xz dzzgzfQ         (7) 

The variation of work done by externally transverse loads q  can be expressed as 
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The variation of the kinetic energy is obtained as 
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Where dot-superscript convention indicates the differentiation with respect to the time variable 

t; and (Ii, Ji, Ki) are mass inertias defined as  
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Substituting the expressions for δU, δV, and δK from Eqs. (6), (8), and (9) into Eq. (5) and 

integrating by parts, and collecting the coefficients of δw0 and δφ, the following equations of 

motion of the beam are obtained 
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2.3 Constitutive relations 
 

The nonlocal theory considers that the stress at a point is related not only on the strain at that 

point but also on strains at all other points of the body. According to Eringen (1972, 1983), the 
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nonlocal stress ζ at a point is expressed as 

  t  21                                                            (12) 

where 
2
 is the Laplacian operator, and t is the classical stress. t=e0a is the scale-effect parameter 

where e0 is a material constant experimentally predicted, and a is an internal characteristic length 

(e.g., lattice parameter, molecular diameter, granular distance). For one dimensional beam element 

with considering thickness stretching effects, the nonlocal constitutive equation, Eq. (12), can be 

represented by 
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Transforming the local stress resultants defined in Eq. (7), to nonlocal domain using the 

differential operator of Eringen, Eqs. (13), we obtain 
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By substituting Eq. (14) into Eq. (11), the nonlocal equations of motion can be expressed in 

terms of displacements (w0, φ) as 
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3. Analytical solution of simply supported nanobeam 
 

In this study, analytical solutions are given for simply supported isotropic nanobeams for 

bending and free vibration. 

The following displacement field satisfies boundary conditions and governing equations.  
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where Wn and ϕn are arbitrary parameters to be determined, ω is the eigenfrequency associated 

with n
th
 eigenmode, and 
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  . The transverse load q is also expanded in the Fourier sine series 
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The Fourier coefficients Qn associated with some typical loads are given 
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Substituting the expansions of w0, φ, ’ and q from Eqs. (17) and (18) into Eq. (16), the closed 

form solutions can be obtained from the following equations 
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Table 1 Dimensionless maximum center deflection w  under uniform load for simply supported nanobeams 

L/h μ (nm
2
)  EBT TBT RBT 

SBT 

(εz=0) 

Tounsi, Benguediab et al. 

(2013a) (εz≠0) 

Present 

(εz≠0) 

5 

0 1.3021 1.4321 1.4320 1.4317 1.4185 1.4138 

1 1.4271 1.5674 1.5673 1.5671 1.5529 1.5476 

2 1.5521 1.7028 1.7027 1.7025 1.6872 1.6814 

3 1.6771 1.8381 1.8381 1.8379 1.8215 1.8152 

4 1.8021 1.9734 1.9735 1.9733 1.9559 1.9490 

10 

0 1.3021 1.3346 1.3346 1.3345 1.3299 1.3270 

1 1.4271 1.4622 1.4622 1.4621 1.4571 1.4539 

2 1.5521 1.5898 1.5898 1.5897 1.5843 1.5809 

3 1.6771 1.7173 1.7174 1.7173 1.7115 1.7078 

4 1.8021 1.8449 1.8450 1.8449 1.8387 1.8347 

20 

0 1.3021 1.3102 1.3102 1.3102 1.3077 1.3077 

1 1.4271 1.4359 1.4359 1.4358 1.4331 1.4332 

2 1.5521 1.5615 1.5615 1.5615 1.5585 1.5586 

3 1.6771 1.6871 1.6872 1.6871 1.6839 1.6841 

4 1.8021 1.8128 1.8128 1.8128 1.8093 1.8095 

100 

0 1.3021 1.3024 1.3024 1.3024 1.3005 1.3023 

1 1.4271 1.4274 1.4274 1.4274 1.4254 1.4273 

2 1.5521 1.5525 1.5525 1.5525 1.5502 1.5523 

3 1.6771 1.6775 1.6775 1.6775 1.6751 1.6773 

4 1.8021 1.8025 1.8025 1.8025 1.7999 1.8024 

 
 
4. Numerical results 
 

Through this section, the effect of thickness stretching in nanobeam, nonlocality effect and 

slenderness ratios on the deflections and natural frequencies of the nanobeam will be discussed. 

The obtained results are compared with those predicted using the Euler-Bernoulli beam theory 

(EBT), Timoshenko beam theory (TBT), Reddy’s beam theory (RBT) and the model of Berrabah, 

Tounsi et al. (2013) for a wide range of nonlocal parameter and slenderness ratio. For all 

computations, the shear correction factor and Poisson’s ratio are considered as 5/6 and 0.3, 

respectively. The length of nanobeam L is supposed to be 10 nm. A conservative estimate of the 

nonlocal scale parameter 0≤e0a≤2 nm for single-walled carbon nanotubes (SWCNTs) is proposed 

by Wang (2005). Hence, in this work, the nonlocal parameter is taken as μ=(e0a)
2
=0,1,2,3 and 4 

nm to examine the nonlocal effects on the responses of nanobeam. For convenience, the following 

non-dimensional quantities are employed:    

• 
4

0

100
Lq

EI
ww     for uniform load; 

• 
EI

I
L 02     frequency parameter; 
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Table 1 illustrates the variation of the non-dimensional maximum deflections w  with respect to 

nonlocal scale parameter, proposed theories, and slenderness ratios. A simply supported nanobeam 

subjected to uniform load is considered in this example and the calculated values are obtained 

using 100 terms in series in Eqs. (17) and (18). The predicted results are compared to those given 

by the Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy’s beam theory 

(RBT), Sinusoidal beam theory (SBT) of Berrabah, Tounsi et al. (2013) and the theory developed 

by Tounsi, Benguediab et al. (2013a). For all theories, it is noted that the deflection increases as 

the nonlocal scale parameter increases at a specified slenderness ratio. Moreover, for high 

slenderness (L/h=100) ratio, all theories are approximately identical in predicting the deflection, 

which confirms the accuracy of the simple Euler-Bernoulli model in the case of thin nanoscale 

beams. However, the discrepancy between EBT and other theories is noticeable for a moderately 

thick beam (L/h=10). On the other hand, the results predicted by employing the TBT coincide with 

those obtained using higher-order theories suggesting the accuracy of utilizing TBT for the case of 

moderately thick beams. It can be seen that the results from TBT, RBT and SBT due to ignoring 

the thickness stretching effect (εz=0) are slightly overestimate when comparing with those from the 

present theory (quasi-3D, εz≠0). This effect is more pronounced on thick beams (L/h=5). Noted 

that the present model has only three unknowns as in the case of TBT, RBT and SBT, while the 

number of unknowns in quasi-3D (Tounsi, Benguediab et al. 2013a) is four. Also, the present 

theory does not required shear correction coefficients as in the case of TBT. 

 

 
Table 2 Dimensionless fundamental frequency   of simply supported nanobeam 

L/h μ (nm
2
) EBT TBT RBT 

SBT 

(εz=0) 

Tounsi, Benguediab et al. 

(2013a) (εz≠0) 

Present 

(εz≠0) 

5 

0 9.7112 9.2740 9.2745 9.2752 9.2993 9.3211 

1 9.2647 8.8477 8.8482 8.8488 8.8718 8.8926 

2 8.8747 8.4752 8.4757 8.4763 8.4983 8.5182 

3 8.5301 8.1461 8.1466 8.1472 8.1683 8.1874 

4 8.2228 7.8526 7.8530 7.8536 7.8740 7.8925 

10 

0 9.8293 9.7075 9.7075 9.7077 9.7197 9.7307 

1 9.3774 9.2612 9.2612 9.2614 9.2728 9.2834 

2 8.9826 8.8713 8.8714 8.8715 8.8825 8.8926 

3 8.6338 8.5269 8.5269 8.5271 8.5376 8.5473 

4 8.3228 8.2196 8.2197 8.2198 8.2300 8.2393 

20 

0 9.8595 9.8281 9.8281 9.8282 9.8365 9.8358 

1 9.4062 9.3763 9.3763 9.3764 9.3843 9.3837 

2 9.0102 8.9816 8.9816 8.9816 8.9892 8.9886 

3 8.6604 8.6328 8.6328 8.6329 8.6402 8.6396 

4 8.3483 8.3218 8.3218 8.3218 8.3289 8.3283 

100 

0 9.8692 9.8679 9.8679 9.8679 9.8750 9.8749 

1 9.4155 9.4143 9.4143 9.4143 9.4211 9.4210 

2 9.0191 9.0180 9.0180 9.0180 9.0245 9.0244 

3 8.6689 8.6678 8.6678 8.6678 8.6740 8.6739 

4 8.3566 8.3555 8.3555 8.3555 8.3615 8.3614 
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Table 3 The first three dimensionless frequency   of simply supported nanobeam (L/h=5) 

Modes 

(n) 
μ (nm

2
) EBT TBT RBT 

SBT 

(εz=0) 

Tounsi, Benguediab et al. 

(2013a) (εz≠0) 

Present 

(εz≠0) 

1 

0 9.7112 9.2740 9.2745 9.2752 9.2993 9.3211 

1 9.2647 8.8477 8.8482 8.8488 8.8718 8.8926 

2 8.8747 8.4752 8.4757 8.4763 8.4983 8.5182 

3 8.5301 8.1461 8.1466 8.1472 8.1683 8.1874 

4 8.2228 7.8526 7.8530 7.8536 7.8740 7.8925 

2 

0 37.1120 32.1665 32.1847 32.1948 32.3947 32.4491 

1 31.4239 27.2364 27.2519 27.2604 27.4297 27.4757 

2 27.7422 24.0453 24.0589 24.0664 24.2159 24.2565 

3 25.1104 21.7642 21.7765 21.7833 21.9186 21.9554 

4 23.1088 20.0293 20.0407 20.0470 20.1714 20.2053 

3 

0 78.0234 61.4581 61.5746 61.6192 62.1977 62.1968 

1 56.7798 44.7247 44.8095 44.8420 45.2629 45.2623 

2 46.8246 36.8831 36.9531 36.9798 37.3270 37.3265 

3 40.7568 32.1036 32.1645 32.1878 32.4900 32.4895 

4 36.5657 28.8023 28.8569 28.8778 29.1489 29.1485 
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Fig. 1 Effect of the aspect ratio on the deflection, and fundamental frequency ratios for a simply 

supported nanobeam with e0a=1 nm 

 

 

The non-dimensional frequency   of a simply supported nanoscale beam are shown in Tables 

2 and 3 for various values of scale parameter μ and four different values of slenderness ratio 

(L/h=5, 10, 20, 100)  based on analytical Navier solution technique. It can be concluded from these 
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results that an increase in nonlocal parameter gives rise to a decrement in the frequency. In 

addition, it is seen that the   increases by increasing slenderness ratio (L/h) and it can be stated 

that nonlocality factor has a notable influence on the frequency and especially at the higher 

vibration modes (see Table 3). Our results are in good agreement with those obtained by Berrabah, 

Tounsi et al. (2013 for EBT, TBT, RBT, and SBT. However, it can be seen that, the inclusion of 

thickness stretching effect (i.e., εz≠0) leads to a slight increase of frequency. 

Fig. 1 demonstrates the variation of deflection and frequency ratios of nanobeam with the 

slenderness ratio (L/h). In this example, the deflection, and frequency ratios are defined as the 

ratios of those computed by present formulation to the correspondences computed by EBT where 

the shear deformation effect is neglected. Observing this figure, it is easily deduced that, the 

influence of slenderness ratio is to decrease the natural frequencies and increase the deflections, 

and this effect is considerable for thick beams at higher vibration modes (see Fig. 2). This 

demonstrates that the slenderness ratio effect results in a reduction of the beam stiffness. Also it 

can be concluded from the results of the Fig. 1 that the present nonlocal model is capable to 

produce very accurate results compared with the nonlocal theory developed by Tounsi, 

Benguediab et al. (2013a) with higher number of unknowns. 

The influence of the nonlocal scale parameter on the bending and vibration behaviors of 

nanoscale beam is shown in Fig. 3. The transverse displacement, and frequency ratios are defined 

as the ratios of those calculated by the nonlocal theory to the correspondences calculated by the 

local theory (i.e., μ=0). This figure demonstrates a nonlinear variation of the bending and vibration 

responses with the nonlocal scale parameter. It can be observed that the transverse displacement 

ratio is greater than unity, whereas the frequency ratios are smaller than unity. It means that the 

local theory under-estimates the transverse displacements and over-estimates the frequencies of the 

nanoscale beams compared to the nonlocal one. This is due to the fact that the local model is  
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Fig. 2 Effect of the aspect ratio on higher frequency ratios for a simply supported nanobeam with e0a=1 nm 
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Fig. 3 Effect of the scale parameter on the defection, and fundamental frequency ratios for a simply 

supported nanobeam with L/h=10 
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Fig. 4 Effect of the aspect ratio on higher frequency ratios for a simply supported nanobeam with 

e0a=1 nm 

 

 
unable to consider the small scale influence of the nanoscale beams. The difference between the 

local and nonlocal models is especially important for the higher modes (see Fig. 4). 

 

261



 

 

 

 

 

 

Boumediene Kheroubi, Abdelnour Benzair, Abdelouahed Tounsi and Abdelwahed Semmah 

 

5. Conclusions 
 

A novel nonlocal thickness-stretching hyperbolic shear deformation beam theory is proposed 

for the bending, and dynamic behavior of nanobeams. The present theory is able to consider the 

small scale, shear deformation and thickness stretching influences of nanoscale beams, and 

respects the zero traction boundary conditions on the upper and lower surfaces of the nanoscale 

beam without employing shear correction coefficient. From Hamilton’s principle as well as 

nonlocal elasticity theory of Eringen, the nonlocal equations of motion are obtained according to 

the refined two-variable shear deformation beam theory and then solved via an exact analytical 

solution. Results demonstrate that the incorporation of thickness stretching influence makes a 

nanoscale beam stiffer, and hence, leads to a diminishing of transverse displacement and an 

increase of frequency. However, it is remarked that the consideration of the nonlocal parameter 

and shear deformation influences lead to an increase in the transverse displacements and a 

reduction of the natural frequencies of nanoscale beams.  
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